Abstract
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood–brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer’s disease.
Similar content being viewed by others
Abbreviations
- AD:
-
Alzheimer’s disease
- ApoE4:
-
Allele 4 of apolipoprotein E gene
- APP:
-
Amyloid precursor protein
- ARE:
-
Antioxidant responsive element
- Aβ:
-
β-Amyloid polypeptide
- BACE:
-
β-Secretase
- BBB:
-
Blood–brain barrier
- CSF:
-
Cerebrospinal fluid
- EGCG:
-
Epigallocatechin-3-gallate
- fAD:
-
familial Alzheimer’s disease
- HNE:
-
4-Hydroxy-2-trans-nonenal
- IL-1β:
-
Interleukin-1β
- iNOS:
-
inducible nitric oxide synthase
- IRE:
-
Iron-responsive element
- MAPK:
-
Mitogen-activated protein kinase
- MPTP:
-
N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NFkB:
-
Nuclear factor kappa B
- nNOS:
-
neuronal nitric oxide synthase
- PCK:
-
Protein kinase C
- RNS:
-
Reactive nitrogen species
- ROS:
-
Reactive oxygen species
- sAD:
-
sporadic Alzheimer’s disease
- SIN-1:
-
3-Morpholinosydnonimine
- SNP:
-
Sodium nitroprusside
- TBARS:
-
Thiobarbituric acid-reactive substances
- TNF-α:
-
Tumor necrosis factor-α
References
Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623
Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85
Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366
Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902
Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677
Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245
Zecca L, Youdim MB, Riederer P et al (2004) Iron, brain aging and neurodegenerative disorders. Nat Rev Neurosci 5:863–873
Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the aging human brain. Nature 429:883–891
Giorgio M, Trinei M, Migliaccio E, Pelicci G (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of aging signals? Nat Rev Mol Cell Biol 8:722–728
Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236:13–23
Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527
Butterfield D, Castegna A, Pocernich C et al (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 13:444–461
Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64
Bravo L, Saura-Calixto F, Goni I (1992) Effect of dietary fibres and tannins from apple pulp on the composition of faeces in rats. Br J Nutr 67:463–473
Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452
Andres-Lacueva C, Shukitt-Hale B, Galli RL et al (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120
Mandel S, Amit T, Reznichenko L et al (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234
Abd El Monhsen MM, Kuhnle G, Rechner AR et al (2002) Uptake and metabolism of epicatechin and its access to brain after oral ingestion. Free Rad Biol Med 33:1693–1702
Kelloff GJ, Crowell JA, Hawk ET, Steele VE (1996) Strategy and planning for chemopreventive drug development: clinical development plans II. J Cell Biochem Suppl 26:54–71
van Acker SA, van den Berg DJ, Tromp MN (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20:331–342
Bravo L (1998) Polyophenols: chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev 56:317–333
Mira L, Fernandez MT, Santos M et al (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208
Yoshioka H, Senba Y, Saito K et al (2001) Spin trapping study on the hydroxyl radical formed from a tea catechin-Cu(II) system. Biosci Biotechnol Biochem 65:1697–1706
Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimer Dis 6:367–377
El Hajji H, Nkhili E, Tomao V, Dangles O (2006) Interactions of quercetin with iron and copper ions: complexation and autoxidation. Free Radic Res 40:303–320
O’Byrne DJ, Devaraj S, Grundy SM, Jialal I (2002) Comparison of antioxidant effect of Concord grape juice flavonoids and alpha-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr 76:1367–1374
Heo HJ, Lee CY (2004) Protective effect of quercetin and vitamin C against oxidative stress-induced degeneration. J Agric Food Chem 52:7514–7517
Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519
Scapagnini G, Foresti R, Calabrese V et al (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561
Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775
Landis-Piwowar KR, Milacic V, Chen D et al (2006) The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Update 9:263–273
Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382
Checkoway H, Powers K, Smith-Weller T et al (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738
Pan T, Jankovic J, Le W (2003) Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 20:711–721
Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64:765–770
Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (–)-epigallocatechin-3-gallate. FASEB J 17:952–954
Kahal R (1991) Protective and adverse biological action of phenolic antioxidants. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic Press, San Diego, pp 245–273
Orgogozo JM, Dartigues JF, Lafont S et al (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol 153:185–92
Sun AY, Symonyi A, Sun GY (2002) The “French paradox” and beyond: neuroprotective effects of polyphenols. Free Radic Biol Med 32:314–318
Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34:1100–1110
Sun AY, Chen YM, James-Kracke M et al (1997) Ethanol-induced cell death by lipid peroxidation in PC12 cells. Neurochem Res 22:1187–1192
Virgili M, Contestabile A (2000) Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent trans-resveratrol in rats. Neurosci Lett 281:123–126
Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720
Rajakrishnan V, Viswanathan P, Rajasekharan KN, Menon VP (1999) Neuroprotective role of curcumin from curcuma longa on ethanol-induced brain damage. Phytother Res 13:571–574
Kuner P, Schubenel R, Hertel C (1998) Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells. J Neurosci Res 54:798–804
Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36
Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156
Smith MA, Richey PL, Harris LM et al (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657
