Oxidative Stress in Aging-Matters of the Heart and Mind
Abstract
:1. Introduction
2. Oxidative Stress
2.1. Sources of Oxidative Stress
2.2. Oxidative Damage
2.3. Cellular Protection from Oxidative Damage
3. The Aging Cardiovascular System
3.1. Age-Related Oxidative Damage in the Cardiovascular System—Structural and Functional Changes
3.2. Age-Related Oxidative Damage in the Cardiovascular System—Molecular Mechanisms
3.2.1. Endothelial Damage, Alterations in Vessel Wall and Atherosclerosis
3.2.2. Cardiac Adaptation and Molecular Basis for Malfunctioning of the Heart
3.2.3. The Renin Angiotensin System and the Effects on an Aging Cardiovascular System
3.2.4. Beta-Adrenergic Responses and Effects on the Aging Cardiovascular System
4. Oxidative Damage in the Nervous System
4.1. Changes in Architecture of the Brain and CNS—The Aging Brain
4.2. Gene Regulation
4.3. Oxidative Stress and Damage in the Brain
4.4. Molecular Markers of Neuronal Oxidative Damage
4.5. Alzheimer’s Disease
4.6. Ischemic Stroke
4.7. Parkinson’s Disease
4.8. Mild Cognitive Impairment
4.9. Huntington’s Disease
5. Caloric Restriction and Damage Mitigation
6. Summary Remarks
Conflicts of Interest
References
- Yu, B.P.; Yang, R. Critical evaluation of the free radical theory of aging a proposal for the oxidative stress hypothesis. Ann. N. Y. Acad. Sci 1996, 785, 1–11. [Google Scholar]
- Schoneich, C. Reactive oxygen species and biological aging: A mechanistic approach. Exp. Gerontol 1999, 34, 19–34. [Google Scholar]
- Jacob, K.D.; Noren Hooten, N.; Trzeciak, A.R.; Evans, M.K. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech. Ageing Dev 2013, 134, 139–157. [Google Scholar]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar]
- Sahin, E.; Depinho, R.A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010, 464, 520–528. [Google Scholar]
- Moller, P.; Lohr, M.; Folkmann, J.K.; Mikkelsen, L.; Loft, S. Aging and oxidatively damaged nuclear DNA in animal organs. Free Radic. Biol. Med 2010, 48, 1275–1285. [Google Scholar]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol 1956, 11, 298–300. [Google Scholar]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Cri. Rev. Clin. Lab. Sci 2009, 46, 241–281. [Google Scholar]
- Rosenfeldt, F.; Wilson, M.; Lee, G.; Kure, C.; Ou, R.; Braun, L.; de Haan, J. Oxidative stress in surgery in an ageing population: Pathophysiology and therapy. Exp. Gerontol 2013, 48, 45–54. [Google Scholar]
- Sies, H. Oxidantive stress: Oxidants and antioxidants. Exp. Physiol 1997, 82, 292–295. [Google Scholar]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013, 9, 63–75. [Google Scholar]
- Karavidas, A.; Lazaros, G.; Tsiachris, D.; Pyrgakis, V. Aging and the cardiovascular system. Hell. J. Cardiol. 2010, 51, 421–427. [Google Scholar]
- Raina, P.S.; Wolfson, C.; Kirkland, S.A.; Griffith, L.E.; Oremus, M.; Patterson, C.; Tuokko, H.; Penning, M.; Balion, C.M.; Hogan, D.; et al. The Canadian longitudinal study on aging (CLSA). Can. J. Aging 2009, 28, 221–229. [Google Scholar]
- Muqtadar, H.; Testai, F.D.; Gorelick, P.B. The dementia of cardiac disease. Curr. Cardiol. Rep 2012, 14, 732–740. [Google Scholar]
- Newman, A.B.; Fitzpatrick, A.L.; Lopez, O.; Jackson, S.; Lyketsos, C.; Jagust, W.; Ives, D.; Dekosky, S.T.; Kuller, L.H. Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J. Am. Geriatr. Soc 2005, 53, 1101–1107. [Google Scholar]
