Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Using very long-range terrestrial laser scanner to analyze the temporal consistency of the snowpack distribution in a high mountain environment

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over three snow seasons on a Pyrenean hillslope characterized by a large elevational gradient, steep slopes, and avalanche occurrence. The maximum and mean absolute snow depth error found was 0.5-0.6 and 0.2-0.3 m respectively, which may result problematic for areas with a shallow snowpack, but it is sufficiently accurate to determine snow distribution patterns in areas characterized by a thick snowpack. The results indicated that in most cases there was temporal consistency in the spatial distribution of the snowpack, even in different years. The spatial patterns were particularly similar amongst the surveys conducted during the period dominated by snow accumulation (generally until end of April), or amongst those conducted during the period dominated by melting processes (generally after mid of April or early May). Simple linear correlation analyses for the 11 survey dates, and the application of Random Forests analysis to two days representative of snow accumulation and melting periods indicated the importance of topography to the snow distribution. The results also highlight that elevation and the Topographic Position index (TPI) were the main variables explaining the snow distribution, especially during periods dominated by melting. The intra- and inter-annual spatial consistency of the snowpack distribution suggests that the geomorphological processes linked to presence/absence of snow cover act in a similar way in the long term, and that these spatial patterns can be easily identified through several years of adequate monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam JC, Hamlet AF, Lettenmaier DP (2009) Implications of global climate change for snowmelt hydrology in the twentyfirst century. Hydrological Processes 23: 962–972. DOI: 10.1002/hyp.7201

    Article  Google Scholar 

  • Anderton SP, White SM, Alvera B (2002) Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. Journal of Hydrology 268(1): 158–176. DOI: 10.1016/S0022-1694(02)00179-8

    Article  Google Scholar 

  • Baeriswyl PA, Rebetez M (1997) Regionalization of precipitation in Switzerland by means of principal component analysis. Theoretical and Applied Climatology 58(1–2): 31–41. DOI: 10.1007/BF00867430

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303–309. DOI: 10.1038/nature04141

    Article  Google Scholar 

  • Bartlett JE, Kotrlik JW, Higgins C (2001) Organizational research: Determining appropriate sample size for survey research. Information Technology, Learning, and Performance Journal 19(1): 43–50.

    Google Scholar 

  • Bornaz L, Lingua A, Rinaudo F (2003) Multiple scan registration in LIDAR close range applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34: 72–77.

    Google Scholar 

  • Brown I, Ward R (1996) The influence of topography on snowpatch distribution in southern Iceland: a new hypothesis for glacier formation? Geografiska Annaler Series A 78: 197–207. DOI: 10.2307/521040.

    Article  Google Scholar 

  • Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform: Cold Regions Science and Technology 54: 193–205. DOI: 10.1016/j.coldregions.2008.06. 005

    Article  Google Scholar 

  • Christiansen HH (1996) Effects of nivation on periglacial landscape evolution in western Jutland, Denmark. Permafrost and Periglacial Processes 7: 111–138. DOI: 10.1002/(SICI) 1099-1530

    Article  Google Scholar 

  • Dadic R, Mott R, Lehning M, et al. (2010) Wind influence on snow depth distribution and accumulation over glaciers. Journal of Geophysical Research 115: F01012. DOI: 10.1029/2009JF001261

    Google Scholar 

  • Deems JS, Fassnacht SR, Elder KJ (2006) Fractal Distribution of Snow Depth from Lidar Data. Journal of Hydrometeorology 7(2): 285–297. DOI: 10.1175/JHM487.1

    Article  Google Scholar 

  • Deems JS, Fassnacht SR, Elder KJ (2008) Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites. Journal of Hydrometeorology 9: 977–988. DOI: 10.1175/2008JHM901.1

    Article  Google Scholar 

  • Deems JS, Painter TH, Finnegan DC (2013) Lidar measurement of snow depth: a review. Journal of Glaciology 59(215): 467–479. DOI: 10.3189/2013JoG12J154

    Article  Google Scholar 

  • Deems JS, Gadomski PJ, Vellone D, et al. (2015) Mapping starting zone snow depth with a ground-based lidar to assist avalanche control and forecasting. Cold Regions Science and Technology 120: 197–204. DOI: 10.1016/j.coldregions.2015.09. 002

