Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bicarbonate, phosphate, chloride ions, and humic substances are among the constituents most widely present in natural waters. These non-target constituents can greatly affect the efficiency of advanced oxidation processes used for water decontamination due to their capacity to interfere with the adsorption of the target compounds on the surface of TiO2, absorb photons, scavenge hydroxyl radicals (·OH), and generate photochemical reactive intermediates. In this work, the effect of these constituents on the degradation of sulfaclozine (SCL) was monitored in three different AOPs systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8. It was shown that bicarbonate (HCO3 ) and phosphate (HPO4 2−) ions enhanced the degradation of SCL in UV/TiO2 and UV/TiO2/K2S2O8 systems whereas the addition of humic substances influenced these rates with a much smaller extent. On the other hand, the degradation rate of SCL in the UV/K2S2O8 system was not affected by the presence of HCO3 and HPO4 2− but was inhibited in the presence of humic substances. In addition, the different mechanisms that can take place in the presence of these constituents were discussed and the degradation rate enhancement in presence of HCO3 and HPO4 2− was attributed to the formation of new reactive species such as carbonate (CO3 ·–) and hydroxyl (·OH) radicals activated by TiO2 holes (h+). In the presence of chloride (Cl) and nitrate (NO3 ) ions, an enhancement of SCL adsorption on the surface of TiO2 was observed. Finally, a comparative study of the degradation of SCL in river water and ultrapure water was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdallah H, Arnaudguilhem C, Jaber F, Lobinski R (2014) Multiresidue analysis of 22 sulfonamides and their metabolites in animal tissues using quick, easy, cheap, effective, rugged, and safe extraction and high resolution mass spectrometry (hybrid linear ion trap-Orbitrap). J Chromatogr A 1355:61–72

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Autin O, Hart J, Jarvis P, MacAdam J, Parsons SA, Jefferson B (2013) The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H2O2 and UV/TiO2. Water Res 47:2041–2049

    Article  CAS  Google Scholar 

  • Baran W, Adamek E, Ziemiańska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15

    Article  CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116

    Article  CAS  Google Scholar 

  • Brusa MA, Grela MA (2003) Experimental upper bound on phosphate radical production in TiO2 photocatalytic transformations in the presence of phosphate ions. Phys Chem Chem Phys 5:3294–3298

    Article  CAS  Google Scholar 

  • Chen HY, Zahraa O, Bouchy M (1997) Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J Photochem Photobiol A Chem 108:37–44

    Article  CAS  Google Scholar 

  • Deng J, Shao Y, Gao N, Xia S, Tan C, Zhou S, Hu X (2013) Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem Eng J 222:150–158

    Article  CAS  Google Scholar 

  • Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082

    Article  CAS  Google Scholar 

  • Doll TE, Frimmel FH (2005) Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res 39:403–411

    Article  CAS  Google Scholar 

  • Epling GA, Lin C (2002) Investigation of retardation effects on the titanium dioxide photodegradation system. Chemosphere 46:937–944

    Article  CAS  Google Scholar 

  • Fabiańska A, Białk-Bielińska A, Stepnowski P, Stolte S, Siedlecka EM (2014) Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. J Hazard Mater 280:579–587

    Article  Google Scholar 

  • Guillard C, Puzenat E, Lachheb H, Houas A, Herrmann J-M (2005) Why inorganic salts decrease the TiO2 photocatalytic efficiency. Int J Photoenergy 7:1–9

    Article  CAS  Google Scholar 

  • Guo W-Q, Yin R-L, Zhou X-J, Du J-S, Cao H-O, Yang S-S, Ren N-Q (2015) Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways. Ultrason Sonochem 22:182–187

    Article  CAS  Google Scholar 

  • Haarstrick A, Kut OM, Heinzle E (1996) TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ Sci Technol 30:817–824

    Article  CAS  Google Scholar 

  • Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Hu L, Flanders PM, Miller PL, Strathmann TJ (2007) Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res 41:2612–2626

    Article  CAS  Google Scholar 

  • Huertas-Pérez JF, Arroyo-Manzanares N, Havlíková L, Gámiz-Gracia L, Solich P, García-Campaña AM (2016) Method optimization and validation for the determination of eight sulfonamides in chicken muscle and eggs by modified QuEChERS and liquid chromatography with fluorescence detection. J Pharm Biomed Anal 124:261–266

    Article  Google Scholar 

  • Ismail L, Rifai A, Ferronato C, Fine L, Jaber F, Chovelon J-M (2016) Towards a better understanding of the reactive species involved in the photocatalytic degradation of sulfaclozine. Appl Catal B Environ 185:88–99

    Article  CAS  Google Scholar 

  • Ismail L, Ferronato C, Fine L, Jaber F, Chovelon J-M (2017) Elimination of sulfaclozine from water with SO4 ·– radicals: evaluation of different persulfate activation methods. Appl Catal B Environ 201:573–581

    Article  CAS  Google Scholar 

  • Ji Y, Zhou L, Ferronato C, Yang X, Salvador A, Zeng C, Chovelon J-M (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. J Photochem Photobiol A Chem 254:35–44

    Article  CAS  Google Scholar 

  • Ji Y, Fan Y, Liu K, Kong D, Lu J (2015) Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res 87:1–9

    Article  CAS  Google Scholar 

  • Ji Y, Shi Y, Wang L, Lu J, Ferronato C, Chovelon J-M (2017a) Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter. Sci Total Environ 593:704–712