- Matsuzaki, S.; Szweda, P.A.; Szweda, L.I.; Humphries, K.M. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning. Adv. Drug Deliv. Rev 2009, 61, 1324–1331. [Google Scholar]
- Castro, L.; Demicheli, V.; Tortora, V.; Radi, R. Mitochondrial protein tyrosine nitration. Free Radic. Res 2011, 45, 37–52. [Google Scholar]
- Pollack, M.; Leeuwenburgh, C. Molecular Mechanisms of Oxidative Stress in Aging: Free Radicals, Aging, Antioxidants and Disease. In Handbook of Oxidants and Antioxidants in Exercise; Elsevier Science Publishers: Amsterdam, The Netherlands, 1999; pp. 881–923. [Google Scholar]
- Sohal, R.; Orr, W. The redox stress hypothesis of aging. Free Radic. Bio. Med 2012, 52, 539–555. [Google Scholar]
- Drummond, G.; Selemidis, S. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov 2011, 10, 453–471. [Google Scholar]
- Yu, B.P.; Chung, H.Y. Oxidative stress and vascular aging. Diabetes Res. Clin. Pract 2001, 54, S73–S80. [Google Scholar]
- Eiserich, J.P.; Patel, R.P.; O’Donnell, V.B. Pathophysiology of nitric oxide and related species: Free radical reactions and modification of biomolecules. Mol. Asp. Med 1999, 19, 221–357. [Google Scholar]
- Paravicini, T.M.; Touyz, R.M. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care 2008, 31, S170–S180. [Google Scholar]
- Lacy, F.; Gough, D.A.; Schmid-Schonbein, G.W. Role of xanthine oxidase in hydrogen peroxide production. Free Radic. Bio. Med 1998, 25, 720–727. [Google Scholar]
- Catala, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar]
- Vallyathan, V.; Shi, X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ. Health Perspect 1997, 105, S165–S177. [Google Scholar]
- Dizdaroglu, M. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett 2012, 327, 26–47. [Google Scholar]
- Shan, X.; Lin, C.-L.G. Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol. Aging 2006, 27, 657–662. [Google Scholar]
- Zhang, J.; Perry, G.; Smith, M.A.; Robertson, D.; Olson, S.J.; Graham, D.G.; Montine, T.J. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol 1999, 154, 1423–1429. [Google Scholar]
- Widmer, R.; Ziaja, I.; Grune, T. Protein oxidation and degradation during aging: Role in skin aging and neurodegeneration. Free Radic. Res 2006, 40, 1259–1268. [Google Scholar]
- Jung, T.; Catalgol, B.; Grune, T. The proteasomal system. Mol. Asp. Med 2009, 30, 191–296. [Google Scholar]
- Orlandi, A.; Bochaton-Piallat, M.-L.; Gabbiani, G.; Spagnoli, L.G. Aging, smooth muscle cells and vascular pathobiology: Implications for atherosclerosis. Atherosclerosis 2006, 188, 221–230. [Google Scholar]
- De la Haba, C.; Palacio, J.R.; Martinez, P.; Morros, A. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochim. Biophys. Acta 2013, 1828, 357–364. [Google Scholar]
- Freikman, I.; Amer, J.; Cohen, J.S.; Ringel, I.; Fibach, E. Oxidative stress causes membrane phospholipid rearrangement and shedding from RBC membranes—An NMR study. Biochim. Biophys. Acta 2008, 1778, 2388–2394. [Google Scholar]
- Clement, A.B.; Gimpl, G.; Behl, C. Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radic. Biol. Med 2010, 48, 1236–1241. [Google Scholar]
- Saxena, S.; Srivastava, P.; Kumar, D.; Khanna, V.K.; Seth, P.K. Decreased platelet membrane fluidity in retinal periphlebitis in Eales’ disease. Ocul. Immunol. Inflamm 2006, 14, 113–116. [Google Scholar]
