Abstract
This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over three snow seasons on a Pyrenean hillslope characterized by a large elevational gradient, steep slopes, and avalanche occurrence. The maximum and mean absolute snow depth error found was 0.5-0.6 and 0.2-0.3 m respectively, which may result problematic for areas with a shallow snowpack, but it is sufficiently accurate to determine snow distribution patterns in areas characterized by a thick snowpack. The results indicated that in most cases there was temporal consistency in the spatial distribution of the snowpack, even in different years. The spatial patterns were particularly similar amongst the surveys conducted during the period dominated by snow accumulation (generally until end of April), or amongst those conducted during the period dominated by melting processes (generally after mid of April or early May). Simple linear correlation analyses for the 11 survey dates, and the application of Random Forests analysis to two days representative of snow accumulation and melting periods indicated the importance of topography to the snow distribution. The results also highlight that elevation and the Topographic Position index (TPI) were the main variables explaining the snow distribution, especially during periods dominated by melting. The intra- and inter-annual spatial consistency of the snowpack distribution suggests that the geomorphological processes linked to presence/absence of snow cover act in a similar way in the long term, and that these spatial patterns can be easily identified through several years of adequate monitoring.
Similar content being viewed by others
References
Adam JC, Hamlet AF, Lettenmaier DP (2009) Implications of global climate change for snowmelt hydrology in the twentyfirst century. Hydrological Processes 23: 962–972. DOI: 10.1002/hyp.7201
Anderton SP, White SM, Alvera B (2002) Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. Journal of Hydrology 268(1): 158–176. DOI: 10.1016/S0022-1694(02)00179-8
Baeriswyl PA, Rebetez M (1997) Regionalization of precipitation in Switzerland by means of principal component analysis. Theoretical and Applied Climatology 58(1–2): 31–41. DOI: 10.1007/BF00867430
Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303–309. DOI: 10.1038/nature04141
Bartlett JE, Kotrlik JW, Higgins C (2001) Organizational research: Determining appropriate sample size for survey research. Information Technology, Learning, and Performance Journal 19(1): 43–50.
Bornaz L, Lingua A, Rinaudo F (2003) Multiple scan registration in LIDAR close range applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34: 72–77.
Brown I, Ward R (1996) The influence of topography on snowpatch distribution in southern Iceland: a new hypothesis for glacier formation? Geografiska Annaler Series A 78: 197–207. DOI: 10.2307/521040.
Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform: Cold Regions Science and Technology 54: 193–205. DOI: 10.1016/j.coldregions.2008.06. 005
Christiansen HH (1996) Effects of nivation on periglacial landscape evolution in western Jutland, Denmark. Permafrost and Periglacial Processes 7: 111–138. DOI: 10.1002/(SICI) 1099-1530
Dadic R, Mott R, Lehning M, et al. (2010) Wind influence on snow depth distribution and accumulation over glaciers. Journal of Geophysical Research 115: F01012. DOI: 10.1029/2009JF001261
Deems JS, Fassnacht SR, Elder KJ (2006) Fractal Distribution of Snow Depth from Lidar Data. Journal of Hydrometeorology 7(2): 285–297. DOI: 10.1175/JHM487.1
Deems JS, Fassnacht SR, Elder KJ (2008) Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites. Journal of Hydrometeorology 9: 977–988. DOI: 10.1175/2008JHM901.1
Deems JS, Painter TH, Finnegan DC (2013) Lidar measurement of snow depth: a review. Journal of Glaciology 59(215): 467–479. DOI: 10.3189/2013JoG12J154
Deems JS, Gadomski PJ, Vellone D, et al. (2015) Mapping starting zone snow depth with a ground-based lidar to assist avalanche control and forecasting. Cold Regions Science and Technology 120: 197–204. DOI: 10.1016/j.coldregions.2015.09. 002
Egli L, Griessinger N, Jonas T (2011) Seasonal development of spatial snow depth variability across different scales in the Alps. Annals of Glaciology 52(58): 216–222. DOI: 10.3189/172756411797252211
Elder K, Rosenthal W, Davis RE (1998) Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes 12(1011): 1793–1808. DOI: 10.1002/(SICI)1099-1085(199808/09)
Erickson TA, Williams MW, Winstral A (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research 41(4): 1–17. DOI: 10.1029/2003WR002973
Ehrlinger J (2015) ggRandomForests: Visually Exploring a Random Forest for Regression.arXiv: 1501.07196 [stat.CO].
