Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bug juice: harvesting electricity with microorganisms

An Erratum to this article was published on 01 October 2006

Key Points

  • Microbial fuel cells have the potential to convert a wide diversity of organic wastes and renewable biomass to electricity. Many applications for microbial fuel cells are envisioned but, to date, the most practical use is the sediment microbial fuel cell, which is designed to recover electricity from the organic matter in aquatic sediments to power electronic-monitoring devices.

  • In a microbial fuel cell, electrons derived from the microbial oxidation of organic matter are transferred to the anode under anaerobic conditions and travel through the device that is to be powered into the cathode, where they combine with oxygen to form water.

  • It has recently been discovered that some microorganisms can completely oxidize organic compounds to carbon dioxide, with an electrode serving as the sole electron acceptor, and can conserve energy from this form of respiration. The term electricigens has been coined to describe such microorganisms.

  • Electricigen-powered microbial fuel cells can covert organic compounds to electricity more efficiently than earlier versions of microbial fuel cells, and do not require electron-shuttling mediators, which add cost, often have poor stability and can be toxic to humans. Furthermore, as long as fuel is available, electricigens are self-sustaining, resulting in fuel cells with long term stability.

  • The slow rate of conversion of organic matter to electricity in the currently available microbial fuel cells limits their application. Understanding the mechanisms of electron transfer to electrodes might help in designing anode materials that will promote faster electron transfer.

  • It is unlikely that there has been any selective pressure on electricigens to produce electricity at high rates in natural environments. Therefore, there could be substantial potential for optimizing this process with genetic engineering or adaptive evolution.

  • The availability of the complete genome sequence of several electricigens, such as Geobacter and Rhodoferax species, and the ability to track gene expression in electricigens growing on anodes, coupled with available genetic tools, is beginning to provide insights into the mechanisms of electron transfer to anodes.

  • Electrodes can also serve as an electron donor for microbial respiration and this might have applications for the removal of contaminants, such as toxic metals, nitrate and chlorinated solvents from polluted waters.

Abstract

It is well established that some reduced fermentation products or microbially reduced artificial mediators can abiotically react with electrodes to yield a small electrical current. This type of metabolism does not typically result in an efficient conversion of organic compounds to electricity because only some metabolic end products will react with electrodes, and the microorganisms only incompletely oxidize their organic fuels. A new form of microbial respiration has recently been discovered in which microorganisms conserve energy to support growth by oxidizing organic compounds to carbon dioxide with direct quantitative electron transfer to electrodes. These organisms, termed electricigens, offer the possibility of efficiently converting organic compounds into electricity in self-sustaining systems with long-term stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized pathway for the anaerobic oxidation of organic matter to carbon dioxide with Fe3+ oxide serving as an electron acceptor in temperate, freshwater and sedimentary environments.
Figure 2: Examples of microbial fuel cells producing electricity through different mechanisms of electron transfer to the anode.
Figure 3: A sediment microbial fuel cell.
Figure 4: Mechanisms by which reduced sulphur compounds can contribute to electricity production in sediment microbial fuel cells in sulphide-rich sediments.
Figure 5: A mechanism for extracellular electron transfer by Geobacter sulfurreducens.

Similar content being viewed by others

References

  1. Larminie, J. & Dicks, A. Fuel Cell Systems Explained (John Wiley & Sons Ltd, West Sussex, 2003).

    Book  Google Scholar 

  2. Katz, E., Shipway, A. N. & Wilner, I. in Handook of Fuel Cells-Fundamentals, Technology, and Application (eds. Vielstich, W., Lamm, A. & Gasteiger, H. A.) 355–381 (John Wiley & Sons, Ltd., Chichester, 2003). Provides an excellent overview of early microbial fuel cell studies and enyzmatic fuel cells.

    Google Scholar 

  3. Bennetto, H. P. in Frontiers of Science (ed. Scott, A.) 66–82 (Blackwell Publishing, Cambridge, USA, 1990).

    Google Scholar 

  4. Sisler, F. D. Electrical energy from microbial processes. J. Wash. Acad. Sci. 52, 182–187 (1962).

    Google Scholar 

  5. Shukla, A. K., Suresh, P., Berchmans, S. & Rahjendran, A. Biological fuel cells and their applications. Curr. Science 87, 455–468 (2004). Most detailed recent review on the potential applications of microbial fuel cells.

