Key Points
-
The functional roles of small non-coding RNAs in vertebrates are beginning to be elucidated thanks to specific gene-deletion approaches.
-
miR-15, miR-16 and miR-430 are involved in modulation of the Nodal signalling pathway in different phases of vertebrate embryonic development.
-
miR-124 contributes to the adoption of neural cell fate by regulating the switch between PTB and nPTB, two regulators of alternative splicing.
-
miR-208 deletion results in a failure to produce cardiac hypertrophy in response to various stresses.
-
miR-181 and miR-155 have a complex regulatory role in lymphocyte maturation and the immune response.
-
piRNAs are a novel class of small non-coding RNAs that are expressed in the germline, and that are possibly involved in inhibiting the mobilization of transposons.
Abstract
The modulation of gene expression by small non-coding RNAs is a recently discovered level of gene regulation in animals and plants. In particular, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) have been implicated in various aspects of animal development, such as neuronal, muscle and germline development. During the past year, an improved understanding of the biological functions of small non-coding RNAs has been fostered by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators of animal development and are potential human disease loci.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318â356 (1961).
Esquela-Kerscher, A. & Slack, F. J. Oncomirs â microRNAs with a role in cancer. Nature Rev. Cancer 6, 259â269 (2006).
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843â854 (1993).
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855â862 (1993).
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901â906 (2000).
Yoo, A. S. & Greenwald, I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310, 1330â1333 (2005).
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635â647 (2005).
Hobert, O. Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. Cold Spring Harb. Symp. Quant. Biol. 71, 181â188 (2006).
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, e60 (2003).
Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097â1108 (2005).
Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E. C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947â2952 (2005).
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25â36 (2003).
Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767â774 (2006).
Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790â795 (2003).
Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067â1080 (2005).
Li, X. & Carthew, R. W. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267â1277 (2005).
Varghese, J. & Cohen, S. M. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 21, 2277â2282 (2007).
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281â297 (2004).
Abbott, A. L. et al. The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403â414 (2005).
Bushati, N. & Cohen, S. M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175â205 (2007).
Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441â450 (2006).
Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126â1129 (2007).
Zhao, T. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 21, 1190â1203 (2007).
Lee, Y., Han, J., Yeom, K. H., Jin, H. & Kim, V. N. Drosha in primary microRNA processing. Cold Spring Harb. Symp. Quant. Biol. 71, 51â57 (2006).
Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83â86 (2007).
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The miRtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89â100 (2007).
Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. Mol. Cell 28, 328â336 (2007).
Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118â126 (2007).
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787â798 (2003).
Rajewsky, N. & Socci, N. D. Computational identification of microRNA targets. Dev. Biol. 267, 529â535 (2004).
Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91â105 (2007).
Long, D. et al. Potent effect of target structure on microRNA function. Nature Struct. Mol. Biol. 14, 287â294 (2007).
Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214â220 (2005).
Vella, M. C., Reinert, K. & Slack, F. J. Architecture of a validated microRNA::target interaction. Chem. Biol. 11, 1619â1623 (2004).
Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401â1414 (2007).
Rigoutsos, I. et al. Short blocks from the noncoding parts of the human genome have instances within nearly all known genes and relate to biological processes. Proc. Natl Acad. Sci. USA 103, 6605â6610 (2006).
Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21â24 (2005).
Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3â² UTRs by comparison of several mammals. Nature 434, 338â345 (2005).
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769â773 (2005).
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3â² UTR evolution. Cell 123, 1133â1146 (2005).
Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817â1821 (2005).
Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet. 38 (Suppl.), S20âS24 (2006).
Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396â400 (2004).
Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215â217 (2003).
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489â501 (2005).
Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380â385 (2007).
Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833â838 (2005).
Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682â693 (2007).
Muljo, S. A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261â269 (2005).
Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644â648 (2007).
Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genet. 38, 356â362 (2006).
Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303â317 (2007).
Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435â448 (2007).
Stern, C. D. Evolution of the mechanisms that establish the embryonic axes. Curr. Opin. Genet. Dev. 16, 413â418 (2006).
Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFβ superfamily signaling during early Xenopus development. Development 127, 2917â2931 (2000).
Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173â1183 (2000).
Martello, G. et al. MicroRNA control of Nodal signalling. Nature 449, 183â188 (2007).
Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 318, 271â274 (2007).
Lipscombe, D. Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 15, 358â363 (2005).
Ule, J. & Darnell, R. B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102â110 (2006).
Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911â920 (2006).
Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175â179 (2003).
Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).
Spellman, R. & Smith, C. W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 31, 73â76 (2006).
Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636â1652 (2007).
Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71â84 (2007).
Conaco, C., Otto, S., Han, J. J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA 103, 2422â2427 (2006).
Coulson, J. M. Transcriptional regulation: cancer, neurons and the REST. Curr. Biol. 15, R665âR668 (2005).
Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744â749 (2007).
Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735â739 (2002).
Kwon, C., Han, Z., Olson, E. N. & Srivastava, D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl Acad. Sci. USA 102, 18986â18991 (2005).
Sokol, N. S. & Ambros, V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343â2354 (2005).
Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228â233 (2006).
Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 13, 486â491 (2007).
Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813â818 (2006).
Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937â1956 (2003).
van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255â18260 (2006).
McCarthy, J. J. & Esser, K. A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. 102, 306â313 (2007).
Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416â424 (2007).
Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613â618 (2007).
Cheng, Y. et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. 170, 1831â1840 (2007).
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575â579 (2007). Demonstrates that miR-208 is required for cardiac hypertrophy.
Ito, M. & Roeder, R. G. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12, 127â134 (2001).
Fatica, A. et al. MicroRNAs and hematopoietic differentiation. Cold Spring Harb. Symp. Quant. Biol. 71, 205â210 (2006).
Dahlberg, J. E. & Lund, E. Micromanagement during the innate immune response. Sci. STKE 2007, 387, pe25 (2007).
Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83â86 (2004).
Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005).
Neilson, J. R., Zheng, G. X., Burge, C. B. & Sharp, P. A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21, 578â589 (2007).
Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147â161 (2007). Shows that variations in the levels of miR-181 during T lymphocyte maturation regulates the sensitivity to TCR activation.
Clurman, B. E. & Hayward, W. S. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol. Cell. Biol. 9, 2657â2664 (1989).
Tam, W., Ben-Yehuda, D. & Hayward, W. S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol. 17, 1490â1502 (1997).
Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167â169 (2004).
Haasch, D. et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell. Immunol. 217, 78â86 (2002).
O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604â1609 (2007).
Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065â7070 (2005).
Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA 102, 3627â3632 (2005).
van den Berg, A. et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37, 20â28 (2003).
Kluiver, J. et al. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147â153 (2006).
Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243â249 (2005).
Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189â198 (2006).
Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604â608 (2007).
Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608â611 (2007). This study, together with reference 101, describes the alterations of immune system functions in Mir-155 -null mutants.
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123â132 (1999).
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. MUT-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133â141 (1999).
Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463â2476 (1997).
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715â3727 (1998).
Schupbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119â1136 (1991).
Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823â2832 (2001).
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320â324 (2006).
Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214â2222 (2006).
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089â1103 (2007).
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5â² end formation in Drosophila. Science 315, 1587â1590 (2007). References 111 and 112 provide evidence for the current model of piRNA generation in D. melanogaster.
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337â350 (2003).
Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2â²-O-methylation of Piwi-interacting RNAs at their 3â² ends. Genes Dev. 21, 1603â1608 (2007).
Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265â1272 (2007).
Cook, H. A., Koppetsch, B. S., Wu, J. & Theurkauf, W. E. The Drosophila SDE3 homolog armitage is required for Oskar mRNA silencing and embryonic axis specification. Cell 116, 817â829 (2004).
Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12, 45â55 (2007).
Chen, Y., Pane, A. & Schupbach, T. Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr. Biol. 17, 637â642 (2007).
Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69â82 (2007).
Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819â830 (2002).
Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839â849 (2004).
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503â514 (2007).
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203â207 (2006).
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199â202 (2006).
Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709â1714 (2006).
Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363â367 (2006).
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732â1743 (2006).
Betel, D., Sheridan, R., Marks, D. S. & Sander, C. Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput. Biol. 3, e222 (2007).
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744â747 (2007). Describes features that are specific to the pools of piRNAs associated with different Piwi proteins in the mouse, showing similarities and differences between vertebrate and invertebrate piRNAs.
Leung, A. K. & Sharp, P. A. microRNAs: a safeguard against turmoil? Cell 130, 581â585 (2007).