    Article  Google Scholar 

  • Egli L, Griessinger N, Jonas T (2011) Seasonal development of spatial snow depth variability across different scales in the Alps. Annals of Glaciology 52(58): 216–222. DOI: 10.3189/172756411797252211

    Article  Google Scholar 

  • Elder K, Rosenthal W, Davis RE (1998) Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes 12(1011): 1793–1808. DOI: 10.1002/(SICI)1099-1085(199808/09)

    Article  Google Scholar 

  • Erickson TA, Williams MW, Winstral A (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research 41(4): 1–17. DOI: 10.1029/2003WR002973

    Article  Google Scholar 

  • Ehrlinger J (2015) ggRandomForests: Visually Exploring a Random Forest for Regression.arXiv: 1501.07196 [stat.CO].

    Google Scholar 

  • Erxleben J, Elder K, Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes 16(18): 3627–3649. DOI: 10.1002/hyp.1239

    Article  Google Scholar 

  • Fassnacht SR, Deems JS (2006) Measurement sampling and scaling for deep montane snow depth data. Hydrological Processes 20(4): 829–838. DOI: 10.1002/hyp.6119

    Article  Google Scholar 

  • Fassnacht SR, López-Moreno JI, Toro M, et al. (2013) Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica. Antarctic Science 25(02): 157–166. DOI: 10.1017/S0954102012001216

    Article  Google Scholar 

  • Fischer M, Huss M, Kummert M, et al. (2016) Use of an ultralong-range terrestrial laser scanner to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere 10: 1279–1295. DOI: 10.5194/tc-2016-46.

    Article  Google Scholar 

  • Frei A, Tedesco M, Lee S, et al. (2012) A review of global satellite-derived snow products. Advances in Space Research 50(8): 1007–1029. DOI: 10.1016/j.asr.2011.12.021

    Article  Google Scholar 

  • Fujita K, Hiyama K, Iida H, et al. (2010) Self-regulated fluctuations in the ablation of a snow patch over four decades. Water Resources Research 46: W11541. DOI: 10.1029/2009WR008383

    Article  Google Scholar 

  • Garcia-Ruiz JM, Alvera B, Del Barrio G, et al. (1990) Geomorphic Processes above Timberline in the Spanish Pyrenees. Mountain Research and Development 10(3): 201–214. DOI: 10.2307/3673600

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5: 322–325. DOI: 10.1038/ngeo1450

    Article  Google Scholar 

  • Garvelmann J, Pohl S, Weiler M (2013) From observation to the quantification of snow processes with a time-lapse camera network. Hydrology and Earth System Sciences 17(4): 1415–1429.

    Article  Google Scholar 

  • Gascoin S, Lhermitte S, Kinnard C, et al. (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25–39. DOI: 10.5194/hess-17-1415-2013

    Article  Google Scholar 

  • Gascoin S, Hagolle O, Huc M, et al. (2015) A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Science 19(5): 2337–2351. DOI: 10.5194/hess-19-2337-2015

    Article  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, et al. (2001) Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56(2): 135–150. DOI: 10.1023/A: 1013039830323

    Article  Google Scholar 

  • Grünewald T, Schirmer M, Mott R, et al. (2010) Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4(2): 215–225. DOI: 10.5194/tc-4-215-2010

    Article  Google Scholar 

  • Grünewald T, Stötter J, Pomeroy JW, et al. (2013) Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Science 17(8): 3005–3021. DOI: 10.5194/hess-17-3005-2013

    Article  Google Scholar 

  • Hair JF, Anderson R, Tatham R, et al. (1998) Multivariate data analysis. Printice Hall Iberia, Madrid 1999. ISBN: 0-13930587-4.

    Google Scholar 

  • Helfricht K, Schöber J. Schneider K, et al. (2014) Interannual persistence of the seasonal snow cover in a glacierized catchment. Journal of Glaciology 60: 889–904. DOI: 10.3189/2014JoG13J197

    Article  Google Scholar 

  • Ishwaran H, Kogalur UB, Gorodeski EZ, et al. (2010) Highdimensional variable selection for survival data. Journal of the American Statistical Association 105: 205–217. DOI: 10.1198/jasa.2009.tm08622

    Article  Google Scholar 

  • Jollife IT (1990) Principal component analysis: a beginner’s guide. Part I: Introduction and application. Weather 45(1): 375–382.

