Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mechanical, Thermal and Electrical Resisitivity Properties of Thermoplastic Composites Filled with Carbon Fibers and Carbon Particles

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composites consisting of carbon fibers (CF) and carbon particles (CP) in polypropylene (PP) matrix were melt-compounded. Composites were analyzed for their mechanical, electrical and thermal properties. Results indicate that the addition of these fillers improved the mechanical properties of the composites. Thermal conductivity was enhanced as the concentration of fillers was increased. Carbon fibers render the composites electrically conductive so we observed a percolation threshold near 10 wt.% of CF for PP/CF (PP and CF composite) and near 25 wt.% of CP for PP/CP (PP and carbon particle composite). All the results indicated that carbon fibers are more effective in improving the properties as compare to the carbon particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. M. Margolis, Conductive Polymers and Plastics, Chapman & Hall, New York, 1989.

    Google Scholar 

  2. J. Delmonte, Metal/Polymer Composites, Van Nostrand, New York, 1990.

    Google Scholar 

  3. M. Narkis, M. Zilberman and A. Siegmann, Polym. Adv. Technol., 8, 525 (1996).

    Article  Google Scholar 

  4. J. Chen and N. Tsubokawa, Polym. Adv. Technol., 11, 101 (2000).

    Article  CAS  Google Scholar 

  5. S. Srivastava, R. Tchoudakov and M. Narkis, Polym. Eng. Sci., 40, 1522 (2000).

    Article  CAS  Google Scholar 

  6. F. Bueche, J. Appl. Phys., 43, 4837–4838 (1972).

    Article  CAS  Google Scholar 

  7. R. H. Norman, Conductive Rubbers and Plastics, Elsevier, New York, 1970.

    Google Scholar 

  8. Y. Miyashita, Y. Makishi and H. Kato, in Proceedings of the 1993 IEEE Conference on Electrical Insulation and Dielectric Phenomena, IEEE, Piscataway, NJ, 1993, p. 678.

  9. X. S. Yi, G. Wu and D. Ma, J. Appl. Polym. Sci., 67, 131 (1998).

    Article  CAS  Google Scholar 

  10. G. Yu, M. Q. Zhang and H. M. Zeng, J. Appl. Polym. Sci., 70, 559 (1998).

    Article  CAS  Google Scholar 

  11. B. H. Seo, J. C. Young, J. R. You, K. Chung and T. J. Kang, Polym. Compos., 791, (2005).

  12. J. B. Donnet, T. K. Wang, S. Rebouillat and J. C. M. Peng, Carbon Fibers, 3rd Edn, Dekker, New York, 1998, p. 463.

    Google Scholar 

  13. J. Karger-Kocsis, Polypropylene: Structure of Blends and Composites, vol. 1, Chapman & Hall, London, 1995.

    Google Scholar 

  14. M. R. Piggott, Load Bearing Fibre Composites, Pergamon, New York, 1980.

    Google Scholar 

  15. R. Anand, F. Daniel, M. Nicole and C. Craig, in The Fifth International Conference on Woodfiber–Plastic Composites, Wisconsin, 1999, p. 67.

  16. L. Youngchul and S. Roger, Polym. Eng. Sci., 26, 633 (1986).

    Article  Google Scholar 

  17. A. Pothan, Z. Oommen and S. Thomas, Compos. Sci. Technol., 63, 283 (2003).

    Article  CAS  Google Scholar 

  18. A. Amash and P. Zugnmaier, Appl. Polym. Sci., 63, 1143 (1997).

    Article  CAS  Google Scholar 

  19. L. Mandelkern and R. G. Alamo, in J. E. Mark (Ed.), Physical Properties of Polymers Handbook, American Institute of Physics, Woodbury, NY, 1996.

  20. L. Valentini, J. Biagiotti, J. M. Kenny and S. Santucci, Polym. Eng. Sci., 44, 303 (2004).

    Article  CAS  Google Scholar 

  21. J. C. Huang, Adv. Polym. Technol., 21, 299 (2002).

    Article  CAS  Google Scholar 

  22. L. Frormann, A. Iqbal, A. Saleem and M. Ishaq, Polym. Compos., (2006) (in press).

  23. S. Bhattacharya, Metal-filled Polymers, Dekker, New York, 1986.

    Google Scholar 

  24. E. Sichel, Carbon black-Polymer Composites, Dekker, New York, 1982.

    Google Scholar 

  25. Y. N. Hsiao, L. Xuehong and S. K. Lau, Polym. Compos., 26, 778 (2005).

    Article  Google Scholar 

  26. J. M. Keith, C. D. Hingst, M. G. Miller, J. A. King and R. A. Hauser, Polym. Compos., 27, 1 (2006).

    Article  CAS  Google Scholar 

  27. L. Frormann, in Werkstoffwoche – Kongress für innovative Werkstoffe, Verfahren und Anwendungen, Internationales Congress Center, München, 2004.

  28. L. Frormann, S. Lehmann, R. Nöske and P. Strauch, in Green-Tech 2005 – International Conference on Sustainable and Renewable Raw Materials, Potsdam, Germany, 2005.

Download references

Acknowledgement

The authors wish to thank for the financial support from AiF, Germany during the course of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Frormann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleem, A., Frormann, L. & Iqbal, A. Mechanical, Thermal and Electrical Resisitivity Properties of Thermoplastic Composites Filled with Carbon Fibers and Carbon Particles. J Polym Res 14, 121–127 (2007). https://doi.org/10.1007/s10965-006-9091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-9091-5

Key words