Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we address the problems of massive amount of energy consumption and service level agreements (SLAs) violation in cloud environment. Although most of the existing work proposed solutions regarding energy consumption and SLA violation for cloud data centers (CDCs), while ignoring some important factor: (1) analysing the robustness of upper CPU utilization threshold which maximize utilization of resources; (2) CPU utilization prediction based VM selection from overloaded host which reduce performance degradation time and SLA violation. In this context, we proposed adaptive heuristic algorithms, namely least medial square regression for overloaded host detection and minimum utilization prediction for VM selection from overloaded hosts. These heuristic algorithms reducing CDC energy consumption with minimal SLA. Unlike the existing algorithms, the proposed VM selection algorithm consider the types of application running and it CPU utilization at different time periods over the VMs. The proposed approaches are validated using the CloudSim simulator and through simulations for different days of a real workload trace of PlanetLab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lambert, S., Van Heddeghem, W., Vereecken, W., Lannoo, B., Colle, D., & Pickavet, M. (2012). Worldwide electricity consumption of communication networks. Optics Express, 20(26), B513–B524.

    Article  Google Scholar 

  2. Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional computing. Computer, 40(12), 33–37.

    Article  Google Scholar 

  3. Fawaz, A.-H., Peng, Y., Youn, C.-H., Lorincz, J., Li, C., Song, G., et al. (2018). Dynamic allocation of power delivery paths in consolidated data centers based on adaptive ups switching. Computer Networks, 144, 254–270.

    Article  Google Scholar 

  4. Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 28(5), 755–768.

    Article  Google Scholar 

  5. Ahmed, A., Hanan, A. A., Omprakash, K., Usman, M., & Syed, O. (2017). Mobile cloud computing energy-aware task offloading (mcc: Eto). In Proceedings of the communication and computing systems: Proceedings of the international conference on communication and computing systems (ICCCS 2016) (p. 359).

  6. Xu, C., Wang, K., Li, P., Xia, R., Guo, S., & Guo, M. (2018). Renewable energy-aware big data analytics in geo-distributed data centers with reinforcement learning. IEEE Transactions on Network Science and Engineering, PP(99), 1–1.

    Google Scholar 

  7. Yadav, R., Zhang, W., Chen, H., & Guo, T. (2017). Mums: Energy-aware vm selection scheme for cloud data center. In 28th International workshop on database and expert systems applications (DEXA), 2017 (pp. 132–136). IEEE.

  8. Hu, X., Li, P., Wang, K., Sun, Y., Zeng, D., & Guo, S. (2018). Energy management of data centers powered by fuel cells and heterogeneous energy storage. In 2018 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  9. Wang, M., Meng, X., & Zhang, L. (2011). Consolidating virtual machines with dynamic bandwidth demand in data centers. In: INFOCOM, 2011 Proceedings IEEE (pp. 71–75). IEEE.

  10. Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., et al. (2018). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580.

    Article  Google Scholar 

  11. Feller, E., Morin, C., & Esnault, A. (2012). A case for fully decentralized dynamic vm consolidation in clouds. In IEEE international conference on cloud computing technology and science (pp. 26–33).

  12. Esfandiarpoor, S., Pahlavan, A., & Goudarzi, M. (2015). Structure-aware online virtual machine consolidation for datacenter energy improvement in cloud computing. Computers & Electrical Engineering, 42, 74–89.

    Article  Google Scholar 

  13. Murtazaev, A., & Oh, S. (2011). Sercon: Server consolidation algorithm using live migration of virtual machines for green computing. IETE Technical Review, 28(3), 212–231.

    Article  Google Scholar 

  14. Feller, E., Morin, C., & Esnault, A. (2012). A case for fully decentralized dynamic vm consolidation in clouds. In IEEE 4th international conference on cloud computing technology and science (CloudCom), 2012 (pp. 26–33). IEEE.

  15. Ranganathan, P., Leech, P., Irwin, D., & Chase, J. Ensemble-level power management for dense blade servers. In ACM SIGARCH computer architecture news (Vol. 34(2), pp. 66–77). IEEE Computer Society.

  16. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.

    Article  Google Scholar 

  17. Verma, J. K., Kumar, S., Kaiwartya, O., Cao, Y., Lloret, J., Katti, C., et al. (2018). Enabling green computing in cloud environments: Network virtualization approach toward 5g support (p. e3434). London: Transactions on Emerging Telecommunications Technologies.

    Google Scholar 

  18. Zhu, X., Young, D., Watson, B. J., Wang, Z., Rolia, J., Singhal, S., McKee, B., Hyser, C., Gmach, D., & Gardner, R. et al. (2008). 1000 islands: Integrated capacity and workload management for the next generation data center. In: International conference on autonomic computing, 2008. ICAC’08. (pp. 172–181). IEEE.

  19. Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G. (2009). Power and performance management of virtualized computing environments via lookahead control. Cluster Computing, 12(1), 1–15.

    Article  Google Scholar 

  20. von Kistowski, J., & Kounev, S. (2016). Univariate interpolation-based modeling of power and performance. In Proceedings of the 9th EAI international conference on performance evaluation methodologies and tools (pp. 212–215). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  21. All published specpowerssj2008 results. https://www.spec.org/power_ssj2008/results/power_ssj2008.html. Accessed May 12, 2017.

  22. Nathuji, R., & Schwan, K. (2007) Virtualpower: Coordinated power management in virtualized enterprise systems. In ACM SIGOPS operating systems review (Vol. 41(6), pp. 265–278). ACM.

  23. Yadav, R., & Zhang, W. (2017). MeReg: Managing energy-SLA tradeoff for green mobile cloud computing. Wireless Communications and Mobile Computing, 2017, 6741972.

    Article  Google Scholar 

  24. Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., et al. (2015). Using ant colony system to consolidate vms for green cloud computing. IEEE Transactions on Services Computing, 8(2), 187–198.

    Article  Google Scholar 

  25. Farahnakian, F., Liljeberg, P., & Plosila, J. (2013). Lircup: Linear regression based cpu usage prediction algorithm for live migration of virtual machines in data centers. In: Euromicro conference on software engineering and advanced applications (pp. 357–364).

  26. Mili, L., Phaniraj, V., & Rousseeuw, P. J. (1991). Least median of squares estimation in power systems. IEEE Transactions on Power Systems, 6(2), 511–523.

    Article  Google Scholar 

  27. Edelsbrunner, H., & Souvaine, D. L. (1990). Computing least median of squares regression lines and guided topological sweep. Journal of the American Statistical Association, 85(409), 115–119.

    Article  Google Scholar 

  28. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). Cloudsim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and experience, 41(1), 23–50.

    Google Scholar 

  29. Park, K., & Pai, V. S. (2006). Comon: A mostly-scalable monitoring system for planetlab. ACM SIGOPS Operating Systems Review, 40(1), 65–74.

    Article  Google Scholar 

  30. Shapiro, S. S., & Francia, R. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216.

    Article  Google Scholar 

Download references

Acknowledgements

The National Key Research and Development Plan under Grant No. 2017YFB0801801, the National Science Foundation of China (NSFC) under Grant Nos. 61672186, 61472108, support this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Yadav or Weizhe Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Zhang, W., Li, K. et al. An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center. Wireless Netw 26, 1905–1919 (2020). https://doi.org/10.1007/s11276-018-1874-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1874-1

Keywords