Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer
Abstract
:1. Introduction
2. Partial Discharge Measurement Setup
3. Denoise Processing of PD Signal
3.1. Process of Empirical Mode Decomposition
3.2. Analysis of Noise Reduction on PD Signal
4. Results and Discussion
4.1. Partial Discharge Inception Voltage at Different Frequencies
4.2. Results of PD Spectrum at Different Frequencies
4.2.1. PD Q-Ф Scatter Plot at Different Frequencies
4.2.2. PD N-Ф Spectrogram at Different Frequencies
- Initial PD discharge phase in the positive semi-period gradually shifted to the right, the end PD phase fluctuated at 150°, and the PD phase region decreased;
- Initial PD phase in the negative semi-period fluctuated at 200° and the end PD phase gradually shifted to the left, giving rise to the decreasing PD phase region;
- Positive discharge center phase shifted to the right with increasing frequency; the negative discharge center phase was maintained around 230°.
4.2.3. PD Statistical Data at Different Frequencies
4.3. Frequency-Dependant PD Number and Magnitude
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammarström, T.J.Å. Partial discharge characteristics within motor insulatioi exposed to multi-level PWM waveforms. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 559–567. [Google Scholar] [CrossRef]
- Contreras, J.P.; Ramirez, J.M. Multi-Fed Power Electronic Transformer for Use in Modern Distribution Systems. IEEE Trans. Smart Grid 2014, 5, 532–1541. [Google Scholar] [CrossRef]
- Briz, F.; Lopez, M.; Rodriguez, A.; Arias, M. Modular power electronic transformers: Modular multilevel converter versus cascaded H-bridge solutions. IEEE Ind. Electr. Mag. 2016, 10, 6–19. [Google Scholar] [CrossRef]
- Feng, J.; Chu, W.Q.; Zhang, Z.; Zhu, Z.Q. Power Electronic Transformer-Based Railway Traction Systems: Challenges and Opportunities. IEEE J. Emerg. Sel. Top. Power Electr. 2017, 5, 1237–1253. [Google Scholar] [CrossRef]
- Kenzelmann, S.; Rufer, A.; Dujic, D.; Canales, F.; Novaes, Y.R.D. Isolated DC/DC Structure Based on Modular Multilevel Converter. IEEE Trans. Power Electr. 2014, 30, 89–98. [Google Scholar] [CrossRef]
- Jalbrzykowski, S.; Citko, T. Current-Fed Resonant Full-Bridge Boost DC/AC/DC Converter. IEEE Trans. Industr. Electr. 2008, 55, 1198–1205. [Google Scholar] [CrossRef]
- Deng, L. Modeling and Analysis of Parasitic Capacitance of Secondary Winding in High-Frequency High-Voltage Transformer Using Finite-Element Method. IEEE Trans. Appl. Supercond. 2018, 28. [Google Scholar] [CrossRef]
- Liu, C.; Qi, L.; Cui, X.; Shen, Z.; Wei, X. Wideband Mechanism Model and Parameter Extracting for High-Power High-Voltage High-Frequency Transformers. IEEE Trans. Power Electr. 2015, 31, 3444–3455. [Google Scholar] [CrossRef]
- Lüth, T.; Merlin, M.M.C.; Green, T.C.; Hassan, F.; Barker, C.D. High-Frequency Operation of a DC/AC/DC System for HVDC Applications. IEEE Trans. Power Electr. 2014, 29, 4107–4115. [Google Scholar] [CrossRef] [Green Version]
- Negm, T.S.; Refaey, M.; Hossam-Eldin, A.A. Modeling and simulation of internal Partial Discharges in solid dielectrics under variable applied frequencies. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 639–644. [Google Scholar]
- Montanari, G.C.; Seri, P. The effect of inverter characteristics on partial discharge and life behavior of wire insulation. IEEE Electr. Insul. Mag. 2018, 34, 32–39. [Google Scholar] [CrossRef]
- Jiang, J.; Luo, D.; Yu, M.; Ma, G.; Li, C. Optical fiber-triggered solid-state switch applied in power cables damped AC voltages test system. IEEJ Trans. Electr. Electr. Eng. 2018, 13, 580–586. [Google Scholar] [CrossRef]
- Su, C.Q.; Li, C.R. Using very-low-frequency and oscillating-wave tests to improve the reliability of distribution cables. IEEE Electr. Insul. Mag. 2013, 29, 38–45. [Google Scholar] [CrossRef]
- Houtepen, R.; Chmura, L.; Smit, J.J.; Quak, B.; Seitz, P.P.; Gulski, E. Estimation of dielectric loss using damped AC voltages. IEEE Electr. Insul. Mag. 2011, 27, 20–25. [Google Scholar] [CrossRef]
- Florkowska, B.; Roehrich, J.; Zydroi, P.; Florkowski, M. Measurement and analysis of surface partial discharges at semi-square voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 990–996. [Google Scholar] [CrossRef]
- Ye, H.F.; Qian, Y.; Dong, Y.; Sheng, G.H.; Jiang, X.C. Development of multi-band ultra-high-frequency sensor for partial discharge monitoring based on the meandering technique. IET Sci. Measurement Technol. 2014, 8, 327–335. [Google Scholar]
- Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors 2015, 15, 7360–7387. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Cao, H.; Cao, J.; Nguyen, H.-L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35. [Google Scholar] [CrossRef]
- Upton, D. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment. Radio Sci. 2018, 53, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors. Sensors 2018, 18, 551. [Google Scholar] [CrossRef] [PubMed]
- International Standard IEC 60270. High Voltage Test Techniques—Partial Discharge Measurements, 3rd ed.; International Electrotechnical Commission: Geneva, Switzerland, 2000. [Google Scholar]
- Zhang, X.; Zhang, G.; Li, Y. On the Feasibility of Gap Detection of Power Transformer Partial Discharge UHF Signals: Gap Propagation Characteristics of Electromagnetic Waves. Energies 2017, 10, 1531. [Google Scholar] [CrossRef]
- Álvarez Gómez, F.; Albarracín-Sánchez, R.; Garnacho Vecino, F.; Granizo Arrabé, R. Diagnosis of Insulation Condition of MV Switchgears by Application of Different Partial Discharge Measuring Methods and Sensors. Sensors 2018, 18, 720. [Google Scholar]
- Hu, X.; Siew, W.H.; Judd, M.D.; Peng, X. Transfer function characterization for HFCTs used in partial discharge detection. IEEE Trans. Dielec. Electr. Insul. 2017, 24, 1088–1096. [Google Scholar] [CrossRef]
- Li, S.; Gao, G.; Hu, G. Influences of Traction Load Shock on Artificial Partial Discharge Faults within Traction Transformer—Experimental Test for Pattern Recognition. Energies 2017, 10, 1556. [Google Scholar]
- Bahmani, M.; Vechalapu, A.; Mobarrez, K.M. Flexible HF distribution transformers for inter-connection between MVAC and LVDC connected to DC microgrids: Main challenges. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 53–60. [Google Scholar]
- Albarracín, R.; Robles, G.; Ardila-Rey, J.A.; Cavallini, A.; Passaglia, R. Partial discharges: Keys for condition monitoring and diagnosis of power transformers. Power Transformer Condition Monitoring and Diagnosis. Inst. Eng. Tech. 2018, 2, 39–85. [Google Scholar]
- Godina, R.; Rodrigues, E.; Matias, J. Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges. Energies 2015, 8, 12147–12188. [Google Scholar] [CrossRef]
- Yang, Q.; Su, P.; Chen, Y. Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults. Energies 2017, 10, 431. [Google Scholar] [CrossRef]
Frequency | Positive | Negative | ||
---|---|---|---|---|
Phase Region (°) | Phase Center (°) | Phase Region (°) | Phase Center (°) | |
4 kHz | (30, 150) | 60 | (200, 340) | 230 |
6 kHz | (30, 150) | 55 | (200, 330) | 220 |
8 kHz | (50, 150) | 75 | (200, 340) | 250 |
10 kHz | (50, 150) | 80 | (200, 300) | 230 |
12 kHz | (60, 150) | 110 | (200, 280) | 230 |
Polarity | Frequency | 4 kHz | 6 kHz | 8 kHz | 10 kHz | 12 kHz |
---|---|---|---|---|---|---|
Positive | N | 2042 | 1924 | 3703 | 2839 | 1717 |
Qave (pC) | 1235 | 1019 | 1216 | 914 | 867 | |
Negative | N | 2261 | 2634 | 3450 | 2262 | 1241 |
Qave (pC) | 1235 | 1006 | 1241 | 917 | 886 | |
Positive and Negative | N | 4303 | 4559 | 6523 | 5101 | 2958 |
Qall (μC) | 5.3 | 4.6 | 8.0 | 4.7 | 2.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Zhao, M.; Zhang, C.; Chen, M.; Liu, H.; Albarracín, R. Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer. Energies 2018, 11, 1997. https://doi.org/10.3390/en11081997
Jiang J, Zhao M, Zhang C, Chen M, Liu H, Albarracín R. Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer. Energies. 2018; 11(8):1997. https://doi.org/10.3390/en11081997
Chicago/Turabian StyleJiang, Jun, Mingxin Zhao, Chaohai Zhang, Min Chen, Haojun Liu, and Ricardo Albarracín. 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer" Energies 11, no. 8: 1997. https://doi.org/10.3390/en11081997