Abstract
Two new actions being of a non-natural class \({S = \int {e^{L(q, \dot {q}, t)}dt}}\) and \({S = \int {L^{1 + \gamma }(q, \dot {q}, t)dt}, \gamma \in {\mathbb{R}}}\) with non-standard Lagrangians are introduced. It is demonstrated that nonlinear systems holding new dynamical properties may be obtained. Several constrained Lagrangians systems have been identified to possess attractive properties. Additional features are explored and discussed in some details.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NBS Applied Mathematics Series 55. National Bureau of Standards, Washington, DC (1964)
Arnold A.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)
Bagarello F.: Nonstandard variational calculus with applications to classical mechanics. 1. An existence criterion. Int. J. Theor. Phys. 38(5), 1569–1592 (1999)
Bartosiewicz Z., Martins N., Torres D.F.M.: The second Euler-Lagrange equation of variational calculus on time scales. Eur. J. Control 17(1), 9–18 (2011)
Bateman H.: On dissipative systems and related variational principles. Phys. Rev. 38, 815–819 (1931)
Bauer P.S.: Dissipative dynamical systems I. Proc. Natl. Acad. Sci. 17, 311–314 (1931)
Berera M.G., Ramos R.O.: Strong dissipative behavior in quantum field theory. Phys. Rev. D 58, 123508–123553 (1998)
Burgess M.: Classical Covariant Fields. Cambridge University Press, Cambridge (2002)
Carinena J.G., Ranada M.F., Santander M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703–062721 (2005)
Chandrasekar V.K., Pandey S.N., Senthilvelan M., Lakshmanan M.: A simple and unified approach to identify integrable nonlinear oscillators and systems. J. Math. Phys. 47, 023508–023545 (2006)
Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: Unusual Liénard-type nonlinear oscillator. Phys. Rev. E 72, 066203–066211 (2005)
Cieslinski J.L., Nikiciuk T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A.: Math. Theor. 43, 175205–175222 (2010)
Dreisigmeyer D.W., Young P.M.: Extending Bauer’s corollary to fractional derivatives. J. Phys. A: Math. Gen. 37(11), L117–L121 (2004)
Dreisigmeyer D.W., Young P.M.: Nonconservative Lagrangian mechanics: a generalized function approach. J. Phys. A 36, 8297–8310 (2003)
El-Nabulsi R.A., Torres D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49, 053521–053429 (2008)
El-Nabulsi R.A.: The fractional calculus of variations from extended Erdelyi-Kober operator. Int. J. Mod. Phys. B 23(16), 3349–3361 (2009)
El-Nabulsi R.A.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comp. 217(22), 9492–9496 (2011)
El-Nabulsi R.A.: A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators. Appl. Math. Lett. 24(10), 1647–1653 (2011)
Espanol P., Warren P.: Statistical mechanics of dissipative dynamical systems. Europhys. Lett. 30, 191–196 (1995)
Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover (1963)
Hayashi C.: Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton (1985)
Klimek K.: Fractional sequential mechanics—models with symmetric fractional derivative. Czech. J. Phys. 51, 1348–1354 (2001)
Klimek K.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52, 1247–1253 (2002)
Musielak Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A: Math. Theor. 41, 055205–055222 (2008)
Musielak Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42(15), 2645–2652 (2009)
Neves V.: Nonstandard calculus of variations. J. Math. Sci. 120(1), 940–954 (2004)
Riewe F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)
Riewe F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)
Tuckey, C.: Nonstandard Methods in the Calculus of Variations. Pitman (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
El-Nabulsi, A.R. Non-Linear Dynamics with Non-Standard Lagrangians. Qual. Theory Dyn. Syst. 12, 273–291 (2013). https://doi.org/10.1007/s12346-012-0074-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12346-012-0074-0