Abstract
A Wavelength-Modulated Differential Laser Photothermal Radiometer (WM-DPTR) technique was used for non-invasive blood glucose monitoring in the mid-IR range, where the prominent absorption peak is glucose specific and isolated from other interfering peaks in human blood. The WM-DPTR method consists of the out-of-phase modulated excitation at two discrete wavelengths 9.5 μm and 10.4 μm (near the peak and the baseline of glucose absorption), generated from two quantum cascade lasers (QCL) and the differential emission detection through a thermal-wave upconversion process via a HgCdZnTe (MCZT) detector (2-5 μm). The differential method suppresses the background signal and reduces source-detection interference, thus enhancing glucose detection sensitivity. The results from aqueous glucose phantom (0–440 mg/dl) measurements demonstrate that both amplitude and phase of the WM-DPTR signal can be used for glucose detection. The dynamic range and the sensitivity of the glucose detection are influenced greatly by the laser intensity ratio and modulation frequency. The optimal intensity ratio for high sensitivity is ~1. Other laser intensity ratios increase dynamic range but reduce sensitivity. Sensitivity increases with frequency.