Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a residual-type a posteriori error estimator for the virtual element method for the Stokes problem. It is proved that the a posteriori error estimator is reliable and efficient. The virtual element method allows the use of very general polygonal meshes and handles the hanging nodes naturally. Consequently, the local post-processing of locally adapted mesh can be avoided, which simplifies the adaptive procedure. A series of numerical examples are reported to show the effectiveness of adaptive mesh refinement driven by this estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility Statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Welfert, B.D.: A posteriori error estimates for the Stokes equations: a comparison. Comput. Methods Appl. Mech. Eng. 82(1–3), 323–340 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bank, R.E., Welfert, B.D.: A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal. 28(3), 591–623 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berrone, S., Borio, A.: A residual a posteriori error estimate for the virtual element method. Math. Models Methods Appl. Sci. 27(8), 1423–1458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Brezzi, F., Russo, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135, 423–442 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci. Comput. 78(2), 864–886 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chi, H., Beirão da Veiga, L., Paulino, G.H.: A simple and effective gradient recovery scheme and a posteriori error estimator for the virtual element method (VEM). Comput. Methods Appl. Mech. Eng. 347, 21–58 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dörfler, W., Ainsworth, M.: Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow. Math. Comput. 74(252), 1599–1619 (2005)

    Article  MATH  Google Scholar 

  20. Fumagalli, A.: Dual virtual element method in presence of an inclusion. Appl. Math. Lett. 86, 22–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, Theory and Algorithms, vol. 5. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  22. Hannukainen, A., Stenberg, R., Vohralík, M.: A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math. 122(4), 725–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Q., Jiang, L.: A multiscale virtual element method for elliptic problems in heterogeneous porous media. J. Comput. Phys. 388, 394–415 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74(9), 2172–2190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen-Thanh, V.M., Zhuang, X., Nguyen-Xuan, H., Rabczuk, T., Wriggers, P.: A virtual element method for 2D linear elastic fracture analysis. Comput. Methods Appl. Mech. Eng. 340, 366–395 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verfürth, R.: A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations. Numer. Math. 60(2), 235–249 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advanced Numerical Mathematics. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

  31. Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes. Comput. Methods Appl. Mech. Eng. 344, 998–1020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, J., Wang, Y., Ye, X.: A posteriori error estimate for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 9(1), 1–16 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, B., Zhao, J., Yang, Y., Chen, S.: The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378, 394–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, T., Tang, L.: A stabilized finite volume method for Stokes equations using the lowest order \(P_1-P_0\) element pair. Adv. Comput. Math. 41(4), 781–798 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. G2019KY05104), the Major Research and Development Program of China (No. 2016YFB0200901) and the NSF of China (No. 11771348). The authors would like to thank the editor and the anonymous referees, who made valuable suggestions and comments helping to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Priori Error Estimate of Scheme (12) Based on Space 2 of Order \(k=1\)

Appendix: A Priori Error Estimate of Scheme (12) Based on Space 2 of Order \(k=1\)

Lemma 3

[6] For any \(\varvec{v} \in \varvec{H}^{s}(E)\) with \(1 \le s \le 2\), there exist \(\varvec{v}_{\pi } \in \varvec{P}_{1}(E)\) and \(\varvec{v}_{I} \in \varvec{V}_{E}\) satisfying \(\mathrm{dof}_{i}(\varvec{v}-\varvec{v}_{I}) = 0\) (\(i = 1,...,N^{V}\)) such that

$$\begin{aligned} \Vert \varvec{v}-\varvec{v}_{\pi } \Vert _{E} + h_{E} |\varvec{v}-\varvec{v}_{\pi }|_{1,E}&\lesssim h^{s}_{E} |\varvec{v}|_{s,E}, \end{aligned}$$
(44a)
$$\begin{aligned} \Vert \varvec{v}-\varvec{v}_{I} \Vert _{E} + h_{E} |\varvec{v}-\varvec{v}_{I}|_{1,E}&\lesssim h^2_{E} |\varvec{v}|_{2,E}, \end{aligned}$$
(44b)

where \(\mathrm{dof}_{i}(\varvec{v})\), \(i = 1,...,N^{V}\), denotes the i-th local degree of freedom in \(\varvec{V}_{E}\) with respect to \(\varvec{v}\).