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573â1576 (2005).
Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141â1151 (2007).
Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764â1767 (2007).
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875â878 (2007).
Chendrimada, T. P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823â828 (2007).
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671â680 (1999).
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol. 13, 1102â1107 (2006).
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533â542 (2006).
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108â1114 (2006).
Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515â524 (2006).
Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857â1862 (2007).
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885â1898 (2006).
Pane, A., Wehr, K. & Schupbach, T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851â862 (2007).
Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146â159 (2007).
Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898â10903 (2005).
Harris, K. S., Zhang, Z., McManus, M. T., Harfe, B. D. & Sun, X. Dicer function is essential for lung epithelium morphogenesis. Proc. Natl Acad. Sci. USA 103, 2208â2213 (2006).
O'Rourke, J. R. et al. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359â368 (2007).
Cobb, B. S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367â1373 (2005).
Schaefer, A. et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553â1558 (2007).
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437â1441 (2004).
Morita, S. et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687â696 (2007).
Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).
Acknowledgements
We thank M. Boehm for critical reading of the manuscript. G.S. was supported by the Anna Fuller Fund and a Sessel Postdoctoral Fellowship. F.S. was supported by grants from the National Institutes of Health, the McDonnell Foundation and the Ellison Medical Foundation.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
OMIM
FURTHER INFORMATION
Glossary
- Piwi-interacting RNAs
-
(piRNAs). Short RNA molecules (24â30 nt long) that are processed in a Dicer- and Drosha-independent manner. They associate with Piwi proteins and have a role in transposon silencing in flies. In mammals, they are restricted mostly to male germ cells.
- RNase III
-
One of a highly conserved family of endoribonucleases that cleave double-stranded RNA and have an important role in the maturation of ribosomal RNA, among other processes.
- miRNA-induced silencing complex
-
(miRISC). A multicomponent gene regulatory complex that is activated by a microRNA (miRNA) associated with an Argonaute protein and that regulates gene expression, mediated by the sequence complementarity between the miRNA and the target mRNA.
- Argonaute protein
-
One of a family of evolutionarily conserved proteins that are characterized by the presence of two homology domains (PAZ and PIWI). Argonaute proteins are essential for diverse RNA-silencing pathways.
- P bodies
-
Cytoplasmic foci that are thought to store and degrade translationally repressed RNA.
- Hyperplasia
-
Enlargement of an organ resulting from an increased number of its cells.
- Deep sequencing techniques
-
Sequencing to high coverage, where coverage (or depth) corresponds to the average number of times that a nucleotide is sequenced.
- Small interfering RNA
-
(siRNA). Short double-stranded RNA molecules (â¼21â23 nt) that guide the cleavage and degradation of RNA that is complementary to one of its strands.
- Germ-line stem cells
-
(GSCs). Cells that have the ability to self-renew and to generate differentiated cells that are restricted to the germ cell lineage.
- Primordial germ cells
-
Embryonic cells that give rise to the germ cell lineage.
- rasiRNA
-
Repeat-associated small interfering RNA that is derived from highly repetitive genomic loci. rasiRNA is involved in the establishment and maintenance of heterochromatin and transposon control.
- Seminiferous tubules
-
Structures in the testis where spermatocytes mature.
Rights and permissions
About this article
Cite this article
Stefani, G., Slack, F. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9, 219â230 (2008). https://doi.org/10.1038/nrm2347
Issue Date:
DOI: https://doi.org/10.1038/nrm2347
This article is cited by
-
Integrated Analysis of MRNA and MiRNA Expression Profiles in dys-1 Mutants of C. Elegans After Spaceflight and Simulated Microgravity
Microgravity Science and Technology (2023)
-
JSCSNCP-LMA: a method for predicting the association of lncRNAâmiRNA
Scientific Reports (2022)
-
Long-term continuous monitoring of microRNA in living cells using modified gold nanoprobe
Analytical and Bioanalytical Chemistry (2022)
-
MiR-133a is a potential target for arterial calcification in patients with end-stage renal disease
International Urology and Nephrology (2022)
-
The Transcription Factor, α1ACT, Acts Through a MicroRNA Network to Regulate Neurogenesis and Cell Death During Neonatal Cerebellar Development
The Cerebellum (2022)