- Johnson, P. Antioxidant enzyme expression in health and disease: Effects of exercise and hypertension. Comp. Biochem. Physiol. Toxicol. Pharmacol 2002, 133, 493–505. [Google Scholar]
- Das, M.; Babu, K.; Reddy, N.P.; Srivastava, L.M. Oxidative damage of plasma proteins and lipids in epidemic dropsy patients: Alterations in antioxidant status. Biochim. Biophys. Acta 2005, 1722, 209–217. [Google Scholar]
- Harper, M.E.; Bevilacqua, L.; Hagopian, K.; Weindruch, R.; Ramsey, J.J. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol. Scand 2004, 182, 321–331. [Google Scholar]
- Echtay, K.S.; Roussel, D.; St-Pierre, J.; Jekabsons, M.B.; Cadenas, S.; Stuart, J.A.; Harper, J.A.; Roebuck, S.J.; Morrison, A.; Pickering, S.; et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002, 415, 96–99. [Google Scholar]
- Webb, R.C.; Inscho, E.W. Age-Related Changes in the Cardiovascular System. In Clinical Hypertension and Vascular Diseases: Hypertension in the Elderly; Humana Press Inc: Toyowa, NJ, USA, 2005; pp. 11–21. [Google Scholar]
- Oxenham, H.; Sharpe, N. Cardiovascular aging and heart failure. Eur. J. Heart Fail 2003, 5, 427–434. [Google Scholar]
- Benjamin, E.; Plehn, J. Mitral annular calcification and the risk of stroke in an elderly cohort. N. Engl. J. Med 1992, 327, 374–379. [Google Scholar]
- Dai, D.F.; Rabinovitch, P.S.; Ungvari, Z. Mitochondria and cardiovascular aging. Cardiocirc. Res 2012, 110, 1109–1124. [Google Scholar]
- Navarro, A.; Boveris, A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol 2007, 292, C670–C686. [Google Scholar]
- Herrera, M.D.; Mingorance, C.; Rodriguez-Rodriguez, R.; Alvarez de Sotomayor, M. Endothelial dysfunction and aging: An update. Ageing Res. Rev 2010, 9, 142–152. [Google Scholar]
- Pierce, G.L.; Larocca, T.J. Reduced vascular tetrahydrobiopterin (BH4) and endothelial function with ageing: Is it time for a chronic BH4 supplementation trial in middle-aged and older adults? J. Physiol 2008, 586, 2673–2674. [Google Scholar]
- Bode-Boger, S.M.; Scalera, F.; Ignarro, L.J. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther 2007, 114, 295–306. [Google Scholar]
- Yang, Z.; Ming, X.-F. Arginase: The emerging therapeutic target for vascular oxidative stress and inflammation. Front. Immunol 2013, 4, 149. [Google Scholar]
- Kim, J.H.; Bugaj, L.J.; Oh, Y.J.; Bivalacqua, T.J.; Ryoo, S.; Soucy, K.G.; Santhanam, L.; Webb, A.; Camara, A.; Sikka, G.; et al. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J. Appl. Physiol 2009, 107, 1249–57. [Google Scholar]
- Bode-Boger, S.M.; Muke, J.; Surdacki, A.; Brabant, G.; Boger, R.H.; Frolich, J.C. Oral l-arginine improves endothelial function in healthy individuals older than 70 years. Vasc. Med 2003, 8, 77–81. [Google Scholar]
- Susic, D.; Varagic, J.; Frohlich, E.D. Isolated systolic hypertension in elderly WKY is reversed with l-arginine and ACE inhibition. Hypertension 2001, 38, 1422–1426. [Google Scholar]
- Susic, D.; Francischetti, A.; Frohlich, E.D. Prolonged l-arginine on cardiovascular mass and myocardial hemodynamics and collagen in aged spontaneously hypertensive rats and normal rats. Hypertension 1999, 33, 451–455. [Google Scholar]
- Qian, H.; Luo, N.; Chi, Y. Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders. J. Aging Res. 2012. [Google Scholar] [CrossRef]