    CAS  Google Scholar 

  6. Konikoff, J. J., Reynolds, L. W. & Harris, E. S. Electrical energy from biological systems. Aerosp. Med. 34, 1129–1133 (1963).

    CAS  PubMed  Google Scholar 

  7. Wilkinson, S. “Gastrobots”-benefits and challenges of microbial fuel cells in food-powered robot applications. Autonomous Robots 9, 99–111 (2000). An interesting concept for the application of microbial fuel cells.

    Article  Google Scholar 

  8. Rabaey, K. & Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 6, 291–298 (2005).

    Article  Google Scholar 

  9. Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A. & Domiguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–484 (2004).

    Article  CAS  Google Scholar 

  10. Logan, B. E. Simultaneous wastewater treatment and biological electricity generation. Water Sci. Technol. 52, 31–37 (2005).

    Article  CAS  Google Scholar 

  11. Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nature Biotechnol. 20, 821–825 (2002). Describes the microbial fuel cell application most likely to be employed in the near term.

    Article  CAS  Google Scholar 

  12. Cheng, S., Liu, H. & Logan, B. E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. (2006). Excellent example of how novel engineering approaches have the potential to substantially increase the power output of microbial fuel cells.

  13. Lewis, K. Symposium on bioelectrochemisry of microorganisms IV. Biochemical fuel cells. Bacteriol. Rev. 30, 101–113 (1996).

    Google Scholar 

  14. Potter, M. C. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc. 3, 245–249 (1910).

    Google Scholar 

  15. Potter, M. C. Electrical effects accompanying the decomposition of organic compunds. Proc. R. Soc. Lond. B 84, 260–276 (1911).

    Article  Google Scholar 

  16. Lovley, D. R., Holmes, D. E. & Nevin, K. P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49, 219–286 (2004).

    Article  CAS  Google Scholar 

  17. Kashefi, K. K., Holmes, D. E., Lovley, D. R. & Tor, J. M. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 199–211 (American Geophysical Union, Washington DC, 2004).

    Book  Google Scholar 

  18. Chaudhuri, S. K. & Lovley, D. R. Electricity from direct oxidation of glucose in mediator-less microbial fuel cells. Nature Biotechnol. 21, 1229–1232 (2003). Demonstration that it is possible for a single organism to effectively convert sugars to electricity.

    Article  CAS  Google Scholar 

  19. Caccavo, F. Jr et al. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol. 165, 370–376 (1996).

    Article  CAS  Google Scholar 

  20. Lovley, D. R. & Phillips, E. J. P. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl. Environ. Microbiol. 55, 3234–3236 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohen, B. The bacterial culture as an electrical half-cell. J. Bacteriol. 21, 18–19 (1931).

    CAS  Google Scholar 

  22. Davis, J. B. Generation of electricity by microbial action. Adv. Appl. Microbiol. 51–64 (1963).

  23. Karube, I., Matsunaga, T. & Tsuru, S. Biochemical fuel cell utilizing immobilized cell of Clostridium butryicum. Biotechnol. Bioeng. 19, 1727–1733 (1977).

    Article  CAS  Google Scholar 

  24. Aston, W. J. & Turner, A. P. F. Biosensors and biofuel cells. Biotechnol. Genet. Engin. Rev. 1, 89–120 (1984).

    Article  CAS  Google Scholar 

  25. Schroder, U., Niessen, J. & Scholz, F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Engl. 42, 2880–2883 (2003).

    Article  Google Scholar 

  26. Holmes, D. E., Bond, D. R. & Lovley, D. R. Electron transfer to Fe(III) and graphite electrodes by Desulfobulbus propionicus. Appl. Environ. Microbiol. 70, 1234–1237 (2004).

    Article  CAS  Google Scholar 

  27. McKinlay, J. B. & Zeikus, J. G. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol. 70, 4367–4374 (2004).

    Article  Google Scholar 

  28. Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292–1297 (2000).

    Article  CAS  Google Scholar 

  29. Park, D.-H. & Zeikus, J. G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348–355 (2003). Developed the concept of the air-breathing cathode which relieves limitations in electron transfer to oxygen and demonstrated how modifying anode materials to better interact with microbial electron transfer proteins can enhance power production.

    Article  CAS  Google Scholar 

  30. Bennetto, H. P. et al. The sucrose fuel cell: efficient conversion using a microbial catalyst. Biotechnol. Lett. 7, 699–704 (1985).