    Article  Google Scholar 

  • Ji Y, Wang L, Jiang M, Yang Y, Yang P, Lu J, Ferronato C, Chovelon J-M (2017b) Ferrous-activated peroxymonosulfate oxidation of antimicrobial agent sulfaquinoxaline and structurally related compounds in aqueous solution: kinetics, products, and transformation pathways. Environ Sci Pollut Res 24:19535–19545

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  • Kools SAE, Moltmann JF, Knacker T (2008) Estimating the use of veterinary medicines in the European union. Regul Toxicol Pharmacol 50:59–65

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  Google Scholar 

  • Lair A, Ferronato C, Chovelon J-M, Herrmann J-M (2008) Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. J Photochem Photobiol A Chem 193:193–203

    Article  CAS  Google Scholar 

  • Larson RA, Zepp RG (1988) Reactivity of the carbonate radical with aniline derivatives. Environ Toxicol Chem 7:265–274

    Article  CAS  Google Scholar 

  • Leng Y, Guo W, Shi X, Li Y, Wang A, Hao F, Xing L (2014) Degradation of rhodamine B by persulfate activated with Fe3O4: effect of polyhydroquinone serving as an electron shuttle. Chem Eng J 240:338–343

    Article  CAS  Google Scholar 

  • Li XZ, Fan CM, Sun YP (2002) Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere 48:453–460

    Article  CAS  Google Scholar 

  • Li X, Guo W, Liu Z, Wang R, Liu H (2016) Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl Surf Sci 369:130–136

    Article  CAS  Google Scholar 

  • Liang C, Wang Z-S, Mohanty N (2006) Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci Total Environ 370:271–277

    Article  CAS  Google Scholar 

  • Liao H, Reitberger T (2013): Generation of free OHaq radicals by black light illumination of Degussa (Evonik) P25 TiO2 aqueous suspensions. Catalysts 3:418–443

  • Liao C-H, Kang S-F, Wu F-A (2001) Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere 44:1193–1200

    Article  CAS  Google Scholar 

  • Lin C, Lin K-S (2007) Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere 66:1872–1877

    Article  CAS  Google Scholar 

  • Mahdi Ahmed M, Chiron S (2014) Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J Hazard Mater 265:41–46

  • Malato S, Blanco J, Richter C, Braun B, Maldonado MI (1998) Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl Catal B Environ 17:347–356

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  • Maruthamuthu P, Neta P (1978) Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. J Phys Chem 82:710–713

    Article  CAS  Google Scholar 

  • Mehrvar M, Anderson WA, Moo-Young M (2001) Photocatalytic degradation of aqueous organic solvents in the presence of hydroxyl radical scavengers. Int J Photoenergy 3:187–191

  • Monteagudo JM, Durán A, González R, Expósito AJ (2015) In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl Catal B Environ 176–177:120–129

    Article  Google Scholar 

  • Santiago DE, Araña J, González-Díaz O, Alemán-Dominguez ME, Acosta-Dacal AC, Fernandez-Rodríguez C, Pérez-Peña J, Doña-Rodríguez JM (2014) Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil. Appl Catal B Environ 156–157:284–292

    Article  Google Scholar 

  • Şentepe İ, Eraslan G (2010) Pharmacokinetic of sulfaclozine in broiler chickens. Food Chem Toxicol 48:448–451

    Article  Google Scholar 

  • Sheng H, Li Q, Ma W, Ji H, Chen C, Zhao J (2013) Photocatalytic degradation of organic pollutants on surface anionized TiO2: common effect of anions for high hole-availability by water. Appl Catal B Environ 138:212–218

    Article  Google Scholar 

  • Wang Y, Hong C-S (1999) Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions. Water Res 33:2031–2036

    Article  CAS  Google Scholar 

  • Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J Phys Chem 92:6278–6283

    Article  CAS  Google Scholar 

  • Wenk J, Canonica S (2012) Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution. Environ Sci Technol 46:5455–5462

    Article  CAS  Google Scholar 

  • Wenk J, von Gunten U, Canonica S (2011) Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ Sci Technol 45:1334–1340

    Article  CAS  Google Scholar 

  • Xekoukoulotakis NP, Drosou C, Brebou C, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Mantzavinos D (2011) Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal Today 161:163–168

    Article  CAS  Google Scholar 

  • Xu J, Hao Z, Guo C, Zhang Y, He Y, Meng W (2014) Photodegradation of sulfapyridine under simulated sunlight irradiation: kinetics, mechanism and toxicity evolvement. Chemosphere 99:186–191

    Article  CAS  Google Scholar 

  • Yang Y, Jiang J, Lu X, Ma J, Liu Y (2015) Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process. Environ Sci Technol 49:7330–7339

    Article  CAS  Google Scholar 

  • Zepp RG, Hoigne J, Bader H (1987) Nitrate-induced photooxidation of trace organic chemicals in water. Environ Sci Technol 21:443–450

    Article  CAS  Google Scholar 

  • Zhang W, Li Y, Su Y, Mao K, Wang Q (2012) Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. J Hazard Mater 215–216:252–258

    Article  Google Scholar 

  • Zhang RC, Sun PZ, Boyer TH, Zhao L, Huang CH (2015) Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ Sci Technol 49:3056–3066

    Article  CAS  Google Scholar 

  • Zhao D, Chen C, Wang Y, Ji H, Ma W, Zang L, Zhao J (2008) Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. J Phys Chem C 112:5993–6001

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254:228–235

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the Région Rhône-Alpes for financing a part of this work in the frame of C-Mira project, as well as to the Lebanese Association for Scientific Research (LASeR) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane Ismail.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, L., Ferronato, C., Fine, L. et al. Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8 . Environ Sci Pollut Res 25, 2651–2663 (2018). https://doi.org/10.1007/s11356-017-0629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0629-3

Keywords