Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy

  • Symposium: High Entropy Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high entropy alloy containing refractory metals Mo-Nb-Ta-W has a body-centered cubic structure, which is not surprising given the complete mutual solubility in BCC solid solutions of all pairs of the constituent elements. However, first principles total energy calculations for the binaries reveal a set of distinct energy minimizing structures implying the likelihood of chemically ordered low-temperature phases. We apply a hybrid Monte Carlo and molecular dynamics method to evaluate the temperature-dependent chemical order. Monte Carlo species swaps allow for equilibration of the structure that cannot be achieved by conventional molecular dynamics. At 300 K (27 °C), a cesium-chloride ordering emerges between mixed (Nb,Ta) sites and mixed (Mo,W) sites. This order is lost at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Adv. Eng. Mater. 6:299–303.

    Article  Google Scholar 

  2. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) . Intermetallics. 18:1758–65.

    Article  Google Scholar 

  3. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, art. no. 103505.

  4. Yang X, Zhang Y (2012) Mater. Chem. Phys. 132:233–38.

    Article  Google Scholar 

  5. Zhang Y, Yang X, Liaw PK (2012) JOM 64:830–38.

    Article  Google Scholar 

  6. Otto F, Yang Y, Bei H, George EP (2013) Acta Mater. 61:2628–38.

    Article  Google Scholar 

  7. F.Y. Tian, L.K. Varga, N. Chen, L. Delczeg, and L. Vitos: Phys. Rev. B, 2013, vol. 87, art. no. 075144.

  8. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Acta Mater. 59:182–90.

    Article  Google Scholar 

  9. Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP (2006) Mater. Trans. 47:1395–401.

    Article  Google Scholar 

  10. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: Sci. Rep., 2013, vol. 3, art. no. 1455.

  11. Villars P (1983) J. Less Common Met. 92:215–38.

    Article  Google Scholar 

  12. Pettifor DG (1988) Mater. Sci. Technol. 4:675–91.

    Article  Google Scholar 

  13. V. Blum and A. Zunger: Phys. Rev. B 72:02010R, 2005.

  14. Curtarolo S, Morgan D, Ceder G (2005) . CALPHAD: Comput. Coupling. Phase. Diagrams. Thermochem. 29:163–211.

    Article  Google Scholar 

  15. P.E.A. Turchi, A. Gonis, V. Drchal, and J. Kudrnovský: Phys. Rev. B, 2001, vol. 64, art. no. 085112.

  16. P.E.A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu: Phys. Rev. B, 2005, vol. 71, art. no. 094206.

  17. Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Nat. Mater. 4:391–94.

    Article  Google Scholar 

  18. Kresse G, Furthmuller J (1996) Phys. Rev. B 54:11169–86.

    Article  Google Scholar 

  19. Kresse G, Joubert D (1999) Phys. Rev. B 59:1758–75.

    Article  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865–68.

    Article  Google Scholar 

  21. Neyts EC, Bogaerts A (2013) Theor. Chem. Acc. 132:1–12.

    Google Scholar 

  22. de Grosso MF, Bozzolo G, Mosca HO (2012) Physica B 407:3285–87.

    Article  Google Scholar 

  23. Bozzolo G, Ferrante J, Smith JR (1992) Phys. Rev. B 45:493–96.

    Article  Google Scholar 

  24. Masuda-Jindo K, Hung VV, Turchi PEA (2006) Metall. Mater. Trans. A 37:3403–09.

    Article  Google Scholar 

  25. Predmore R, Arsenault RJ (1970) Scripta Met. 4:213–18.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant HDTRA1-11-1-0064. The authors thank Marek Mihalkovič and Michael Gao for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Widom.

Additional information

Manuscript submitted April 29, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widom, M., Huhn, W.P., Maiti, S. et al. Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy. Metall Mater Trans A 45, 196–200 (2014). https://doi.org/10.1007/s11661-013-2000-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2000-8

Keywords