    Article  Google Scholar 

  • Jonas T, Geiger F, Jenny H (2008) Mortality pattern of the Alpine Chamois: the influence of snow-meteorological factors. Annals of Glaciology 49: 56–62. DOI: 10.3189/1727564087878 14735

    Article  Google Scholar 

  • Jost G, Moore RD, Weiler M, et al. (2009) Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting. Journal of Hydrology 376(1): 94–106. DOI: 10.1016/j.jhydrol.2009.07.017

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3): 187–200.

    Article  Google Scholar 

  • Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Regional Environmental Change 1(2): 70–77. DOI: 10.1007/PL00011535.

    Article  Google Scholar 

  • Kirchner PB, Bales RC, Molotch NP, et al. (2014) LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences 18: 4261–4275. DOI: 10.5194/hess-18-4261-2014

    Article  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends in Ecology & Evolution 14(1): 22–26. DOI: 10.1016/S0169-5347(98)01533-X

    Article  Google Scholar 

  • Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean High-Mountain Catchment. Arctic, Antarctic, and Alpine Research 43(2): 213–222.

    Article  Google Scholar 

  • Lehning M, Grünewald T, Schirmer M (2011) Mountain snow distribution governed by an altitudinal gradient and terrain roughness. Geophysical Research Letters 38(19): L19504. DOI: 10.1029/2011GL048927

    Article  Google Scholar 

  • Letsinger SL, Olyphant GA (2007) Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA. Journal of Hydrology 336(1–2): 48–60. DOI: 10.1016/j.jhydrol.2006.12.012

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random Forest. R News 2: 18–22. DOI: 10.1016/j.jhydrol.2006. 12.012

    Google Scholar 

  • Ling F, Zhang T (2003) Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost and Periglacial Processes 14: 141–150. DOI: 10.1002/ppp.445

    Article  Google Scholar 

  • Liston GE (1999) Interrelationships among Snow Distribution, Snowmelt, and Snow Cover Depletion: Implications for Atmospheric, Hydrologic, and Ecologic Modeling. Journal of Applied Meteorology 38(10): 1474–1487. DOI: 10.1175/1520-0450(1999)

    Article  Google Scholar 

  • López-Moreno JI, García-Ruiz JM (2004) Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees (Influence de l’accumulation et de la fonte de la neige sur les écoulements dans les Pyrénées centrales espagnoles). Hydrological Sciences Journal 49(5): 787–802. DOI: 10.1623/hysj.49.5.787.55135

    Article  Google Scholar 

  • López-Moreno JI, Nogués-Bravo D (2006) Interpolating local snow depth data: an evaluation of methods. Hydrological Processes 20(10): 2217–2232. DOI: 10.1002/hyp.6199

    Article  Google Scholar 

  • López-Moreno JI, Latron J, Lehmann A (2010) Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processes 24(14): 1914–1928. DOI: 10.1002/hyp.7564

    Google Scholar 

  • López-Moreno JI, Fassnacht SR, Beguería S, et al. (2011) Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere 5(3): 617–629. DOI: 10.5194/tc-5-617-2011

    Article  Google Scholar 

  • López-Moreno JI, Fassnacht SR, Heath J, et al. (2013) Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adavances in Water Resources 55: 40–52. DOI: 10.1016/j.advwatres.2012.08.010

    Article  Google Scholar 

  • López-Moreno JI, Revuelto J, Rico I, et al. (2016) Thining of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10: 681–694. DOI: 10.5194/tc-10-681-2016

    Article  Google Scholar 

  • Lloyd C (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology 308(1–4): 128–150. DOI: 10.1016/j.jhydrol.2004.10.026

    Article  Google Scholar 

  • Lundberg A, Gustafsson V, Granlund N (2008) “Ground Truth” Snow Measurements-Review of operational and New measurement methods fosSweeden, Norway and Finland. In Proceedings of the 65th Eastern Snow Conference, Fairlee (Lake Money), Vermont, USA. pp 215–237.

    Google Scholar 

  • Machguth H, Eisen O, Paul F, et al. (2006) Strong spatial variability of snow accumulation observed with helicopterborne GPR on two adjacent Alpine glaciers, Geophysical. Research Letters 33: L13503. DOI: 10.1029/2006GL026576

    Article  Google Scholar 

  • Maggioni M, Gruber U (2003) The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology 37: 407–419. DOI: 10.1016/S0165-232X(03)00080-6

    Article  Google Scholar 

  • Molotch NP, Bales RC (2005) Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resources Research 41(11): W11421. DOI: 10.1029/2005WR004229

    Article  Google Scholar 

  • Molotch NP, Colee MT, Bales RC, et al. (2005) Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19(7): 1459–1479. DOI: 10.1002/hyp.5586

    Article  Google Scholar 

  • Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multiresolution, multi-sensor comparison. Advances in Water Resources 31(11): 1503–1514. DOI: 10.1016/j.advwatres.2008. 07.017

    Article  Google Scholar 

  • Mott R, Schirmer M, Lehning M (2011) Scaling properties of wind and snow depth distribution in an Alpine catchment. Journal of Geophysical Research 116: D06106. DOI: 10.1029/2 010JD014886

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, et al. (1982) Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review 110(7): 699–706. DOI: 10.1175/1520-0493(1982)

    Article  Google Scholar 

  • Palacios D, de Andrés N, López-Moreno JI, et al. (2015) Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees. Quaternary Research 83(3): 397–414. DOI: 10.1016/j.yqres.2015.01.010

    Article  Google Scholar 

  • Palacios D, de Andrés N, Luengo E (2003) Distribution and effectiveness of nivation in Mediterranean mountains: Peñalara (Spain). Geomorphology 54(3–4): 157–178. DOI: 10.1016/S0169-555X(02)00340-9

    Article  Google Scholar 

  • Pomeroy JW, Gray DM (1995) Snowcover accumulation, relocation, and management, NHRI Science Report No7, Environment Canada: Saskatoon, SA: 134 pp Saskatoon, Sask., Canada: National Hydrology Research Institute.

    Google Scholar 

  • Prokop A (2008) Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and Technology 54(3): 155–163. DOI: 10.1016/j.coldre gions.2008.07.002

    Article  Google Scholar 

  • Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Natural Hazards and Earth System Sciences 9: 1921–1928. DOI: 10.5194/nhess-9-1921-2009

    Article  Google Scholar 

  • Rammig A, Jonas T, Zimmermann N, et al. (2010) Changes in alpine plant growth under future climate conditions. Biogeosciences 7: 2013–2024. DOI: 10.5194/bg-7-2013-2010

    Article  Google Scholar 

  • Raynolds MK, Walker DA, Munger CA, et al. (2008) A map analysis of patterned-ground along a North American Arctic Transect. Journal of Geophysical Research 113: G03S03. DOI: 10.1029/2007JG000512

    Article  Google Scholar 

  • Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2014a) Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra-and interannual persistence. The Cryosphere 6: 1989–2006. DOI: 10.5194/tc-8-1989-2014

    Article  Google Scholar 

  • Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2014b) Mapping the annual evolution of snow depth in a small catchment in the Pyrenees from long range terrestrial laser scanner technique. Journal of Maps 10(3): 379–393. DOI: 10.1080/17445647.2013.869268

    Article  Google Scholar 

  • Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2015) Canopy influence on SD distribution in a pine stand in the Pyrenees from terrestrial laser data acquisition. Water Resources Research 5(5): 3476–3489. DOI: 10.1002/2014WR 016496

    Article  Google Scholar 

  • Revuelto J, Jonas T, López-Moreno JI (2016) Backward snow depth reconstruction at high spatial resolution based on timelapse. Hydrological Processes 30(17): 2976–2990. DOI: 10.1002/hyp.10823

    Article  Google Scholar 

  • Rice R, Bales RC, Painter TH, et al. (2011) Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resources Research 47: W08515. DOI: 10.1029/2010WR009278

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. Journal of Climatology 6: 293–335. DOI: 10.1002/joc.3370060305

    Article  Google Scholar 

  • Schirmer M, Wirz V, Clifton A, et al. (2011) Persistence in intraannual snow depth distribution: 1.Measurements and topographic control. Water Resources Research 47(9): W09516. DOI: 10.1029/2010WR009426

    Google Scholar 

  • Schweizer J, Kronholm K, Jamieson BJ, et al. (2008) Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Regions Science and Technology 51: 253–272. DOI: 10.1016/j.coldregions.2007.04. 009

    Article  Google Scholar 

  • Scipion DE, Mott R, Lehning M, et al. (2013) Seasonal smallscale spatial variability in alpine snowfall and snow accumulation. Water Resources Research 49(3): 1446–1457. DOI: 10.1002/wrcr.20135

    Article  Google Scholar 

  • Serrano E, Agudo C, Delaloyé R, et al. (2001) Permafrost distribution in the Posets massif, Central Pyrenees. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography 55(4): 245–252. DOI: 10.1080/00291950152746603

    Article  Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes 16: 5–17. DOI: 10.1002/ppp.518

    Article  Google Scholar 

  • Siegel S, Castelan NJ (1988) Nonparametric Statistics for the Behavioral Sciences McGraw-Hill, New York, USA.

    Google Scholar 

  • Sommer CG, Lehning M, Mott R (2015) Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event. Frontiers in Earth Science 3: 73. DOI: 10.3389/feart.2015.00073

    Article  Google Scholar 

  • Sturm M, Wagner AM (2010) Using repeated patterns in snow distribution modeling: an Arctic example. Water Resources Research 46: W12549. DOI: 10.1029/2010WR009434

    Article  Google Scholar 

  • Trujillo E, Ramírez JA, Elder KJ (2007) Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research 43: W07409. DOI: 10.1029/2006WR005317

    Article  Google Scholar 

  • Vander Jagt BJ, Durand MT, Margulis SA, et al. (2013) The effect of spatial variability on the sensitivity of passive microwave measurements to snow water equivalent. Remote Sensing of Environment 136: 163–179. DOI: 10.1016/j.rse.2013. 05.002

    Article  Google Scholar 

  • Weiss AD (2001) Topographic position and landforms analysis. Poster Presentation, ESRI Users Conference, San Diego, CA. http://www.jennessent.com/downloads/tpi-poster-tnc_18x2 2.pdf, accessed on 2015-09-02

    Google Scholar 

  • Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrological Processes 16(18): 3585–3603. DOI: 10.1002/hyp. 1238

    Article  Google Scholar 

  • Winstral A, Marks D (2014) Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resource Research 50(1): 293–305. DOI: 10.1002/2012WR013038

    Article  Google Scholar 

  • Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94(1–2): 105–121. DOI: 10.1007/s10584-009-9546-x

    Article  Google Scholar 

  • Wirz V, Schirmer M, Gruber S, et al. (2011) Spatio-temporal measurements and analysis of snow depth in a rock face. The Cryosphere 5: 893–905. DOI: 10.5194/tc-5-893-2011

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the research project: CGL2014-52599-P “Estudio del manto de nieve en la montaña española y su respuesta a la variabilidad y cambio climatico” funded by the Spanish Ministry of Economy and Competitiveness; and El glaciar de Monte Perdido: estudio de su dinámica actual y procesos criosféricos asociados como indicadores de procesos de cambio global” (MAGRAMA 844/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan I. López-Moreno.

Additional information

http://orcid.org/ 0000-0002-7270-9313

http://orcid.org/0000-0001-5483-0147

http://orcid.org/0000-0002-1883-3823

http://orcid.org/0000-0001-6884-1728

http://orcid.org/0000-0002-5270-8049

http://orcid.org/0000-0002-3265-8670

http://orcid.org/0000-0001-5186-0893

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Moreno, J.I., Revuelto, J., Alonso-González, E. et al. Using very long-range terrestrial laser scanner to analyze the temporal consistency of the snowpack distribution in a high mountain environment. J. Mt. Sci. 14, 823–842 (2017). https://doi.org/10.1007/s11629-016-4086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4086-0

Keywords