- Singh, N.; Prasad, S.; Singer, D.R.; MacAllister, R.J. Ageing is associated with impairment of nitric oxide and prostanoid dilator pathways in the human forearm. Clin. Sci 2002, 102, 595–600. [Google Scholar]
- Li, N.; Karin, M. Is NF-κB the sensor of oxidative stress? FASEB J 1999, 13, 1137–1143. [Google Scholar]
- Csiszar, A.; Ungvari, Z.; Koller, A.; Edwards, J.G.; Kaley, G. Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 2003, 17, 1183–1185. [Google Scholar]
- Bruunsgaard, H.; Skinhoj, P.; Pedersen, A.N.; Schroll, M.; Pedersen, B.K. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin. Exp. Immunol 2000, 121, 255–260. [Google Scholar]
- Belmin, J.; Bernard, C.; Corman, B.; Merval, R.; Esposito, B.; Tedgui, A. Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am. J. Physiol. Heart Circ. Physiol 1995, 268, H2288–H2293. [Google Scholar]
- Csiszar, A.; Wang, M.; Lakatta, E.G.; Ungvari, Z. Inflammation and endothelial dysfunction during aging: Role of NF-kappaB. J. Appl. Physiol 2008, 105, 1333–1341. [Google Scholar]
- Donato, A.J.; Eskurza, I.; Silver, A.E.; Levy, A.S.; Pierce, G.L.; Gates, P.E.; Seals, D.R. Direct evidence of endothelial oxidative stress with aging in humans: Relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Cardiocirc. Res 2007, 100, 1659–1666. [Google Scholar]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr 2006, 83, 456S–460S. [Google Scholar]
- Marui, N.; Offermann, M.K.; Swerlick, R.; Kunsch, C.; Rosen, C.A.; Ahmad, M.; Alexander, R.W.; Medford, R.M. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest 1993, 92, 1866–1874. [Google Scholar]
- Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol 2006, 6, 508–519. [Google Scholar]
- Richter, V.; Rassoul, F.; Purschwitz, K.; Hentschel, B.; Reuter, W.; Kuntze, T. Circulating vascular cell adhesion molecules VCAM-1, ICAM-1, and E-selectin in dependence on aging. Gerontology 2003, 49, 293–300. [Google Scholar]
- Morisaki, N.; Saito, I.; Tamura, K.; Tashiro, J.; Masuda, M.; Kanzaki, T.; Watanabe, S.; Masuda, Y.; Saito, Y. New indices of ischemic heart disease and aging: Studies on the serum levels of soluble intercellular adhesion molecule-1 (ICAM-1) and soluble vascular cell adhesion molecule-1 (VCAM-1) in patients with hypercholesterolemia and ischemic heart disease. Atherosclerosis 1997, 131, 43–48. [Google Scholar]
- Schmidt, A.M.; Hori, O.; Chen, J.X.; Li, J.F.; Crandall, J.; Zhang, J.; Cao, R.; Yan, S.D.; Brett, J.; Stern, D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest 1995, 96, 1395–1403. [Google Scholar]
- Wang, M.; Takagi, G.; Asai, K.; Resuello, R.G.; Natividad, F.F.; Vatner, D.E.; Vatner, S.F.; Lakatta, E.G. Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 2003, 41, 1308–1316. [Google Scholar]
- Yamamoto, K.; Takeshita, K.; Kojima, T.; Takamatsu, J.; Saito, H. Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: Implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc. Res 2005, 66, 276–285. [Google Scholar]
- Yamamoto, K.; Takeshita, K.; Shimokawa, T.; Yi, H.; Isobe, K.; Loskutoff, D.J.; Saito, H. Plasminogen activator inhibitor-1 is a major stress-regulated gene: Implications for stress-induced thrombosis in aged individuals. Proc. Natl. Acad. Sci. USA 2002, 99, 890–895. [Google Scholar]
- Chung, H.; Sung, B.; Jung, K. The molecular inflammatory process in aging. Antioxid. Redox Sign 2006, 8, 572–581. [Google Scholar]