For any \((\varvec{v}_{h},q_{h}) \in \varvec{V}_{h} \times Q_{h}\), we define the norm

$$\begin{aligned} \Vert |(\varvec{v}_{h},q_{h})\Vert |^2:=|\varvec{v}_{h}|^2_{1}+ \sum _{e \in \mathcal {F}^{o}_{h}} \mu h_{e} \Vert [q_{h}] \Vert ^2_{e}. \end{aligned}$$

Then, we immediately have

$$\begin{aligned} \mathcal {L}_{h}[(\varvec{v}_{h},q_{h}),(\varvec{v}_{h},-q_{h})] = \Vert |(\varvec{v}_{h},q_{h})\Vert |^2 \quad \forall (\varvec{v}_{h},q_{h}) \in \varvec{V}_{h} \times Q_{h}, \end{aligned}$$

which guarantees the stability and well-posedness of problem (12).

Let \((\varvec{u},p) \in \varvec{V} \times Q\) and \((\varvec{u}_{h},p_{h}) \in \varvec{V}_{h} \times Q_{h}\) be the solutions of problems (2) and (12), respectively. Further, we assume that \(\varvec{u} \in \varvec{V} \cap \varvec{H}^2(\varOmega )\) and \(p \in Q \cap H^1(\varOmega )\), and define the interpolation \(\varvec{u}_{I} \in \varvec{V}_{h}\) and the projection \(p_{I} \in Q_{h}\). For any \((\varvec{v}_{h}, q_{h}) \in \varvec{V}_{h} \times Q_{h}\), we have from the discrete scheme (12) and integrations by parts that

$$\begin{aligned} \begin{aligned} a_{h}(\varvec{u}_{h}, \varvec{v}_{h}) + G(p_{h},-q_{h})&= (\varvec{f}_{h},\varvec{v}_{h}) - d(\varvec{v}_{h}, p_{h}) - d(\varvec{u}_{h}, q_{h}) \\&= (\varvec{f}_{h}-\varvec{f},\varvec{v}_{h}) + (- \varDelta \varvec{u} + \nabla p,\varvec{v}_{h}) - d(\varvec{v}_{h}, p_{h}) - d(\varvec{u}_{h}, q_{h}) \\&= (\varvec{f}_{h}-\varvec{f},\varvec{v}_{h}) + a(\varvec{u},\varvec{v}_{h}) + d(\varvec{v}_{h},p) - d(\varvec{v}_{h}, p_{h}) - d(\varvec{u}_{h}, q_{h}). \end{aligned} \end{aligned}$$
(45)

Subtracting both \(a_{h}(\varvec{u}_{I}, \varvec{v}_{h})\) and \(G(p_{I},-q_{h})\) from the both sides of (45) and using the fact \(G(p,q_{h}) = 0\), we obtain the error equation

$$\begin{aligned} \begin{aligned}&a_{h}(\varvec{u}_{h}-\varvec{u}_{I}, \varvec{v}_{h}) + G(p_{h}-p_{I},-q_{h}) \\&\quad = (\varvec{f}_{h}-\varvec{f},\varvec{v}_{h}) + a(\varvec{u},\varvec{v}_{h}) - a_{h}(\varvec{u}_{I}, \varvec{v}_{h}) \\&\quad \quad + G(p - p_{I},-q_{h}) + d(\varvec{v}_{h},p) - d(\varvec{v}_{h}, p_{h}) - d(\varvec{u}_{h}, q_{h}). \end{aligned} \end{aligned}$$
(46)

Theorem 3

Let \((\varvec{u}, p)\in \varvec{V} \times Q\) and \((\varvec{u}_{h}, p_{h})\in \varvec{V}_{h} \times Q_{h}\) be the solutions of problems (2) and (12), respectively. It is true that

$$\begin{aligned} \Vert |(\varvec{u}_{h}-\varvec{u}_{I}, p_{h}-p_{I})\Vert | \lesssim h (\Vert \varvec{u} \Vert _{2} + \Vert p \Vert _{1} + \Vert \varvec{f} \Vert ). \end{aligned}$$
(47)

Proof

Taking \(\varvec{v}_{h} = \varvec{u}_{h}-\varvec{u}_{I}\) and \(q_{h} = -(p_{h}-p_{I})\) in (46), we have

$$\begin{aligned} \Vert |(\varvec{u}_{h}-\varvec{u}_{I}, p_{h}-p_{I})\Vert |^2 \lesssim a_{h}(\varvec{u}_{h}-\varvec{u}_{I}, \varvec{v}_{h}) + G(p_{h}-p_{I},-q_{h}) \triangleq \mathrm{I}_1 + \mathrm{I}_2 + \mathrm{I}_3 + \mathrm{I}_4, \end{aligned}$$
(48)

where \(\mathrm{I}_{i}\) (\(i = 1,...,4\)) will be specified later. The first term \(\mathrm{I}_{1}\) can be bounded by using the continuity of \(\varvec{\Pi }^{\nabla ,E}\) with respect to \(\Vert \cdot \Vert _{E}\) and the approximation property of \(\varvec{P}^{0,E}\),

$$\begin{aligned} \begin{aligned} \mathrm{I}_{1}&= (\varvec{f}_{h}-\varvec{f},\varvec{v}_{h}) = \sum _{E \in \mathcal {T}_{h}}( \varvec{\Pi }^{\nabla ,E} \varvec{f} - \varvec{f}, \varvec{v}_{h} - \varvec{P}^{0,E} \varvec{v}_{h}) \lesssim h \Vert \varvec{f} \Vert \cdot |\varvec{v}_{h}|_{1}. \end{aligned} \end{aligned}$$
(49)

To get the bound of \(\mathrm{I}_2\), let \(\varvec{u}_{\pi }\) be the \(\varvec{P}_{1}\) projection of \(\varvec{u}\) and satisfy (44a). Then, we have from the consistency (8) that

$$\begin{aligned} \begin{aligned} \mathrm{I}_{2}&= a(\varvec{u},\varvec{v}_{h}) - a_{h}(\varvec{u}_{I}, \varvec{v}_{h}) = a(\varvec{u}-\varvec{u}_{\pi },\varvec{v}_{h}) + a(\varvec{u}_{\pi },\varvec{v}_{h}) - a_{h}(\varvec{u}_{I}, \varvec{v}_{h}) \\&= a(\varvec{u}-\varvec{u}_{\pi },\varvec{v}_{h}) + a_{h}(\varvec{u}_{\pi }-\varvec{u}_{I}, \varvec{v}_{h}) \lesssim h \Vert \varvec{u} \Vert _{2} |\varvec{v}_{h}|_{1}. \end{aligned} \end{aligned}$$
(50)

For the third term \(\mathrm{I}_{3}\), it follows from the Cauchy–Schwarz and the trace inequalities, the approximation property of the piecewise constant projection that

$$\begin{aligned} \begin{aligned} \mathrm{I}_{3}&= G(p - p_{I},-q_{h}) = \sum _{e \in \mathcal {F}^{o}_{h}} \mu h_{e} \langle [p - p_{I}], [-q_{h}] \rangle _{e} \\&\le \left( \sum _{e \in \mathcal {F}^{o}_{h}} \mu h_{e} \Vert [p - p_{I}] \Vert ^2_{e} \right) ^{\frac{1}{2}} \left( \sum _{e \in \mathcal {F}^{o}_{h}} \mu h_{e} \Vert [q_{h}] \Vert ^2_{e} \right) ^{\frac{1}{2}} \\&\lesssim \left( \sum _{E \in \mathcal {T}_{h}} h_{E} \left( h^{-1}_{E} \Vert p-p_{I} \Vert ^2_{E} + h_{E} |p-p_{I}|^2_{1,E} \right) \right) ^{\frac{1}{2}} \left( G(q_{h},q_{h})\right) ^{\frac{1}{2}} \\&\lesssim h \Vert p \Vert _{1} \left( G(q_{h},q_{h})\right) ^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(51)

For the term \(\mathrm{I}_{4}\), we derive by the fact \(\nabla \cdot \varvec{u} = 0\) that

$$\begin{aligned} \begin{aligned} \mathrm{I}_{4}&= d(\varvec{v}_{h},p) - d(\varvec{v}_{h}, p_{h}) - d(\varvec{u}_{h}, q_{h}) = d(\varvec{u}_{h}-\varvec{u}_{I}, p - p_{h}) - d(\varvec{u}_{h}, p_{I}-p_{h}) \\&= d(\varvec{u}_{h}-\varvec{u}_{I}, p - p_{I}) + d(\varvec{u}_{h}-\varvec{u}_{I}, p_{I} - p_{h}) + d(\varvec{u} - \varvec{u}_{h}, p_{I}-p_{h}) \\&= d(\varvec{u}_{h}-\varvec{u}_{I}, p - p_{I}) + d(\varvec{u}-\varvec{u}_{I}, p_{I} - p_{h}). \end{aligned} \end{aligned}$$
(52)

On one hand, we have

$$\begin{aligned} \begin{aligned} d(\varvec{u}_{h}-\varvec{u}_{I}, p - p_{I}) \le |\varvec{u}_{h}-\varvec{u}_{I}|_{1} \Vert p - p_{I} \Vert \lesssim h \Vert p \Vert _{1} |\varvec{v}_{h}|_{1}. \end{aligned} \end{aligned}$$
(53)

On the other hand, reusing the trace inequality, we get

$$\begin{aligned} \begin{aligned}&d(\varvec{u}-\varvec{u}_{I}, p_{I} - p_{h}) = (\nabla \cdot (\varvec{u}-\varvec{u}_{I}), p_{I}-p_{h}) = \sum _{e \in \mathcal {F}^{o}_{h}} \langle (\varvec{u}-\varvec{u}_{I}) \cdot \varvec{n}_{e}, [p_{I}-p_{h}] \rangle _{e} \\&\quad \lesssim \left( \sum _{E \in \mathcal {T}_{h}} h^{-1}_{E} \left( h^{-1}_{E} \Vert \varvec{u}-\varvec{u}_{I} \Vert ^2_{E} + h_{E} |\varvec{u}-\varvec{u}_{I}|^2_{1,E} \right) \right) ^{\frac{1}{2}} \left( \sum _{e \in \mathcal {F}^{o}_{h}} \mu h_{e} \Vert [p_{I}-p_{h}] \Vert ^2_{e} \right) ^{\frac{1}{2}} \\&\quad \lesssim h \Vert \varvec{u} \Vert _{2} \left( G(q_{h},q_{h})\right) ^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(54)

Combining the above estimates (49)–(54) in (48) yields the desired result (47). \(\square \)

We next estimate the \(L^2\) error for the pressure. Since \((p - p_{h}) \in Q\), it is well-known that there exists \(\varvec{v} \in \varvec{V}\) such that

$$\begin{aligned} \nabla \cdot \varvec{v} = p - p_{h}, \qquad \Vert \varvec{v} \Vert _{1} \lesssim \Vert p - p_{h} \Vert . \end{aligned}$$
(55)

Then, we get that

$$\begin{aligned} \begin{aligned} \Vert p - p_{h} \Vert ^2&= (p - p_{h},p - p_{I}) + (p - p_{h},p_{I} - p_{h}) \\&= (p - p_{h},p - p_{I}) + (\nabla \cdot \varvec{v},p_{I} - p_{h}) \\&= (p - p_{h},p - p_{I}) + (\nabla \cdot (\varvec{v}-\varvec{v}_{I}),p_{I} - p_{h}) + (\nabla \cdot \varvec{v}_{I},p_{I} - p_{h}), \end{aligned} \end{aligned}$$
(56)

and further derive for the last term on right-hand side of (56) that

$$\begin{aligned} \begin{aligned} (\nabla \cdot \varvec{v}_{I},p_{I} - p_{h})&= (\nabla \cdot \varvec{v}_{I},p_{I}-p) + (\nabla \cdot \varvec{v}_{I},p) + (\varvec{f}_{h},\varvec{v}_{I}) - a_{h}(\varvec{u}_{h},\varvec{v}_{I}) \\&= (\nabla \cdot \varvec{v}_{I},p_{I}-p) + a(\varvec{u},\varvec{v}_{I}) - a_{h}(\varvec{u}_{h},\varvec{v}_{I}) + (\varvec{f}_{h}-\varvec{f},\varvec{v}_{I}), \end{aligned} \end{aligned}$$
(57)

where \(\varvec{v}_{I} \in \varvec{V}_{h}\) is the interpolation of \(\varvec{v}\) and satisfies (13). Using (55) and (57) in (56), and following the proof in Theorem 3, we obtain the convergence for the pressure in following theorem.

Theorem 4

Let \((\varvec{u}, p)\in \varvec{V} \times Q\) and \((\varvec{u}_{h}, p_{h})\in \varvec{V}_{h} \times Q_{h}\) be the solutions of problems (2) and (12), respectively. Then

$$\begin{aligned} \Vert p-p_{h} \Vert \lesssim h (\Vert \varvec{u} \Vert _{2} + \Vert p \Vert _{1} + \Vert \varvec{f} \Vert ). \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Y. & He, Y. A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem. J Sci Comput 84, 37 (2020). https://doi.org/10.1007/s10915-020-01281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01281-2

Keywords