Erxleben J, Elder K, Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes 16(18): 3627–3649. DOI: 10.1002/hyp.1239
Fassnacht SR, Deems JS (2006) Measurement sampling and scaling for deep montane snow depth data. Hydrological Processes 20(4): 829–838. DOI: 10.1002/hyp.6119
Fassnacht SR, López-Moreno JI, Toro M, et al. (2013) Mapping snow cover and snow depth across the Lake Limnopolar watershed on Byers Peninsula, Livingston Island, Maritime Antarctica. Antarctic Science 25(02): 157–166. DOI: 10.1017/S0954102012001216
Fischer M, Huss M, Kummert M, et al. (2016) Use of an ultralong-range terrestrial laser scanner to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere 10: 1279–1295. DOI: 10.5194/tc-2016-46.
Frei A, Tedesco M, Lee S, et al. (2012) A review of global satellite-derived snow products. Advances in Space Research 50(8): 1007–1029. DOI: 10.1016/j.asr.2011.12.021
Fujita K, Hiyama K, Iida H, et al. (2010) Self-regulated fluctuations in the ablation of a snow patch over four decades. Water Resources Research 46: W11541. DOI: 10.1029/2009WR008383
Garcia-Ruiz JM, Alvera B, Del Barrio G, et al. (1990) Geomorphic Processes above Timberline in the Spanish Pyrenees. Mountain Research and Development 10(3): 201–214. DOI: 10.2307/3673600
Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5: 322–325. DOI: 10.1038/ngeo1450
Garvelmann J, Pohl S, Weiler M (2013) From observation to the quantification of snow processes with a time-lapse camera network. Hydrology and Earth System Sciences 17(4): 1415–1429.
Gascoin S, Lhermitte S, Kinnard C, et al. (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25–39. DOI: 10.5194/hess-17-1415-2013
Gascoin S, Hagolle O, Huc M, et al. (2015) A snow cover climatology for the Pyrenees from MODIS snow products. Hydrology and Earth System Science 19(5): 2337–2351. DOI: 10.5194/hess-19-2337-2015
Groffman PM, Driscoll CT, Fahey TJ, et al. (2001) Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56(2): 135–150. DOI: 10.1023/A: 1013039830323
Grünewald T, Schirmer M, Mott R, et al. (2010) Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere 4(2): 215–225. DOI: 10.5194/tc-4-215-2010
Grünewald T, Stötter J, Pomeroy JW, et al. (2013) Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and Earth System Science 17(8): 3005–3021. DOI: 10.5194/hess-17-3005-2013
Hair JF, Anderson R, Tatham R, et al. (1998) Multivariate data analysis. Printice Hall Iberia, Madrid 1999. ISBN: 0-13930587-4.
Helfricht K, Schöber J. Schneider K, et al. (2014) Interannual persistence of the seasonal snow cover in a glacierized catchment. Journal of Glaciology 60: 889–904. DOI: 10.3189/2014JoG13J197
Ishwaran H, Kogalur UB, Gorodeski EZ, et al. (2010) Highdimensional variable selection for survival data. Journal of the American Statistical Association 105: 205–217. DOI: 10.1198/jasa.2009.tm08622
Jollife IT (1990) Principal component analysis: a beginner’s guide. Part I: Introduction and application. Weather 45(1): 375–382.
Jonas T, Geiger F, Jenny H (2008) Mortality pattern of the Alpine Chamois: the influence of snow-meteorological factors. Annals of Glaciology 49: 56–62. DOI: 10.3189/1727564087878 14735
Jost G, Moore RD, Weiler M, et al. (2009) Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting. Journal of Hydrology 376(1): 94–106. DOI: 10.1016/j.jhydrol.2009.07.017
Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3): 187–200.
Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Regional Environmental Change 1(2): 70–77. DOI: 10.1007/PL00011535.
Kirchner PB, Bales RC, Molotch NP, et al. (2014) LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrology and Earth System Sciences 18: 4261–4275. DOI: 10.5194/hess-18-4261-2014
Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends in Ecology & Evolution 14(1): 22–26. DOI: 10.1016/S0169-5347(98)01533-X
Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean High-Mountain Catchment. Arctic, Antarctic, and Alpine Research 43(2): 213–222.