- Cernadas, M.R.; de Miguel, L.S.; Garcia-Duran, M.; Gonzalez-Fernandez, F.; Millas, I.; Monton, M.; Rodrigo, J.; Rico, L.; Fernandez, P.; de Frutos, T.; et al. Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Cardiocirc. Res 1998, 83, 279–286. [Google Scholar]
- Li, D.; Qu, Y.; Tao, L.; Liu, H.; Hu, A.; Gao, F.; Sharifi-Azad, S.; Grunwald, Z.; Ma, X.L.; Sun, J.Z. Inhibition of iNOS protects the aging heart against beta-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial. J. Surg. Res 2006, 72, 64–72. [Google Scholar]
- Hayashi, T.; Yano, K.; Matsui-Hirai, H.; Yokoo, H.; Hattori, Y.; Iguchi, A. Nitric oxide and endothelial cellular senescence. Pharmacol. Ther 2008, 120, 333–339. [Google Scholar]
- Von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci 2002, 27, 339–344. [Google Scholar]
- Chung, J.H.; Seo, A.Y.; Chung, S.W.; Kim, M.K.; Leeuwenburgh, C.; Yu, B.P.; Chung, H.Y. Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res. Rev 2008, 7, 126–136. [Google Scholar]
- Delerive, P.; de Bosscher, K.; Besnard, S.; vanden Berghe, W.; Peters, J.M.; Gonzalez, F.J.; Fruchart, J.C.; Tedgui, A.; Haegeman, G.; Staels, B. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappa B and AP-1. J. Biol. Chem 1999, 274, 32048–32054. [Google Scholar]
- Sung, B.; Park, S.; Yu, B.P.; Chung, H.Y. Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: Suppression of NF-kappaB by 2,4-thiazolidinedione. Exp. Gerontol 2006, 41, 590–599. [Google Scholar]
- Han, L.; Li, M.; Liu, Y.; Han, C.; Ye, P. Atorvastatin may delay cardiac aging by upregulating peroxisome proliferator-activated receptors in rats. Pharmacology 2012, 89, 74–82. [Google Scholar]
- Sung, B.; Park, S.; Yu, B.P.; Chung, H.Y. Modulation of PPAR in aging, inflammation, and calorie restriction. J. Gerontol. Ser. A 2004, 59, B997–B1006. [Google Scholar]
- Chung, H.Y.; Cesari, M.; Anton, S.; Marzetti, E.; Giovannini, S.; Seo, A.Y.; Carter, C.; Yu, B.P.; Leeuwenburgh, C. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev 2009, 8, 18–30. [Google Scholar]
- Rippe, C.; Lesniewski, L.; Connell, M.; LaRocca, T.; Donato, A.; Seals, D. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging cell 2010, 9, 304–312. [Google Scholar]
- Csiszar, A.; Labinskyy, N.; Jimenez, R.; Pinto, J.T.; Ballabh, P.; Losonczy, G.; Pearson, K.J.; de Cabo, R.; Ungvari, Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: Role of circulating factors and SIRT1. Mech. Ageing Dev 2009, 130, 518–527. [Google Scholar]
- Fusco, S.; Maulucci, G.; Pani, G. Sirt1: Def-eating senescence? Cell Cycle 2012, 11, 4135–4146. [Google Scholar]
- Dai, D.F.; Chen, T.; Johnson, S.C.; Szeto, H.; Rabinovitch, P.S. Cardiac aging: From molecular mechanisms to significance in human health and disease. Antioxid. Redox Sign 2012, 16, 1492–1526. [Google Scholar]
- Eggers, K.M.; Lind, L.; Ahlstrom, H.; Bjerner, T.; Ebeling Barbier, C.; Larsson, A.; Venge, P.; Lindahl, B. Prevalence and pathophysiological mechanisms of elevated cardiac troponin I levels in a population-based sample of elderly subjects. Eur. Heart J 2008, 29, 2252–2258. [Google Scholar]
- De Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010, 304, 2503–2512. [Google Scholar]
- Wu, A.H.; Ford, L. Release of cardiac troponin in acute coronary syndromes: Ischemia or necrosis? Clin Chim. Acta 1999, 284, 161–174. [Google Scholar]
