Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a o :

Oxygen constant

A :

Temperature coefficient of surface tension of pure iron

A F :

Superficial area

A much :

Mushy zone constant

C D :

Solute concentration

C D :

Drag coefficient

C L :

Lift coefficient

C M :

Magnus force coefficient

C p :

Specific heat at constant pressure

C s :

Smagorinsky constant, 0.1

C VM :

Virtual mass force coefficient

d p :

Particle diameter

F B :

Buoyancy force

F D :

Drag force

F G :

Gravitational force

F L :

Lift force

F M :

Magnus force

F Ma :

Marangoni force

F P :

Pressure gradient force

F VM :

Virtual mass force

g :

Acceleration of gravity

h :

Sensible enthalpy

h m :

Distance below the meniscus

h ref :

Reference enthalpy

H :

Total enthalpy

ΔH :

Latent heat

ΔH°:

Standard heat of adsorption

k :

Thermal conductivity

k o :

Constant related to the entropy of oxygen segregation

K s :

Saffman force coefficient, 1.615

L :

The latent heat of the material

L s :

Mixing length

m P :

Mass of particle

q :

Heat flux

R :

Gas constant

\( S_{\text{e}} \) :

Source term of energy

S t :

Source term of turbulence

S′ :

Strain rate tensor

t :

Time

T liquidus :

Liquidus temperature

T m :

Melting temperature of iron

T solidus :

Solidus temperature

T ref :

Reference temperature

T :

Temperature gradient

U F :

Instantaneous velocity of the undisturbed fluid velocity

U P :

Instantaneous velocity of the particle

U S :

Slip velocity

V :

Volume of cell

V C :

Casting speed

α P :

Volume fraction of particle phase

β :

Liquid fraction

ρ :

Density

ρ l :

Fluid density of molten steel

ρ p :

Particle density of bubble

ν :

Fluid velocity

ν p :

Pulling velocity

ɛ :

A small number, 0.001

σ :

Surface tension

μ t :

Turbulence viscosity

μ eff :

Effective viscosity

κ :

Constant, 0.42

ψ :

Constant

Re :

Reynolds numbers

Γ o :

Surface adsorption of oxygen at saturation

References

  1. B.G. Thomas, AIST Trans. 3, 128 (2006).

    Google Scholar 

  2. L.F. Zhang and B.G. Thomas, ISIJ Int. 43, 271 (2003).

    Article  Google Scholar 

  3. K.H. Tacke, J. Iron. Steel Res. Int. 18, 211 (2011).

    Google Scholar 

  4. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi, ISIJ Int. 53, 484 (2013).

    Article  Google Scholar 

  5. D. Gupta and A.K. Lahiri, Metall. Mater. Trans. B 27, 747 (1996).

    Article  Google Scholar 

  6. L.F. Zhang, S.B. Yang, K.K. Cai, J.Y. Li, X.G. Wan, and B.G. Thomas, Metall. Mater. Trans. B 34, 63 (2007).

    Article  MATH  Google Scholar 

  7. V. Singh, S.K. Dash, J.S. Sunitha, S.K. Ajmani, and A.K. Das, ISIJ Int. 46, 210 (2006).

    Article  Google Scholar 

  8. Y. Meng and B.G. Thomas, Metall. Mater. Trans. B 34, 685 (2003).

    Article  Google Scholar 

  9. Q. Yuan, B.G. Thomas, and S.P. Vanka, Metall. Mater. Trans. B 35, 703 (2004).

    Article  Google Scholar 

  10. B.K. Li, Z.Q. Liu, F.S. Qi, F. Wang, and G.D. Xu, Acta Metall. Sin. 48, 23 (2012).

    Google Scholar 

  11. L.F. Zhang, JOM 65, 1138 (2013).

    Article  Google Scholar 

  12. Y. Miki and B.G. Thomas, CAMP-ISIJ 11, 807 (1998).

    Google Scholar 

  13. T. Miyake, M. Morishita, H. Nakata, and M. Kokita, ISIJ Int. 46, 1817 (2006).

    Article  Google Scholar 

  14. W. Damen, G. Abbel, and G.D. Gendt, Revue de Metall. 94, 745 (1997).

    Google Scholar 

  15. T. Staudt and K.H. Tacke (Paper presented at the 7th European Continuous Casting Conference, Dusseldorf, Germany, 2011).

  16. L.F. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).

    Article  Google Scholar 

  17. Y. Miki and S. Takeuchi, ISIJ Int. 43, 1548 (2003).

    Article  Google Scholar 

  18. Q. Yuan and B.G. Thomas (Paper presented at the 3rd International Congress on Science & Technology of Steelmaking, Charlotte, NC, 2005).

  19. K. Mukai and W. Lin, Tetsu-to-Hagané 80, 527 (1994).

    Google Scholar 

  20. S.M. Lee, S.J. Kim, and H.G. Lee, J. Iron. Steel Res. Int. 18, 220 (2011).

    Google Scholar 

  21. Q. Yuan (Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2004).

  22. M. Javurek, P. Gittler, R. Rossler, B. Kaufmann, and H. Preblinger, Steel Res. Int. 76, 64 (2005).

    Google Scholar 

  23. Y. Miki, H. Ohno, Y. Kishimoto, and S. Tanaka, Tetsu-to-Hagané 97, 17 (2011).

    Article  Google Scholar 

  24. L.F. Zhang and Y.F. Wang (Paper presented at Asia Steel 2012, Beijing, China, 2012).

  25. Fluent Inc., Fluent 6.3 User’s Guide (Lebanon, NH: Fluent Inc., 2006).

  26. P. Sahoo, T. Debroy, and M.J. Mcnallan, Metall. Trans. B 19, 483 (1988).

    Article  Google Scholar 

  27. B.K. Li, T. Okane, and T. Umeda, Metall. Mater. Trans. B 32, 1053 (2001).

    Article  Google Scholar 

  28. J. Savage and W.H. Pritchard, J. Iron Steel Inst. 178, 269 (1954).

    Google Scholar 

  29. M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa, ISIJ Int. 46, 903 (2006).

    Article  Google Scholar 

  30. Z.Q. Liu, B.K. Li, and M.F. Jiang, Metal. Mater. Trans. B 45, 675 (2014).

    Article  Google Scholar 

  31. J.F. Fan and C.Y. Lv, BaoSteel Technol. Res. 3, 18 (1997).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for support of this research (Grant No. 51210007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, L., Li, B. et al. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold. JOM 66, 1184–1196 (2014). https://doi.org/10.1007/s11837-014-1010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1010-3

Keywords