Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Theory and applications of proper scoring rules

  • Published:
METRON Aims and scope Submit manuscript

Abstract

A scoring rule \(S(x; q)\) provides a way of judging the quality of a quoted probability density \(q\) for a random variable \(X\) in the light of its outcome \(x\). It is called proper if honesty is your best policy, i.e., when you believe \(X\) has density \(p\), your expected score is optimised by the choice \(q = p\). The most celebrated proper scoring rule is the logarithmic score, \(S(x; q) = -\log {q(x)}\): this is the only proper scoring rule that is local, in the sense of depending on the density function \(q\) only through its value at the observed value \(x\). It is closely connected with likelihood inference, with communication theory, and with minimum description length model selection. However, every statistical decision problem induces a proper scoring rule, so there is a very wide variety of these. Many of them have additional interesting structure and properties. At a theoretical level, any proper scoring rule can be used as a foundational basis for the theory of subjective probability. At an applied level a proper scoring can be used to compare and improve probability forecasts, and, in a parametric setting, as an alternative tool for inference. In this article we give an overview of some uses of proper scoring rules in statistical inference, including frequentist estimation theory and Bayesian model selection with improper priors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, M.P., Gidas, B.: A variational method for estimating the parameters of MRF from complete or incomplete data. Ann. Appl. Probabl. 3, 103–136 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barndorff-Nielsen, O.E., Cox, D.R.: Inference and asymptotics. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  3. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85, 549–59 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Besag, J.E.: Statistical analysis of non-lattice data. J. Royal Stat. Soc. Ser. D (The Statistician) 24, 179–95 (1975)

    Google Scholar 

  6. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1–3 (1950)

    Article  Google Scholar 

  7. Dawid, A.P.: Probability forecasting. In: Kotz, S., Johnson, N.L., Read, C.B. (eds.) Encyclopedia of statistical sciences, vol. 7, pp. 210–218. Wiley-Interscience, New York (1986)

  8. Dawid, A.P.: Coherent measures of discrepancy, uncertainty and dependence, with applications to Bayesian predictive experimental design. Technical Report 139, Department of Statistical Science, University College London. http://www.ucl.ac.uk/Stats/research/pdfs/139b.zip (1998)

  9. Dawid, A.P.: The geometry of proper scoring rules. Ann. Inst. Stat. Math. 59, 77–93. http://www.ism.ac.jp/editsec/aism/pdf/059_1_0077.pdf (2007)

  10. Dawid, A.P., Lauritzen, S.L.: The geometry of decision theory. In: Proceedings of the Second International Symposium on Information Geometry and its Applications, pp. 22–28. University of Tokyo (2005)

  11. Dawid, A.P., Musio, M.: Estimation of spatial processes using local scoring rules. AStA Adv. Stat. Anal. 97, 173–179. http://dx.doi.org/10.1007/s10182-012-0191-8 (2013)

  12. Dawid, A.P., Lauritzen, S.L., Parry, M.: Proper local scoring rules on discrete sample spaces. Ann. Stat. 40, 593–608 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dawid, A.P., Musio, M.: Bayesian model selection based on proper scoring rules (2014)

  14. Dawid, A.P., Musio, M., Ventura, L.: Minimum scoring rule inference. http://arxiv.org/pdf/1403.3920v1.pdf (2014)

  15. Dawid, A.P., Sebastiani, P.: Coherent dispersion criteria for optimal experimental design. Ann. Stat. 27, 65–81 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Finetti, B.: Theory of Probability (volumes 1 and 2). John Wiley and Sons, New York (Italian original Einaudi, 1970) (1975)

  17. Good, I.J.: Rational decisions. J. Royal Stat. Soc. Ser. B 14, 107–114 (1952)

    MathSciNet  Google Scholar 

  18. Huber, P.J., Ronchetti, E.M.: Robust Statistics. John Wiley and Sons, New York (2009)

  19. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. 6, 695–709 (2005)

    MATH  Google Scholar 

  20. Hyvärinen, A.: Some extensions of score matching. Comput. Stat. Data Anal. 51, 2499–2512 (2007)

    Article  MATH  Google Scholar 

  21. Lindley, D.V., Smith, A.F.M.: Bayes estimates for the linear model (with Discussion). J. Royal Stat. Soc. Ser. B 34, 1–41 (1972)

    MATH  MathSciNet  Google Scholar 

  22. Statistica Sinica: Special issue on composite likelihood. Stat. Sinica, 21, (1). http://www3.stat.sinica.edu.tw/statistica/j21n1/21-1.html (2011)

  23. Musio, M., Dawid, A.P.: Local scoring rules: a versatile tool for inference. In: Proceedings of the 59th ISI World Statistics Congress, Hong Kong. http://2013.isiproceedings.org/Files/STS019-P3-S.pdf (2013)

  24. O’Hagan, A.: Fractional Bayes factors for model comparison. J. Royal Stat. Soc. Ser. B 57, 99–138 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Parry, M.F.: Multidimensional local scoring rules. In: Proceedings of the 59th ISI World Statistics Congress, Hong Kong. http://2013.isiproceedings.org/Files/STS019-P2-S.pdf (2013)

  26. Parry, M.F., Dawid, A.P., Lauritzen, S.L.: Proper local scoring rules. Ann. Stat. 40, 561–592 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vovk, V.G.: Competitive on-line statistics. Int. Stat. Rev. 69, 213–248 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Musio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawid, A.P., Musio, M. Theory and applications of proper scoring rules. METRON 72, 169–183 (2014). https://doi.org/10.1007/s40300-014-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-014-0039-y

Keywords