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ABSTRACT 
 
In 3D reconstruction of indoor environments, automated methods offer possibilities for e.g. 
brokering, planning and decoration businesses. The application potential of these automated 
methods is, however, tied to the accuracy of these methods. In this paper, we perform a technical 
case study analysis on a state-of-the-art image-based method. For accuracy, we find that 60-70% 
of points in the reconstructed 3D point cloud are within 5 cm error range. Image-based 3D 
reconstruction thus offers potential for those various indoor-related applications that are 
satisfied with this level of accuracy. We also discuss other factors affecting to the applicability 
and robustness of this method. 
 
 
1.  INTRODUCTION 
 
Automated 3D reconstruction of built environment is bound to open a wide playfield for 
professional (e.g. Building Information Management, BIM) and consumer applications, and is 
therefore under intense research (Bosse et al., 2012; Flint et al., 2010; Furukawa et al., 2009b; 
Georgantas et al., 2012; Khoshelham and Elberink, 2012; Liu et al., 2010). Automation is called 
for to eliminate manual work phases, as most models of today can only be manually derived – 
either from the hand crafted 3D designs or by post-processing laser scanning data. However, 
automated methods are not best suited for all tasks, especially if the aim is a professional level of 
detail. In contrast, they complement the professional tools with fast, rough, and easy-to-use ways 
to deliver value ideal for applications such as real-estate brokering and decoration planning.  
 
Considering application scalability and the fact that consumer cameras are already very common, 
automated techniques founding on image sequence analysis are especially important. Also, 
photogrammetric techniques have long been used to assist in realizing computer-aided design 
(CAD) and virtual models, so their professional value is readily acknowledged. In addition, the 
image sequence based (ISB) reconstruction scheme does not suffer from the indoor localization 
problem that has to be tackled with, when automated reconstruction is attempted with mobile 
laser scanners.  
 
Applications founding on image sequences taken by consumers require that the automatic 
reconstruction is done from an unordered and uncalibrated set of images in a robust way. The 
robustness is especially important, if no strong a-priori knowledge is available about the cameras. 
As noted by Furukawa et al. (2009a), the reconstruction is challenging in two ways. First, indoor 
scenes are full of textureless walls and optical surfaces (e.g. windows). Second, indoor spaces 
contain narrow doorways, which require complicated visibility analysis. To this background, it is 
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important to understand how accurate and widely applicable the automated ISB reconstruction 
really is.  
 
The ISB method itself is divided into six steps. First, scale invariant features are extracted from 
each image using SIFT (Lowe, 2004). Second, structure from motion (SfM) is gained through 
incremental bundle adjustment optimizations (Snavely et al., 2006). Third, the scene is clustered 
with CMVS (Furukawa et al., 2010). Fourth, patch-based multi-view stereo (PMVS2) creates a 
denser point cloud (Furukawa and Ponce, 2010). Fifth, depth maps are calculated using 
Manhattan-world assumption (Furukawa et al., 2009a). Sixth, volumetric optimization is 
performed on the whole scene (Furukawa et al., 2009b). This paper focuses on the first four steps, 
as the reconstructed ISB model can only be as accurate as the SfM/PMVS point cloud is. 
 
In this paper, we set out to measure the level of accuracy of the ISB method, in order to 
determine its potential for applications. As our main result, we evaluate the ISB point cloud 
accuracy using a ground truth obtained with a tripod-mounted FARO Focus 3D laser scanner. 
The accuracy of the scanner is about ±2 mm (Chow et al., 2012), which suits the purpose of 
evaluating this method with respect to BIM-related and consumer applications. We compare the 
ISB method accuracy with an indoor study using APERO software (Georgantas et al., 2012) that 
employs rigorous photogrammetric procedures at the cost of automation e.g. preventing the use 
of unordered sets of images on which we concentrate.  
 
1.1 Related work 
 
The automated modeling of indoor environments has been attempted in roughly three ways. First, 
from an image sequence that is taken with one or several cameras as explained previously. 
Second, from depth maps that are produced with flash LIDAR or depth cameras (RGB-D) and 
their late consumer versions, see e.g. (Khoshelham and Elberink, 2012). And third, laser scanners 
have been mounted on wheels (Xiao and Furukawa, 2012), on a spring (Bosse et al., 2012) and 
on a backpack (Liu et al., 2010). 
 
Mobile laser scanners (MLS) are widely used outdoors, see e.g. (Kaartinen et al., 2012; Kukko et 
al., 2012) and references there-in, but inside they face the so-called localization problem when 
GPS satellite signal is not available to localize the range data. This reduces MLS’s greatest 
strength – the measurement accuracy. The state-of-the-art has coped with the reduction with 
assumptions about the environment. For example, the pushcart approach presented by (Xiao and 
Furukawa, 2012) produces only rectangular rooms. The backpack (Liu et al., 2010) is limited to 
modeling hallways only. The spring-mounted scanner, Zebedee, is used assuming that the laser 
beams do not penetrate, which mostly is true in built environment; however, this and employing 
the reconstructed model for localization leads into limitations with respect to some (pathological) 
environments (Bosse et al., 2012). Considering application scalability that these methods offer, 
the special equipment is expensive, scarce, and requires special training compared to consumer 
level cameras. Due to this fact, there is room for ISB methods that are both automated and robust. 
 
Consumer-level depth cameras, Kinect for example, offer the benefit of performing real-time 
reconstruction while avoiding the problem of textureless walls. However, as these devices are not 
designed for the reconstruction of the built environment, they have limitations in range, 
resolution, and optical design (Khoshelham and Elberink, 2012). It is also an open question, how 
common will these depth cameras be in the future. Flash LIDARs, which basically act as high 
accuracy depth cameras, are an emerging technology and may offer potential for indoor 3D 
reconstruction in the future. 
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The state-of-the-art in image sequence-based (ISB) modeling is arguably still the Manhattan-
world stereo by Furukawa et al. (2009b), which we will examine in the following section. 
However, other potential approaches exist. Flint et al. (2010) have presented an elegant dynamic 
programming approach, which is deterministic and can be employed on single images. However, 
they use assumptions that each photo contains a flat floor and/or roof, henceforth effectively 
invalidating the reconstruction of spaces with stairs or other non-basic structure. Their approach 
fails with images that contain texture lines originated from furniture (e.g. paintings or signs), 
which heavily impacts on algorithm robustness as the algorithm itself has no knowledge of these 
failures. A probabilistic 3D segmentation approach by Hernandez et al. (2007) may also prove to 
be a worthwhile method in indoor reconstruction later on, if pose errors can be reduced as noted 
by Xiao and Furukawa (2012).  
 
 
2.  EQUIPMENT AND CAPTURED DATA 
 
For this paper, two scenes were captured with image set data using uncalibrated cameras. First, an 
unordered set of 502 images from a small town in Italy was taken in May 2012 using Canon EOS 
60D with 17 mm objective. The set is from a narrow street, resembling indoor conditions except 
without a roof but with a lot of texture. It is used to test the self-consistency of the point cloud 
over a distance of 200 meters. It is also used for the initial benchmarking of the ISB method. 
Second, unordered indoor sets of 390 images, and 417 images were taken in May 2013 with 
Canon EOS 60D with 17 mm objective and Nikon D800E with 24mm objective, respectively. 
The latter set was then extended with 99 images totaling up to 516 images to achieve a more 
complete reconstruction. All images were shot with free hands to simulate non-laboratory 
circumstances. The lowest JPG resolution was chosen from both cameras to achieve good signal 
to noise ratio, 2592x1728 pixels from Canon, and 3680x2456 from Nikon. We prefer to use the 
images as they come from the camera, as additional resizing algorithms would add their own 
fingerprint to the pipeline. Our Canon represents a consumer-level system camera of below 1500 
€, whereas the Nikon is a professional tool costing over 5000 €. Photos were also taken using 
Nikon D200 with 20mm objective, but the opening angle occurred to be too narrow for the 
tightest spots in the office. 
 
In order to obtain the reference data, we employed FARO Focus 3D S 120 laser scanner (for 
details, see http://www.faro.com/site/resources/share/944 ) with scan targets. Scans were 
conducted from 11 different spots. The scanner’s about 0.8 mm accuracy towards a scan target 
(Chow et al., 2012) was compensated by using from 5 to 11 scan targets to align adjacent scans. 
A total of 24 scan targets were in use. The estimated point cloud geometric accuracy after 
registration was 2.2 mm. When taking the ±2 mm (scan point) accuracy into account, the total 
cumulative scan error is estimated to reside below 1 cm. 
 
 
3.  AUTOMATED ISB RECONSTRUCTION 
 
The foundation of the ISB method robustness is the quality of the unordered image set. Since ISB 
method uses jpeg-compressed images as input, possible robustness factors include not only 
physical properties of e.g. the objective and the CMOS chip, but also the properties of the 
camera’s jpeg converter, and the employed color and shader scales. Some of these factors have 
been studied, see e.g. (Aguilar et al., 1996; Harms et al., 2014) and references therein. In order to 
verify if photogrammetric and other camera properties affect the robustness, we employ image 
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sets taken with different cameras. Finally, since the image set quality is also greatly affected by 
the lighting of the scene, we perform benchmarking both outdoors and indoors. 
 
Ideally, automated image sequence-based reconstruction would not require any other information 
than what is in the unordered photoset. In practice, camera information is transferred using the 
image EXIF tags, and CMOS chip (physical) widths are fed to the algorithm as extra information. 
Since the information in EXIF tags only gives an estimate for the focal length f and lacks 
distortion correction terms, e.g. radial distortion coefficients k1 and k2 (Fryer and Brown, 1986; 
Hartley and Zisserman, 2004), for the camera lens, these constants have to be put inside the 
bundle adjustment problem as “fitting parameters”. This is bound to cause problems in the bundle 
adjustment outcome. Also, even if automated, the ISB method is a post-processing method, 
meaning that if the chosen scene is not fully reconstructed from the available set of images, the 
user is required to go back and take more images. 
 
In processing the images for reconstruction, we first employ the latest freely available open 
source structure from motion (SfM) software, called bundler (Snavely et al., 2010; Snavely et al., 
2006). The SfM output is then improved with CMVS and PMVS software (Furukawa and Ponce, 
2010), which are also freely available. All reconstructions are done on Intel 8-core 3.3 GHz Xeon 
machine with 16 GB RAM and 64-bit Fedora 18 Linux. 
 
 
4.  RESULTS 
 
4.1 Initial Benchmarking 
 
The ISB algorithm’s performance was tested with a set of 502 images from a narrow street, 
resembling indoor conditions except without a roof, but with a lot more texture. Images were 
taken with Canon EOS 60D from a small town in Italy. As the studies with tourist photos, e.g. 
Snavely et al. (Snavely et al., 2006), we also receive a nice 3D point cloud reconstruction using 
the fitting scheme for camera parameters, see Fig. 1. In contrast to challenges faced indoors, the 
circumstances for taking the outdoor photos were excellent: diffuse sunlight, non-reflecting 
surfaces, abundance of buildings, and few dynamic elements. This was also the motivation for 
this benchmarking. The obtained point cloud is quite dense, containing of 6.3 million points.  
 

 
 
Figure 1. Close view on PMVS reconstructed point cloud (left). Unlike indoors, images contain a 

lot of texture. Overview of the whole point cloud extracted from 502 images taken on a narrow 
street in Italy (center). Visual fit of the point cloud to Google maps aerial image (right). The red 

dot indicates the location of the house shown in the leftmost image. 
 
Here already, the use of CMVS clustering is a necessity to restrict the PMVS’s otherwise 
exhaustive use of memory. With 8GB of memory, the maximum cluster size should be set 
somewhere between 100 and 150 images. Here, the image size is about 4.5 megapixels. PMVS 
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reconstruction level is set to one, meaning that the image is processed with half width and half 
height (~1.1 megapixels). 
 
With the default PMVS settings, outliers are quite abundant in Fig 1. To ensure the robustness of 
following reconstruction phases, a more conservative approach is required. There are at least two 
measures that can be taken to decrease the outlier abundance. First is to input more a-priori 
information to the pipeline by manually fixing the camera intrinsics. Second is to require a better 
photometric consistency in the reconstructed point cloud by reducing the amount of output 
information from the unreliable end.  
 
In order to study the impact of fixed versus “fitted” camera intrinsics, the precision of the bundler 
estimated focal length is evaluated. This should enlighten us on how much error can be averted if 
the camera parameters are kept fixed. We take a set of images in a controlled environment with 
physically fixed camera parameters, and let bundler run bundle adjustment as if the camera 
parameters would be previously unknown (though EXIF tag information is still available). The 
distribution of bundler estimated focal lengths is plotted in Fig 2. The Gaussian-like distribution 
has long tails, implying that focal length estimates risk to fail in images where only few features 
are detected and especially in those images where most of these few features are clustered close 
to each other, see Fig 2. Intuitively, the Levenberg-Marquardt optimization algorithm finds these 
false values for f from local minima of the fitting scheme. Here, the bundler default weight 10-4 is 
used to constrain the focal length estimate close to its initial value from EXIF tag.  
  

 
 

Figure 2. Left: Distribution of bundler estimated focal lengths in pixels when the physical focal 
length is kept fixed. Distribution is Gaussian-like, with a mean close to the physical focal length 

marked with a vertical red line. Farthest outliers down to 600 and up to 2*105 pixels are not 
shown. Right: Sample image of where focal length estimate fails (f=992). Feature points are 
marked with red squares. Multiple points are clustered close to air conditioner, circled with 

green. 

Now, if each single parameter has a Gaussian error behavior, it becomes important to test the 
overall self-consistency of the fitting scheme. For this purpose, we visually fit the point cloud to 
an aerial image, provided by online Google maps, see Fig 1. After choosing an appropriate scale 
and rotation, the fit is adequate. The point cloud appears to be self-consistently aligned around 
corners even at distances over 200 metres. This implies that the amount of information in feature 
points exceeds the inherent uncertainty caused by the fitting errors. Hence, manual camera 
calibration is not required, if the overall consistency of the point cloud is maintained. 
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To increase robustness in the point cloud obtained from PMVS output, we set the initial 
photometric consistency threshold from the default value of 0.7 to 0.95, as in (Furukawa et al., 
2009a). PMVS relaxes the value to 0.65, when we increase the amount of patch extension 
iterations from the default three to seven. This effectively removes the outliers, but also reduces 
the point cloud density from 6.3 million to 4.3 million points and therefore results in a visually 
less satisfactory outcome (not shown). 
 

 
 

Figure 3. Laser scanned point cloud from top with the building blueprints. Red points cover the 
area we intended to scan. Green points are by-products that were obtained through glass. See 

text for map point labels A-E. 
 
4.2 Comparison with laser scanning 
 
In order to critically evaluate the ISB method accuracy, an office containing different kind of 
indoor spaces is chosen as a test site: hallways (A), a staircase (B), a coffee room (C), a separated 
corner with sofas (D), and a small meeting room (E), see Fig 3. The hallways and the staircase 
are narrow spaces having an abundance of glass surfaces and textureless walls, respectively. In 
other words, they provide extremely hard examples to model with the ISB method. The rooms, on 
the other hand, have textures but pose a different challenge due clutter (e.g. tables and chairs). A 
sample image from the office hallway with a spherical scan target is shown in Fig. 4, along with a 
snapshot from the ISB reconstructed point cloud. 
 
The SIFT algorithm has problems in detecting all essential features in the sample image in Fig. 4. 
For example, white wall corners are not captured due to low contrast, which obviously reflects on 
the point cloud quality (not shown). In contrast, rather good reconstructions are made in places 
containing more contrast variation and texture, such as the coffee room, see in Fig. 4. The above 
mentioned problem in low-contrast feature detection sets a call for improved methodology, which 
is beyond the scope of this paper. 
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Figure 4. Left: a sample image from the office hallway. Glass walls are abundant. Sunlight from 

windows alters textures. A spherical scan target is circled with green. Red squares represent 
features remaining after bundle adjustment. The image is taken from between spots (A) and (B) 

shown in Fig. 3. Right: a snapshot from the PMVS reconstructed point cloud depicting the coffee 
room, labeled (C) in Fig. 3. 

 
The laser scanned point cloud was coarse-grained from 115 million points to 15 million points to 
obtain tractability for manual processing. This reference point cloud is shown in Fig. 3. The loss 
in point cloud density was alleviated by weighing corners (i.e. curvature) over flat surfaces in 
coarse-graining. This was a natural choice because the ISB point cloud is more likely to contain 
points in corners than on plain surfaces. 
 
An unordered set of 516 images and 390 images were taken with Nikon D800E with 24mm 
objective and Canon EOS 60D with 17 mm objective, respectively. Point clouds of 3.4 million 
and 1.5 million points obtained from these through ISB reconstruction are shown in color in Fig. 
5. Capturing the images took us less than 15 minutes per set, in contrast to the laser scanning that 
took 1h and 30mins. 
 

 
 

Figure 5. ISB point cloud in colors on top of the laser scanned reference point cloud in grey, for 
Nikon D800E (left) and Canon EOS 60D (right). See text for details. 
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The reference point cloud, shown in grey in Fig. 5, is kept as quantitative ground truth to evaluate 
ISB point cloud accuracies. In particular, the 3D distance d from an ISB point to the nearest 
reference point is measured; Octree partitioning and Chamfer distances were used for fast 
processing. The distribution of these point-to-point distances are shown in Fig. 6. Distances 
binned in Fig. 6 are matched with same colors in Fig. 5: blue points are accurate, while points 
with other colors are far from the ground truth. The bin width is 1 cm, below which resides the 
total laser scan error estimated in Section 2. From Fig. 6, 44% (27%) of ISB points reside within 
2 cm error limits, and 69% (57%) of points reside within 5 cm error limits for Nikon (Canon). 
 

 
 

Figure 6. Distribution of the distance d from an ISB point to the nearest reference point for Nikon 
D800E (left) and Canon EOS 60D (right). The bin width is 1cm. For visualization purposes, the 
rightmost bin contains all the probability mass from the distribution tail going over 16 cm. Note 

the different percentage scales. 

Our choice to use the point-to-point measure is based on conveniency: it offers a suitable way to 
evaluate the accuracy of ISB method that aims for BIM and consumer applications. As a 
consequence, our procedure results in a systematic error due to fact that the reference point cloud 
is not infinitely dense. On average, the nearest reference point is a distance ΔL away even if an 
ISB point is absolutely correct and resides on the surface. From a large sample, we estimate that 
the average density of reference points on a surface is around 20 000 points per m2. This means 
ΔL = 0.4 cm, approximately. In order to correct the distributions of d in Fig. 6 with respect to this 
error, we can roughly interpret that they should be shifted leftwards by ΔL. Taking this correction 
into account, 49% (31%) of ISB points reside within 2cm error limits, and 70% (60%) of points 
reside within 5cm error limits for Nikon (Canon). Our results compare well with a study where a 
single staircase was captured using a tripod-mounted fish-eye camera and reconstructed with 
APERO software resulting in a mean accuracy of 6cm with a sigma of 6cm (Georgantas et al., 
2012), and especially so since the reconstruction with APERO involved manual steps with pre-
calibration and image pair choosing, which typically yields more accurate results than using an 
uncalibrated and unordered set of images on which we concentrate. 
 
For qualitative examination of Fig. 5, we refer to the alphabetical markings shown in Fig. 3. For 
the Canon photo set, the sofa corner (D) completely fails to reconstruct. The Nikon set was 
extended with 99 extra images to provide extra coverage for these kind of places that the 
photographer initially captured but that the ISB method failed to reconstruct. Regardless of this 
extra coverage, the maintenance staircase (B) is still not well reconstructed for neither photo set 
due to extreme texturelessness; in contrast to the results in (Georgantas et al., 2012) where non-
automatic calibration and a tripod is used. For Nikon, the end of bottom right hallway (A) is 
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reconstructed, but shown in red since the area was not laser scanned. The large cluster of red 
points seen below the coffee room (C) is due to a glass wall (see Fig. 3 for laser points that went 
through glass). Some red points, especially those in the middle of the coffee room (C), are a result 
from moving furniture (e.g. cups, chairs) as we were unable to conduct the measurements at the 
precisely same time. 
 
The meeting room’s (E) top and right walls are distorted in both ISB point clouds shown in Fig. 
5. In order to limit the possible sources for this cause, we limit the set of images to contain only 
images taken from inside the meeting room (E). Reconstruction obtained from this limited set of 
images is shown in Fig 7. Remarkably, the distortion vanishes. With closer inspection, the 
distortion in the original set is caused by incredibly false values for the focal length f and for the 
correction terms k1 and k2 of some images. The bundle adjustment finds these values from a local 
minimum as discussed in Section 4.1. In an image shot from outside the room, if the opening into 
the room looks narrow but still reveals a dense cloud of features while the rest of the image 
contains only a few features, the fitting scheme weighs the dense cloud above all. Intuitively then, 
because of the small diameter of the cloud, the fit can produce a wide range of values for f, k1, 
and k2. These distortions in bundle adjustment may be reduced e.g. by heavily weighing initial 
focal length value, but this risks to eliminate the method’s primary characteristics – its automated 
capabilities. Cropping the meeting room from the ISB point cloud in Fig. 5 results in 54% (34%) 
of ISB points residing within 2cm error limits, and 75% (66%) of them residing within 5 cm error 
limits for Nikon (Canon) with the ΔL correction. 
 

 
 

Figure 7. Close up on meeting room (E). Original point cloud from Fig. 5 for Nikon D800E is 
shown on magenta. Top and right side walls are distorted. Point cloud assembled from a reduced 

image set containing only images taken within the meeting room is shown on green. Black dots 
represent overlap between the two point clouds. 

 
4.3 Robustness for further processing 
 
The robustness of the previous step is typically vital to the success of the next step in automated 
reconstruction. Above, we have studied how accurate and robust the ISB point cloud is. If it is 
processed further, for example by computing depth maps with cubic grid Manhattan-world 
assumption (Furukawa et al., 2009a) or tetrahedral based discretization (Jancosek and Pajdla, 
2011), the post-processing method has to maintain the accuracy of the core model while coping 
with outliers. 
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Maintaining accuracy poses a problem for very large scenes, where the ISB point cloud becomes 
untractable by its mere size. Now, clustering the scene is a convenient way to overcome this 
problem, and one known memory bottleneck set by PMVS is already circumvented by CMVS 
clustering. However, CMVS clustering does not always produce intuitive blocks, as points from 
separate sides of the scene are joined together, see Fig 8. This means that these clusters cannot be 
straightforwardly used for further processing, as they lack sufficient mutual overlap leading into 
loss of information if depth maps are created separately for each cluster. Therefore, any depth 
map reconstruction basically requires loading all MVS points and image projection matrices into 
memory, which becomes the problem. We implemented a method similar to (Furukawa et al., 
2009a) to roughly test this for Manhattan world depth maps. The image textures, on the other 
hand, can be loaded one at a time to conserve memory and preserve computational efficiency, so 
the amount of scene images itself does not pose a problem. 
 
In some circumstances when the scene contains repetitive geometry, bundler fails by locating two 
different “blocks” on top of each other, see Fig 9. In other words, separate SIFT feature patterns 
become so similar that they are matched as if they were the same pattern. This result was 
obtained with Nikon D200 with 20mm objective. We estimate from praxis that the probability of 
this pattern mixing is increased if the objective offers a narrow field of vision and if the 
photographer is not following three rules of thumb listed below.  
 

 
 

Figure 8. Top view of the point cloud obtained with ISB method (points after PMVS 
reconstruction). Red and blue colors indicate the two clusters in which CMVS split the scene. 

Blue areas top and below are not connected in any way, but still reside in the same cluster. Shots 
were taken with Canon EOS 60D with 17 mm objective. 
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4.4 Robustness with respect to photo-shooting 
 
One vital factor affecting the quality of the image set is photo-shooting. The photographer can 
optimize the indoor environment by e.g. closing curtains to remove sunlight reflections and to 
reduce the amount of optical surfaces. In addition, three simple photo-taking rules certify that the 
photo album is not taken for humans but for a computer to look on: 

• Indoor spaces are always tight. Keeping your back close to a wall maximizes the camera’s 
field of vision. 

• PMVS by default discards images that have an angle difference less than 10 degrees with 
an already accepted photo, so constant tilting and moving the camera is mandatory 

• Each feature must be in at least 3 images, so after capturing a feature it still needs to be 
shot again and again.  

These rules sound simple, but are challenging in practice. In order to capture a wanted indoor 
scene shown in Section 4, we had to go back to take more photos until the image set (for Nikon 
D800E) was complete. It would seem that the biggest risk of the method toward its robustness is 
the photographer. 

 

 
 

Figure 9. Left: snapshot of an ISB point cloud reconstructed from images taken only from coffee 
room (E). Right: same snapshot from the original reconstruction. Sofa corner (D) is wrongly 

reconstructed on top of the coffee room (E) due to SIFT similarities in the windows and the roof. 
Letters (E and D) are visible in and refer to Figure 3. The image set was taken with a Nikon 

D200. 

 
5.  CONCLUSIONS 
 
In this paper, we have studied perhaps the most potent state-of-the-art method for image 
sequence-based (ISB) automated reconstruction of building interiors. As our main result, we 
quantitatively measured the ISB point cloud accuracy using a reference point cloud obtained with 
a tripod-mounted FARO Focus 3D laser scanner. The accuracy of our scanner is about ±2 mm 
(Chow et al., 2012), with the total cumulative error residing below 1 cm. We concentrated on 
point cloud comparison, as the reconstructed ISB model can only be as accurate as its 
SfM/PMVS point cloud is, and since both the laser scanning results and the ISB method attempt 
to represent the environment as it is at the time of measurement. From our data, the automated 
ISB method is able to reconstruct a 3D point cloud with 49% (31%) of points residing within 2 
cm error limits, and 70% (60%) of points residing within 5 cm error limits for Nikon D800E and 
Canon EOS 60D, respectively. The ISB point cloud quality suffered from poor SIFT performance 
on low-contrast images that left important features unrecovered. We used unordered image sets 
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taken without prior camera calibration for the purpose of maintaining wide applicability for our 
results.  
 
In conclusion, image-based 3D reconstruction offers potential for those various consumer and 
BIM-related applications that are satisfied with the level of accuracy of 5 cm.  
 
Future work will concentrate on improving feature detection from low-contrast images, and 
evaluating the applicability of post-point-cloud-reconstruction methods by studying whether they 
maintain the model accuracy.  
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