    Article  CAS  Google Scholar 

  31. Newman, D. K. & Kolter. A role for excreted quinones in extracelular electron transfer. Nature 405, 94–97 (2000). This study initiated the concept of self-produced electron shuttles for extracellular electron transfer.

    Article  CAS  Google Scholar 

  32. Myers, C. R. & Myers, J. M. Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl. Environ. Microbiol. 70, 5415–5425 (2004).

    Article  CAS  Google Scholar 

  33. Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).

    Article  CAS  Google Scholar 

  34. Rosso, K. M., Zachara, J. M., Fredrickson, J. K., Gorby, Y. A. & Smith, S. C. Nonlocal bacterial electron tansfer to hematite surfaces. Geochem. Cosmochim. Acta 67, 1081–1087 (2003).

    Article  CAS  Google Scholar 

  35. Lies, D. P. et al. Shewnaella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71, 4414–4426 (2005).

    Article  CAS  Google Scholar 

  36. Nevin, K. P. & Lovley, D. R. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68, 2294–2299 (2002).

    Article  CAS  Google Scholar 

  37. Hernandez, M. E., Kappler, A. & Newman, D. K. Phenazines and other redox-acitve antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921–928 (2004).

    Article  CAS  Google Scholar 

  38. Rabaey, K., Boon, N., Hofte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).

    Article  CAS  Google Scholar 

  39. Nevin, K. P. & Lovley, D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66, 2248–2251 (2000).

    Article  CAS  Google Scholar 

  40. Childers, S. E., Ciufo, S. & Lovley, D. R. Geobacter metallireducens accesses Fe(III) oxide by chemotaxis. Nature 416, 767–769 (2002).

    Article  CAS  Google Scholar 

  41. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005). Suggests a mechanism for long-range electron transfer to Fe(III) oxides that may also apply to microbial fuel cells.

    Article  CAS  Google Scholar 

  42. Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).

    Article  CAS  Google Scholar 

  43. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004).

    Article  CAS  Google Scholar 

  44. Lee, J., Phung, N. T., Chang, I. S., Kim, B. H. & Sung, H. C. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223, 185–191 (2003).

    Article  CAS  Google Scholar 

  45. Rabaey, K., Ossieur, W., Verhaege, M. & Verstraete, W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol. 52, 515–523 (2005).

    Article  CAS  Google Scholar 

  46. Bond, D. R. & Lovley, D. R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71, 2186–2189 (2005).

    Article  CAS  Google Scholar 

  47. Holmes, D. E. et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol. 48, 178–190 (2004).

    Article  CAS  Google Scholar 

  48. Kim, B.-H., Kim, H.-J., Hyun, M.-S. & Park, D.-H. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechol. 9, 127–131 (1999). First suggestion that dissimilatory iron reducers might be able to directly transfer electrons to electrodes.

    Google Scholar 

  49. Kim, H. J. et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbiol. Technol. 30, 145–152 (2002).

    Article  CAS  Google Scholar 

  50. Park, D. H. & Zeikus, J. G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59, 58–61 (2002).

    Article  CAS  Google Scholar 

  51. Lovley, D. R., Phillips, E. J. P. & Lonergan, D. J. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700–706 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    Article  CAS  Google Scholar 

  53. Pham, C. A. et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223, 129–134 (2003).

    Article  CAS  Google Scholar 

  54. Park, H. S. et al. A novel electrochemcially active and Fe(III)-reducing bacterium phylogeneticaly related to Clostridicum butyricum isolated from a microbial fuel cell. Anaerobe 7, 297–306 (2001).

    Article  CAS  Google Scholar 

  55. Reimers, C. E., Tender, L. M., Fertig, S. & Wang, W. Harvesting energy from the marine sediment–water interface. Environ. Sci. Technol. 35, 192–195 (2001).

    Article  CAS  Google Scholar 

  56. DeLong, E. F. & Chandler, P. Power from the deep. Nature Biotechnol. 20, 788–789 (2002).

    Article  CAS  Google Scholar 

  57. Shantaram, A., Beyenal, H., Raajan, R., Veluchamy, A. & Lewandowski, Z. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39, 5037–5042 (2005).

    Article  CAS  Google Scholar 

  58. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms harvesting energy from marine sediments. Science 295, 483–485 (2002). First description of microorganisms that could conserve energy to support growth by coupling the complete oxidiation of organic compounds with electron transfer to an electrode.