Lauderback CM, Hackett JM, Huang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1–42. J Neurochem 78:413–416
Praticò D, Clark CM, Lee VM et al (2000) Increased 8, 12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48:809–812
Tuppo EE, Forman LJ, Spur BW et al (2001) Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Res Bull 54:565–568
Squitti R, Lupoi D, Pasqualetti P et al (2002) Elevation of serum copper levels in Alzheimer’s disease. Neurology 59:1153–1161
Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023
Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505
Opazo C, Huang X, Cherny RA et al (2002) Metalloenzyme-like activity of Alzheimer’s disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308
Smith MA, Hirai K, Hsiao K et al (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215
Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990
Maynard CJ, Bush AI, Masters CL et al (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159
Rossi L, Squitti R, Calabrese L et al (2007) Alteration of peripheral markers of copper homeostasis in Alzheimer’s disease patients: implications in aetiology and therapy. J Nutr Health Aging 11:408–417
Lovell MA, Robertson JD, Teesdale WJ et al (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52
Rogers JT, Randall JD, Eder PS et al (2002) Alzheimer’s disease drug discovery targeted to the APP mRNA 5′untranslated region. J Mol Neurosi 19:77–82
Atamna H, Frey WHA (2004) Role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci USA 101:11153–11158
Barnham KJ, McKinstry WJ, Multhaup G et al (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 278:17401–17407
Maynard CJ, Cappai R, Volitakis I et al (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676
White AR, Reyes R, Mercer JF et al (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444
Atwood CS, Moir RD, Huang X et al (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826
Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142
Pajonk FG, Kessler H, Supprian T et al (2005) Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s disease. J Alzheimers Dis 8:23–27
Squitti R, Barbati G, Rossi L et al (2006) Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology 67:76–82
Rossi L, Squitti R, Pasqualetti P et al (2002) Red blood cell copper, zinc superoxide dismutase activity is higher in Alzheimer’s disease and is decreased by D-penicillamine. Neurosci Lett 329:137–140
Capo CR, Arciello M, Squitti R et al (2007) Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer’s disease patients. Biometals in press
Uberti D, Carsana T, Bernardi E et al (2002) Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. J Cell Sci 115:3131–3138
Huang HM, Fowler C, Xu H et al (2005) Mitochondrial function in fibroblasts with aging in culture and/or Alzheimer’s disease. Neurobiol Aging 26:839–848
Moreira PI, Harris PL, Zhu X et al (2007) Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis 12:195–206
Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:558–559
Corder EH, Saunders AM, Stritmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923
Fratiglioni L, Paillard-Borg S, Winblad B (2004) An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 3:343–353
Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4:179–189
Gillette-Guyonnet S, Abellan Van Kan G, Andrieu S et al (2007) IANA task force on nutrition and cognitive decline with aging. J Nutr Health Aging 11:132–152
Lindsay J, Laurin D, Verreault R (2002) Risk factors from Alzheimer’s disease: a prospective analysis from Canadian Study of Health and Aging. Am J Epidemiol 156:445–453
Truelsen T, Thudium D, Gronbaek M (2002) Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 59:1313–1319
Luchsinger JA, Tang MX, Siddiqui M et al (2004) Alcohol intake and risk of dementia. J Am Geriatr Soc 52:540–546
Han YS, Zheng WH, Bastianetto S et al (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141:997–1005
Dai Q, Borenstein AR, Wu Y et al (2006) Fruit and vegetable juice and alzheimer’s disease: the Kame project. Am J Med 119:751–759
Ono K, Yoshiike Y, Takashima A et al (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181
Choi YT, Jung CH, Lee SR et al (2001) The green tea polyphenol (–)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614
Rezai-Zadeh K, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814
Obregon DF, Rezai-Zadeh K, Bai Y et al (2006) ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 281:16419–16427
Ganguli M, Chandra V, Kamboh MI et al (2000) Apolipoprotein E polymorphism and Alzheimer’s disease: the Indo-US Cross-National Dementia Study. Arch Neurol 57:824–830
Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377
Kim DS, Park SY, Kim JK (2001) Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA (1–42) insult. Neurosci Lett 303:57–61
Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750
Barik A, Mishra B, Kunwar A et al (2007) Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur J Med Chem 42:431–439
Galati G, Moridani MY, Chan TS, O’Brien PJ (2001) Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radic Biol Med 30:370–382
Long LH, Clement MV, Halliwell B (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (–)-epigallocatechin, (–)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 273:50–53
Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303
Akagawa M, Shigemitsu T, Suyama K (2003) Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci Biotechnol Biochem 67:2632–2640
Acknowledgements
Authors are grateful to the Italian Ministry of Health for supporting this work, and to Dr. Sara D’Annibale for critically reviewing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.
Rights and permissions
About this article
Cite this article
Rossi, L., Mazzitelli, S., Arciello, M. et al. Benefits from Dietary Polyphenols for Brain Aging and Alzheimer’s Disease. Neurochem Res 33, 2390–2400 (2008). https://doi.org/10.1007/s11064-008-9696-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11064-008-9696-7