Abstract
The high entropy alloy containing refractory metals Mo-Nb-Ta-W has a body-centered cubic structure, which is not surprising given the complete mutual solubility in BCC solid solutions of all pairs of the constituent elements. However, first principles total energy calculations for the binaries reveal a set of distinct energy minimizing structures implying the likelihood of chemically ordered low-temperature phases. We apply a hybrid Monte Carlo and molecular dynamics method to evaluate the temperature-dependent chemical order. Monte Carlo species swaps allow for equilibration of the structure that cannot be achieved by conventional molecular dynamics. At 300 K (27 °C), a cesium-chloride ordering emerges between mixed (Nb,Ta) sites and mixed (Mo,W) sites. This order is lost at elevated temperatures.
Similar content being viewed by others
References
Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Adv. Eng. Mater. 6:299–303.
Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) . Intermetallics. 18:1758–65.
S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, art. no. 103505.
Yang X, Zhang Y (2012) Mater. Chem. Phys. 132:233–38.
Zhang Y, Yang X, Liaw PK (2012) JOM 64:830–38.
Otto F, Yang Y, Bei H, George EP (2013) Acta Mater. 61:2628–38.
F.Y. Tian, L.K. Varga, N. Chen, L. Delczeg, and L. Vitos: Phys. Rev. B, 2013, vol. 87, art. no. 075144.
Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Acta Mater. 59:182–90.
Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP (2006) Mater. Trans. 47:1395–401.
Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: Sci. Rep., 2013, vol. 3, art. no. 1455.
Villars P (1983) J. Less Common Met. 92:215–38.
Pettifor DG (1988) Mater. Sci. Technol. 4:675–91.
V. Blum and A. Zunger: Phys. Rev. B 72:02010R, 2005.
Curtarolo S, Morgan D, Ceder G (2005) . CALPHAD: Comput. Coupling. Phase. Diagrams. Thermochem. 29:163–211.
P.E.A. Turchi, A. Gonis, V. Drchal, and J. Kudrnovský: Phys. Rev. B, 2001, vol. 64, art. no. 085112.
P.E.A. Turchi, V. Drchal, J. Kudrnovsky, C. Colinet, L. Kaufman, and Z.-K. Liu: Phys. Rev. B, 2005, vol. 71, art. no. 094206.
Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Nat. Mater. 4:391–94.
Kresse G, Furthmuller J (1996) Phys. Rev. B 54:11169–86.
Kresse G, Joubert D (1999) Phys. Rev. B 59:1758–75.
Perdew JP, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865–68.
Neyts EC, Bogaerts A (2013) Theor. Chem. Acc. 132:1–12.
de Grosso MF, Bozzolo G, Mosca HO (2012) Physica B 407:3285–87.
Bozzolo G, Ferrante J, Smith JR (1992) Phys. Rev. B 45:493–96.
Masuda-Jindo K, Hung VV, Turchi PEA (2006) Metall. Mater. Trans. A 37:3403–09.
Predmore R, Arsenault RJ (1970) Scripta Met. 4:213–18.
Acknowledgments
This study was supported in part by Grant HDTRA1-11-1-0064. The authors thank Marek Mihalkovič and Michael Gao for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted April 29, 2013.
Rights and permissions
About this article
Cite this article
Widom, M., Huhn, W.P., Maiti, S. et al. Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy. Metall Mater Trans A 45, 196–200 (2014). https://doi.org/10.1007/s11661-013-2000-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-013-2000-8