    Article  CAS  Google Scholar 

  59. Gregory, K. B., Sullivian, S. A. & Lovley, D. R. Electricity from swine waste coupled with odor reduction using electrodes. Abstr. Gen. Meet. Am. Soc. Microbiol. Q114 (2005).

  60. Lovley, D. R. in The Prokaryotes (online) (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) http://141.150.157.117:8080/prokPUB/index.htm (Springer, New York, 2000).

    Google Scholar 

  61. Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).

    Article  CAS  Google Scholar 

  62. Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Holmes, D. E., Nicoll, J. S., Bond, D. R. & Lovley, D. R. Potential role of a novel psychrotolerant member of the Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov. in electricity production by the marine sediment fuel cell. Appl. Environ. Microbiol. 70, 6023–6030 (2004).

    Article  CAS  Google Scholar 

  64. Methé, B. A. et al. The genome of Geobacter sulfurreducens: insights into metal reduction in subsurface environments. Science 302, 1967–1969 (2003).

    Article  Google Scholar 

  65. Coppi, M., Leang, C., Lovley, D. & Sandler, S. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 67, 3180–3187 (2001).

    Article  CAS  Google Scholar 

  66. Liu, H. & Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004).

    Article  CAS  Google Scholar 

  67. Finneran, K. T., Johnsen, C. V. & Lovley, D. R. Rhodoferax ferrireducens gen. nov., sp. nov.; a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 53, 669–673 (2003).

    Article  CAS  Google Scholar 

  68. Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. (in the press).

  69. Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol., (in press) (2006). Demonstrates how whole-genome analysis of gene expression of microorganisms growing on anode surfaces may help elucidate the mechanisms for electron transfer to electrodes.

  70. Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F. & Lovley, D.R. Requirement for pili 'nanowires' for optimal current production in Geobacter-powered microbial fuel cells. Abstr. Gen. Meet. Am. Soc. Microbiol. Q143 (2006).

  71. Holmes, D. E. et al. Potential for quantifying expression of Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current harvesting-electrodes. Appl. Environ. Microbiol. 71, 6870–6877 (2005).

    Article  CAS  Google Scholar 

  72. Gregory, K. B. & Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943–8947 (2005).

    Article  CAS  Google Scholar 

  73. Gregory, K. B., Bond, D. R. & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596–604 (2004). First description of electrodes serving as a direct electron donor in microbes.

    Article  CAS  Google Scholar 

  74. Finneran, K. T., Housewright, M. R. & Lovley, D. R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4, 510–516 (2002).

    Article  CAS  Google Scholar 

  75. Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).

    Article  CAS  Google Scholar 

  76. Park, I., Kim, D., Choi, Y.-J. & Pak, D. Nitrate reduction using an electrode as direct electron donor in a biofilm reactor. Process Biochem. 40, 3383–3388 (2005).

    Article  CAS  Google Scholar 

  77. Rhoads, A., Beyenal, H. & Lewandowski, Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manangese as a cathodic reactant. Environ. Sci. Technol. 39, 4666–4671 (2005). Demonstrates that microorganisms may be useful in promoting electron transfer at the cathode.

    Article  CAS  Google Scholar 

  78. Lovley, D. R. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Industr. Microbiol. 18, 75–81 (1997).

    Article  CAS  Google Scholar 

  79. Anderson, R. T. & Lovley, D. R. Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial Ecol. 15, 289–350 (1997).

    Article  CAS  Google Scholar 

  80. Anderson, R. T. et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884–5891 (2003).

    Article  CAS  Google Scholar 

  81. Krumholz, L. R. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47, 1262–1263 (1997).

    Article  CAS  Google Scholar 

  82. Sung, Y. et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl. Environ. Microbiol. 69, 2964–2974 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author's research on microbial fuel cells and extracellular electron transfer is supported by the Office of Science (BER), U.S. Department of Energy under the Genomics GTL and ESRP Programs and the Office of Naval Research. Kelly Nevin provided the photographs of the microbial and sediment fuel cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. Lovley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Desulfuromonas acetoxidans

Escherichia coli

Geobacter metallireducens

Geobacter sulfurreducens

Geothrix ferementans

Pseudomonas aeurginosa

Rhodoferax ferrireducens

Shewanella oneidensis

Shewanella putrefaciens

FURTHER INFORMATION

Derek R. Lovley's homepage

Benthic Unattended Generator (BUG) homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4, 497–508 (2006). https://doi.org/10.1038/nrmicro1442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing