Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a class of stochastic nonlinear complementarity problems. We first reformulate the stochastic complementarity problem as a stochastic programming model. Based on the reformulation, we then propose a penalty-based sample average approximation method and prove its convergence. Finally, we report on some numerical test results to show the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problems. Academic Press, San Diego (1992)

    Google Scholar 

  2. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  3. Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solutions of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Zhang, C., Fukushima, M.: Robust solution of stochastic matrix linear complementarity problems. Math. Program. 117, 51–80 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fang, H., Chen, X., Fukushima, M.: Stochastic R 0 matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhang, C., Chen, X.: Stochastic nonlinear complementary problem and application to traffic equilibrium under uncertainty. J. Optim. Theory Appl. 137, 277–295 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lin, G.H., Chen, X., Fukushima, M.: New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC. Optimization 56, 641–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, G.H., Fukushima, M.: New reformulations for stochastic nonlinear complementarity problems. Optim. Methods Softw. 21, 551–564 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin, G.H.: Monte Carlo sampling and penalty method for stochastic nonlinear complementarity problems. Math. Comput. 78, 1671–1686 (2009)

    Article  Google Scholar 

  11. Lin, G.H., Fukushima, M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: a survey. Technical report 2009-008, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University (2009)

  12. Bastin, F., Cirllo, C., Toint, P.L.: Convergence theory for nonconvex stochastic programming with an application to mixed logit. Math. Program. 108, 207–234 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Robinson, S.M.: Analysis of sample-path optimization. Math. Oper. Res. 21, 513–528 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ruszcyǹski, A., Shapiro, A. (eds.): Monte Carlo Sampling Methods. Handbooks in OR&MS: Stochastic Programming, vol. 10. North-Holland, Amsterdam (2003)

    Google Scholar 

  15. Shapiro, A.: Stochastic mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 128, 223–243 (2006)

    Article  MathSciNet  Google Scholar 

  16. Meng, F.W., Xu, H.: A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constraints. SIAM J. Optim. 17, 891–919 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, H., Meng, F.: Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints. Math. Oper. Res. 32, 648–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shapiro, A.: Statistical inference of stochastic optimization problems. In: Probabilistic Constrained Optimization: Theory and Applications. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wang.

Additional information

Communicated by Masao Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Ali, M.M. Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method. J Optim Theory Appl 144, 597–614 (2010). https://doi.org/10.1007/s10957-009-9606-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9606-4

Keywords