Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Pristine graphene quantum dots for detection of copper ions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To selectively detect Cu2+ ions is very important for controlling daily intake of Cu2+ ions and monitoring numerous biological processes. Fluorescence spectroscopic technique is a useful one for detection of copper ions. Previous methods always involve the use of metal Cd-based quantum dots (QDs), which suffer to the photobleaching and subsequent release of toxic metal ions. Herein, a simple method has been developed to detect Cu2+ ions by using pristine graphene QDs. Graphene QDs are synthesized by chemical oxidation of pitch graphite fibers. Our results indicate the photoluminescence (PL) of as-synthesized graphene QDs could be quenched by a group of metal ions while adding biothiol cysteine can only cause the significant recovery of the PL of graphene QDs quenched by Cu2+ ions. Our approach provides an easy and environmental friendly method for detection of Cu2+ ions and has the potential for future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. R. Kramer: Fluorescent chemosensors for Cu2+ ions: Fast, selective, and highly sensitive. Angew. Chem., Int. Ed. 37, 772 (1998).

    CAS  Google Scholar 

  2. P.G. Georgopoulos, A. Roy, M.J. Yonone-Lioy, R.E. Opiekun, and P.J. Lioy: Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health, B 4, 341 (2001).

    CAS  Google Scholar 

  3. E. Gaggelli, H. Kozlowski, D. Valensin, and G. Valensin: Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995 (2006).

    CAS  Google Scholar 

  4. H.S. Jung, P.S. Kwon, J.W. Lee, J.I. Kim, C.S. Hong, J.W. Kim, S. Yan, J.Y. Lee, J.H. Lee, T. Joo, and J.S. Kim: Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 131, 2008 (2009).

    CAS  Google Scholar 

  5. W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han, and S.M. Nie: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40 (2002).

    CAS  Google Scholar 

  6. L. Basabe-Desmonts, D.N. Reinhoudt, and M. Crego-Calama: Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36, 993 (2007).

    CAS  Google Scholar 

  7. R. Gill, M. Zayats, and I. Willner: Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 47, 7602 (2008).

    CAS  Google Scholar 

  8. R. Freeman and I. Willner: Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 41, 4067 (2012).

    CAS  Google Scholar 

  9. J. Zhang, B. Li, L.M. Zhang, and H. Jiang: An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem. Commun. 48, 4860 (2012).

    CAS  Google Scholar 

  10. H.Y. Xie, H.G. Liang, Z.L. Zhang, Y. Liu, Z.K. He, and D.W. Pang: Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim. Acta, Part A 60, 2527 (2004).

    Google Scholar 

  11. M.T. Fernandez-Arguelles, W.J. Jin, J.M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel: Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal. Chim. Acta 549, 20 (2005).

    Google Scholar 

  12. Y.H. Chan, J.X. Chen, Q.S. Liu, S.E. Wark, D.H. Son, and J.D. Batteas: Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal. Chem. 82, 3671 (2010).

    CAS  Google Scholar 

  13. C.S. Wu, M.K.K. Oo, and X.D. Fan: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4, 5897 (2010).

    CAS  Google Scholar 

  14. G.L. Wang, Y.M. Dong, and Z.J. Li: Metal ion (silver, cadmium and zinc ions) modified CdS quantum dots for ultrasensitive copper ion sensing. Nanotechnology 22, 085503 (2011).

    Google Scholar 

  15. C.X. Guo, J.L. Wang, J. Cheng, and Z.F. Dai: Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition. Biosens. Bioelectron. 36, 69 (2012).

    CAS  Google Scholar 

  16. P. Yang, Y. Zhao, Y. Lu, Q.Z. Xu, X.W. Xu, L. Dong, and S.H. Yu: Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5, 2147 (2011).

    CAS  Google Scholar 

  17. Y.Y. Shen, L.L. Li, Q. Lu, J. Ji, R. Fei, J.R. Zhang, E.S. Abdel-Halim, and J.J. Zhu: Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS–SiO2 quantum dots and their application in the detection of Cu(II). Chem. Commun. 48, 2222 (2012).

    CAS  Google Scholar 

  18. T.W. Sung and Y.L. Lo: Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens. Actuator, B Chem. 165, 119 (2012).

    CAS  Google Scholar 

  19. R. Hardman: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165 (2006).

    Google Scholar 

  20. N. Lewinski, V. Colvin, and R. Drezek: Cytotoxicity of nanoparticles. Small 4, 26 (2008).

    CAS  Google Scholar 

  21. S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, and J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825 (2008).

    CAS  Google Scholar 

  22. P. Reiss, M. Protiere, and L. Li: Core/shell semiconductor nanocrystals. Small 5, 154 (2009).

    CAS  Google Scholar 

  23. C.M. Donega: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512 (2011).

    CAS  Google Scholar 

  24. J.Y. Fan and P.K. Chu: Group IV nanoparticles: Synthesis, properties, and biological applications. Small 6, 2080 (2010).

    CAS  Google Scholar 

  25. S.N. Baker and G.A. Baker: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 6726 (2010).

    CAS  Google Scholar 

  26. S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi, and X.P. Sun: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037 (2012).

    CAS  Google Scholar 

  27. Q. Qu, A. Zhu, X. Shao, G. Shi, and Y. Tian: Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 48, 5473 (2012).

    CAS  Google Scholar 

  28. F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia, and Q. Hao: Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sens. Actuators, B Chem. 190, 516 (2014).

    CAS  Google Scholar 

  29. L. Cao, M.J. Meziani, S. Sahu, and X.P. Sun: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).

    CAS  Google Scholar 

  30. X. Yan, X. Cui, B.S. Li, and L.S. Li: Large solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869 (2010).

    CAS  Google Scholar 

  31. S.J. Zhuo, M.W. Shao, and S.T. Lee: Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 6, 1059 (2012).

    CAS  Google Scholar 

  32. V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, and S. Cand: Luminescent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960 (2011).

    CAS  Google Scholar 

  33. K.J. Williams, C.A. Nelson, X. Yan, L.S. Li, and X.Y. Zhu: Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7, 1388 (2013).

    CAS  Google Scholar 

  34. Y. Li, Y. Zhao, H.H. Cheng, Y. Hu, G.Q. Shi, L.M. Dai, and L.T. Qu: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012).

    CAS  Google Scholar 

  35. L.B. Tang, R.B. Ji, X.K. Cao, J.Y. Lin, H.X. Jiang, X.M. Li, K.S. Teng, C.M. Luk, S.J. Zeng, J.H. Hao, and S.P. Lau: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102 (2012).

    CAS  Google Scholar 

  36. D.Y. Pan, J.C. Zhang, Z. Li, and M.H. Wu: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734 (2010).

    Google Scholar 

  37. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L.H. Ge, L. Song, L.B. Alemany, X.B. Zhan, G.H. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, and P.M. Ajayan: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012).

    CAS  Google Scholar 

  38. R.L. Liu, D.Q. Wu, X.L. Feng, and K. Mullen: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221 (2011).

    CAS  Google Scholar 

  39. J. Lee, K. Kim, W.I. Park, B.H. Kim, J.H. Park. T.H. Kim, S. Bong, C.H. Kim, G. Chae, M. Jun, Y. Hwang, Y.S. Jung, and S. Jeon: Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 12, 6078 (2012).

    CAS  Google Scholar 

  40. Z.T. Luo, Y. Lu, L.A. Somers, and A.T.C. Johnson: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898 (2009).

    CAS  Google Scholar 

  41. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B. A. Harruff, X. Wang, H.F. Wang, P.J.G. Luo, H. Yang, M.E. Kose, B.L. Chen, L.M. Veca, and S.Y. Xie: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 126, 7756 (2006).

    Google Scholar 

  42. S.T. Yang, L. Cao, P.G.J. Luo, F.S. Lu, X. Wang, H.F. Wang, M.J. Meziani, Y.F. Liu, G. Qi, and X.P. Sun: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009).

    CAS  Google Scholar 

  43. H.B. Liu, H.N. Zhu, D.K. Eggers, A.M. Nersissian, K.F. Faull, J.J. Goto, J.Y. Ai, J. Sanders-Loehr, E.B. Gralla, and J.S. Valentine: Copper (2+) binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry 39, 8125 (2000).

    CAS  Google Scholar 

  44. A. Rigo, A. Corazza, M.L. Paolo, M. Rossetto, R. Ugolini, and M. Scarpa: Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 98, 1495 (2004).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the support from the National Science Foundation of China through Grant No. 21201138 and from the Ministry of Science and Technology of China through a 973-program under Grant No. 2012CB619401. We acknowledge TEM support from Electron Microscopy Laboratory of Frontier Institute of Science and Technology at Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Ma.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, W., Zhou, X. et al. Pristine graphene quantum dots for detection of copper ions. Journal of Materials Research 29, 1401–1407 (2014). https://doi.org/10.1557/jmr.2014.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.145