Lehning M, Grünewald T, Schirmer M (2011) Mountain snow distribution governed by an altitudinal gradient and terrain roughness. Geophysical Research Letters 38(19): L19504. DOI: 10.1029/2011GL048927
Letsinger SL, Olyphant GA (2007) Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA. Journal of Hydrology 336(1–2): 48–60. DOI: 10.1016/j.jhydrol.2006.12.012
Liaw A, Wiener M (2002) Classification and regression by random Forest. R News 2: 18–22. DOI: 10.1016/j.jhydrol.2006. 12.012
Ling F, Zhang T (2003) Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost and Periglacial Processes 14: 141–150. DOI: 10.1002/ppp.445
Liston GE (1999) Interrelationships among Snow Distribution, Snowmelt, and Snow Cover Depletion: Implications for Atmospheric, Hydrologic, and Ecologic Modeling. Journal of Applied Meteorology 38(10): 1474–1487. DOI: 10.1175/1520-0450(1999)
López-Moreno JI, García-Ruiz JM (2004) Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees (Influence de l’accumulation et de la fonte de la neige sur les écoulements dans les Pyrénées centrales espagnoles). Hydrological Sciences Journal 49(5): 787–802. DOI: 10.1623/hysj.49.5.787.55135
López-Moreno JI, Nogués-Bravo D (2006) Interpolating local snow depth data: an evaluation of methods. Hydrological Processes 20(10): 2217–2232. DOI: 10.1002/hyp.6199
López-Moreno JI, Latron J, Lehmann A (2010) Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processes 24(14): 1914–1928. DOI: 10.1002/hyp.7564
López-Moreno JI, Fassnacht SR, Beguería S, et al. (2011) Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. The Cryosphere 5(3): 617–629. DOI: 10.5194/tc-5-617-2011
López-Moreno JI, Fassnacht SR, Heath J, et al. (2013) Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adavances in Water Resources 55: 40–52. DOI: 10.1016/j.advwatres.2012.08.010
López-Moreno JI, Revuelto J, Rico I, et al. (2016) Thining of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10: 681–694. DOI: 10.5194/tc-10-681-2016
Lloyd C (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology 308(1–4): 128–150. DOI: 10.1016/j.jhydrol.2004.10.026
Lundberg A, Gustafsson V, Granlund N (2008) “Ground Truth” Snow Measurements-Review of operational and New measurement methods fosSweeden, Norway and Finland. In Proceedings of the 65th Eastern Snow Conference, Fairlee (Lake Money), Vermont, USA. pp 215–237.
Machguth H, Eisen O, Paul F, et al. (2006) Strong spatial variability of snow accumulation observed with helicopterborne GPR on two adjacent Alpine glaciers, Geophysical. Research Letters 33: L13503. DOI: 10.1029/2006GL026576
Maggioni M, Gruber U (2003) The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology 37: 407–419. DOI: 10.1016/S0165-232X(03)00080-6
Molotch NP, Bales RC (2005) Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resources Research 41(11): W11421. DOI: 10.1029/2005WR004229
Molotch NP, Colee MT, Bales RC, et al. (2005) Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrological Processes 19(7): 1459–1479. DOI: 10.1002/hyp.5586
Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multiresolution, multi-sensor comparison. Advances in Water Resources 31(11): 1503–1514. DOI: 10.1016/j.advwatres.2008. 07.017
Mott R, Schirmer M, Lehning M (2011) Scaling properties of wind and snow depth distribution in an Alpine catchment. Journal of Geophysical Research 116: D06106. DOI: 10.1029/2 010JD014886
North GR, Bell TL, Cahalan RF, et al. (1982) Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review 110(7): 699–706. DOI: 10.1175/1520-0493(1982)
Palacios D, de Andrés N, López-Moreno JI, et al. (2015) Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees. Quaternary Research 83(3): 397–414. DOI: 10.1016/j.yqres.2015.01.010
Palacios D, de Andrés N, Luengo E (2003) Distribution and effectiveness of nivation in Mediterranean mountains: Peñalara (Spain). Geomorphology 54(3–4): 157–178. DOI: 10.1016/S0169-555X(02)00340-9
Pomeroy JW, Gray DM (1995) Snowcover accumulation, relocation, and management, NHRI Science Report No7, Environment Canada: Saskatoon, SA: 134 pp Saskatoon, Sask., Canada: National Hydrology Research Institute.
Prokop A (2008) Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and Technology 54(3): 155–163. DOI: 10.1016/j.coldre gions.2008.07.002
Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Natural Hazards and Earth System Sciences 9: 1921–1928. DOI: 10.5194/nhess-9-1921-2009
Rammig A, Jonas T, Zimmermann N, et al. (2010) Changes in alpine plant growth under future climate conditions. Biogeosciences 7: 2013–2024. DOI: 10.5194/bg-7-2013-2010
Raynolds MK, Walker DA, Munger CA, et al. (2008) A map analysis of patterned-ground along a North American Arctic Transect. Journal of Geophysical Research 113: G03S03. DOI: 10.1029/2007JG000512
Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2014a) Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra-and interannual persistence. The Cryosphere 6: 1989–2006. DOI: 10.5194/tc-8-1989-2014
Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2014b) Mapping the annual evolution of snow depth in a small catchment in the Pyrenees from long range terrestrial laser scanner technique. Journal of Maps 10(3): 379–393. DOI: 10.1080/17445647.2013.869268
Revuelto J, López-Moreno JI, Azorín-Molina C, et al. (2015) Canopy influence on SD distribution in a pine stand in the Pyrenees from terrestrial laser data acquisition. Water Resources Research 5(5): 3476–3489. DOI: 10.1002/2014WR 016496
Revuelto J, Jonas T, López-Moreno JI (2016) Backward snow depth reconstruction at high spatial resolution based on timelapse. Hydrological Processes 30(17): 2976–2990. DOI: 10.1002/hyp.10823
Rice R, Bales RC, Painter TH, et al. (2011) Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resources Research 47: W08515. DOI: 10.1029/2010WR009278
Richman MB (1986) Rotation of principal components. Journal of Climatology 6: 293–335. DOI: 10.1002/joc.3370060305
Schirmer M, Wirz V, Clifton A, et al. (2011) Persistence in intraannual snow depth distribution: 1.Measurements and topographic control. Water Resources Research 47(9): W09516. DOI: 10.1029/2010WR009426
Schweizer J, Kronholm K, Jamieson BJ, et al. (2008) Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Regions Science and Technology 51: 253–272. DOI: 10.1016/j.coldregions.2007.04. 009
Scipion DE, Mott R, Lehning M, et al. (2013) Seasonal smallscale spatial variability in alpine snowfall and snow accumulation. Water Resources Research 49(3): 1446–1457. DOI: 10.1002/wrcr.20135
Serrano E, Agudo C, Delaloyé R, et al. (2001) Permafrost distribution in the Posets massif, Central Pyrenees. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography 55(4): 245–252. DOI: 10.1080/00291950152746603
Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes 16: 5–17. DOI: 10.1002/ppp.518
Siegel S, Castelan NJ (1988) Nonparametric Statistics for the Behavioral Sciences McGraw-Hill, New York, USA.
Sommer CG, Lehning M, Mott R (2015) Snow in a very steep rock face: accumulation and redistribution during and after a snowfall event. Frontiers in Earth Science 3: 73. DOI: 10.3389/feart.2015.00073
Sturm M, Wagner AM (2010) Using repeated patterns in snow distribution modeling: an Arctic example. Water Resources Research 46: W12549. DOI: 10.1029/2010WR009434
Trujillo E, Ramírez JA, Elder KJ (2007) Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research 43: W07409. DOI: 10.1029/2006WR005317
Vander Jagt BJ, Durand MT, Margulis SA, et al. (2013) The effect of spatial variability on the sensitivity of passive microwave measurements to snow water equivalent. Remote Sensing of Environment 136: 163–179. DOI: 10.1016/j.rse.2013. 05.002
Weiss AD (2001) Topographic position and landforms analysis. Poster Presentation, ESRI Users Conference, San Diego, CA. http://www.jennessent.com/downloads/tpi-poster-tnc_18x2 2.pdf, accessed on 2015-09-02
Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrological Processes 16(18): 3585–3603. DOI: 10.1002/hyp. 1238
Winstral A, Marks D (2014) Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resource Research 50(1): 293–305. DOI: 10.1002/2012WR013038
Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94(1–2): 105–121. DOI: 10.1007/s10584-009-9546-x
Wirz V, Schirmer M, Gruber S, et al. (2011) Spatio-temporal measurements and analysis of snow depth in a rock face. The Cryosphere 5: 893–905. DOI: 10.5194/tc-5-893-2011
Acknowledgements
This study was funded by the research project: CGL2014-52599-P “Estudio del manto de nieve en la montaña española y su respuesta a la variabilidad y cambio climatico” funded by the Spanish Ministry of Economy and Competitiveness; and El glaciar de Monte Perdido: estudio de su dinámica actual y procesos criosféricos asociados como indicadores de procesos de cambio global” (MAGRAMA 844/2013).
Author information
Authors and Affiliations
Corresponding author
Additional information
http://orcid.org/ 0000-0002-7270-9313
http://orcid.org/0000-0001-5483-0147
http://orcid.org/0000-0002-1883-3823
http://orcid.org/0000-0001-6884-1728
http://orcid.org/0000-0002-5270-8049
http://orcid.org/0000-0002-3265-8670
http://orcid.org/0000-0001-5186-0893
Rights and permissions
About this article
Cite this article
López-Moreno, J.I., Revuelto, J., Alonso-González, E. et al. Using very long-range terrestrial laser scanner to analyze the temporal consistency of the snowpack distribution in a high mountain environment. J. Mt. Sci. 14, 823–842 (2017). https://doi.org/10.1007/s11629-016-4086-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11629-016-4086-0