Abstract
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
Similar content being viewed by others
Abbreviations
- a o :
-
Oxygen constant
- A :
-
Temperature coefficient of surface tension of pure iron
- A F :
-
Superficial area
- A much :
-
Mushy zone constant
- C D :
-
Solute concentration
- C D :
-
Drag coefficient
- C L :
-
Lift coefficient
- C M :
-
Magnus force coefficient
- C p :
-
Specific heat at constant pressure
- C s :
-
Smagorinsky constant, 0.1
- C VM :
-
Virtual mass force coefficient
- d p :
-
Particle diameter
- F B :
-
Buoyancy force
- F D :
-
Drag force
- F G :
-
Gravitational force
- F L :
-
Lift force
- F M :
-
Magnus force
- F Ma :
-
Marangoni force
- F P :
-
Pressure gradient force
- F VM :
-
Virtual mass force
- g :
-
Acceleration of gravity
- h :
-
Sensible enthalpy
- h m :
-
Distance below the meniscus
- h ref :
-
Reference enthalpy
- H :
-
Total enthalpy
- ΔH :
-
Latent heat
- ΔH°:
-
Standard heat of adsorption
- k :
-
Thermal conductivity
- k o :
-
Constant related to the entropy of oxygen segregation
- K s :
-
Saffman force coefficient, 1.615
- L :
-
The latent heat of the material
- L s :
-
Mixing length
- m P :
-
Mass of particle
- q :
-
Heat flux
- R :
-
Gas constant
- \( S_{\text{e}} \) :
-
Source term of energy
- S t :
-
Source term of turbulence
- S′ :
-
Strain rate tensor
- t :
-
Time
- T liquidus :
-
Liquidus temperature
- T m :
-
Melting temperature of iron
- T solidus :
-
Solidus temperature
- T ref :
-
Reference temperature
- ∇T :
-
Temperature gradient
- U F :
-
Instantaneous velocity of the undisturbed fluid velocity
- U P :
-
Instantaneous velocity of the particle
- U S :
-
Slip velocity
- V :
-
Volume of cell
- V C :
-
Casting speed
- α P :
-
Volume fraction of particle phase
- β :
-
Liquid fraction
- ρ :
-
Density
- ρ l :
-
Fluid density of molten steel
- ρ p :
-
Particle density of bubble
- ν :
-
Fluid velocity
- ν p :
-
Pulling velocity
- ɛ :
-
A small number, 0.001
- σ :
-
Surface tension
- μ t :
-
Turbulence viscosity
- μ eff :
-
Effective viscosity
- κ :
-
Constant, 0.42
- ψ :
-
Constant
- Re :
-
Reynolds numbers
- Γ o :
-
Surface adsorption of oxygen at saturation
References
B.G. Thomas, AIST Trans. 3, 128 (2006).
L.F. Zhang and B.G. Thomas, ISIJ Int. 43, 271 (2003).
K.H. Tacke, J. Iron. Steel Res. Int. 18, 211 (2011).
Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi, ISIJ Int. 53, 484 (2013).
D. Gupta and A.K. Lahiri, Metall. Mater. Trans. B 27, 747 (1996).
L.F. Zhang, S.B. Yang, K.K. Cai, J.Y. Li, X.G. Wan, and B.G. Thomas, Metall. Mater. Trans. B 34, 63 (2007).
V. Singh, S.K. Dash, J.S. Sunitha, S.K. Ajmani, and A.K. Das, ISIJ Int. 46, 210 (2006).
Y. Meng and B.G. Thomas, Metall. Mater. Trans. B 34, 685 (2003).
Q. Yuan, B.G. Thomas, and S.P. Vanka, Metall. Mater. Trans. B 35, 703 (2004).
B.K. Li, Z.Q. Liu, F.S. Qi, F. Wang, and G.D. Xu, Acta Metall. Sin. 48, 23 (2012).
L.F. Zhang, JOM 65, 1138 (2013).
Y. Miki and B.G. Thomas, CAMP-ISIJ 11, 807 (1998).
T. Miyake, M. Morishita, H. Nakata, and M. Kokita, ISIJ Int. 46, 1817 (2006).
W. Damen, G. Abbel, and G.D. Gendt, Revue de Metall. 94, 745 (1997).
T. Staudt and K.H. Tacke (Paper presented at the 7th European Continuous Casting Conference, Dusseldorf, Germany, 2011).
L.F. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).
Y. Miki and S. Takeuchi, ISIJ Int. 43, 1548 (2003).
Q. Yuan and B.G. Thomas (Paper presented at the 3rd International Congress on Science & Technology of Steelmaking, Charlotte, NC, 2005).
K. Mukai and W. Lin, Tetsu-to-Hagané 80, 527 (1994).
S.M. Lee, S.J. Kim, and H.G. Lee, J. Iron. Steel Res. Int. 18, 220 (2011).
Q. Yuan (Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2004).
M. Javurek, P. Gittler, R. Rossler, B. Kaufmann, and H. Preblinger, Steel Res. Int. 76, 64 (2005).
Y. Miki, H. Ohno, Y. Kishimoto, and S. Tanaka, Tetsu-to-Hagané 97, 17 (2011).
L.F. Zhang and Y.F. Wang (Paper presented at Asia Steel 2012, Beijing, China, 2012).
Fluent Inc., Fluent 6.3 User’s Guide (Lebanon, NH: Fluent Inc., 2006).
P. Sahoo, T. Debroy, and M.J. Mcnallan, Metall. Trans. B 19, 483 (1988).
B.K. Li, T. Okane, and T. Umeda, Metall. Mater. Trans. B 32, 1053 (2001).
J. Savage and W.H. Pritchard, J. Iron Steel Inst. 178, 269 (1954).
M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa, ISIJ Int. 46, 903 (2006).
Z.Q. Liu, B.K. Li, and M.F. Jiang, Metal. Mater. Trans. B 45, 675 (2014).
J.F. Fan and C.Y. Lv, BaoSteel Technol. Res. 3, 18 (1997).
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China for support of this research (Grant No. 51210007).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, Z., Li, L., Li, B. et al. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold. JOM 66, 1184–1196 (2014). https://doi.org/10.1007/s11837-014-1010-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-014-1010-3