- Centurione, L.; Antonucci, A.; Miscia, S.; Grilli, A.; Rapino, M.; Grifone, G.; di Giacomo, V.; di Giulio, C.; Falconi, M.; Cataldi, A. Age-related death-survival balance in myocardium: An immunohistochemical and biochemical study. Mech. Ageing Dev 2002, 123, 341–350. [Google Scholar]
- Bodyak, N.; Kang, P. Gene expression profiling of the aging mouse cardiac myocytes. Nucleic Acids Res 2002, 30, 3788–3794. [Google Scholar]
- Li, S.Y.; Du, M.; Dolence, E.K.; Fang, C.X.; Mayer, G.E.; Ceylan-Isik, A.F.; LaCour, K.H.; Yang, X.; Wilbert, C.J.; Sreejayan, N.; et al. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell 2005, 4, 57–64. [Google Scholar]
- Hegab, Z.; Gibbons, S.; Neyses, L.; Mamas, A. Role of advanced glycation end products in cardiovascular disease. World J. Cardiol 2012, 4, 90–102. [Google Scholar]
- Essick, E.E.; Sam, F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell. Longev 2010, 3, 168–177. [Google Scholar]
- Chiong, M.; Wang, Z.V.; Pedrozo, Z.; Cao, D.J.; Troncoso, R.; Ibacache, M.; Criollo, A.; Nemchenko, A.; Hill, J.A.; Lavandero, S. Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis 2011, 2, e244. [Google Scholar]
- Peng, L.; Zhuang, X.; Liao, L.; He, X.; Li, J.; Chen, X.; Lu, G.; Ma, H.; Gao, X. Changes in cell autophagy and apoptosis during age-related left ventricular remodeling in mice and their potential mechanisms. Biochem. Biophys. Res. Commun 2013, 430, 822–826. [Google Scholar]
- Wohlgemuth, S.E.; Julian, D.; Akin, D.E.; Fried, J.; Toscano, K.; Leeuwenburgh, C.; Dunn, W.A. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 2007, 10, 281–292. [Google Scholar]
- Niemann, B.; Chen, Y.; Issa, H.; Silber, R.E.; Rohrbach, S. Caloric restriction delays cardiac ageing in rats: Role of mitochondria. Cardiovasc. Res 2010, 88, 267–276. [Google Scholar]
- Lee, C.K.; Pugh, T.D.; Klopp, R.G.; Edwards, J.; Allison, D.B.; Weindruch, R.; Prolla, T.A. The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radic. Bio. Med 2004, 36, 1043–1057. [Google Scholar]
- Lee, C.K.; Allison, D.B.; Brand, J.; Weindruch, R.; Prolla, T.A. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. USA 2002, 99, 14988–14993. [Google Scholar]
- Park, S.K.; Prolla, T.A. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc. Res 2005, 66, 205–212. [Google Scholar]
- Ren, J.; Pulakat, L.; Whaley-Connell, A.; Sowers, J.R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med 2010, 88, 993–1001. [Google Scholar]
- Lesnefsky, E.J.; Moghaddas, S.; Tandler, B.; Kerner, J.; Hoppel, C.L. Mitochondrial dysfunction in cardiac disease: Ischemia—Reperfusion, aging, and heart failure. J. Mol. Cell. Cardiol 2001, 33, 1065–1089. [Google Scholar]
- Turdi, S.; Fan, X.; Li, J.; Zhao, J.; Huff, A.F.; Du, M.; Ren, J. AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction. Aging cell 2010, 9, 592–606. [Google Scholar]
- Dillon, L.M.; Rebelo, A.P.; Moraes, C.T. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life 2012, 64, 231–241. [Google Scholar]
- Wojtovich, A.P.; Nadtochiy, S.M.; Brookes, P.S.; Nehrke, K. Ischemic preconditioning: The role of mitochondria and aging. Exp. Gerontol 2012, 47, 1–7. [Google Scholar]
- Lucas, D.T.; Szweda, L.I. Cardiac reperfusion injury: Aging, lipid peroxidation, and mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 1998, 95, 510–514. [Google Scholar]
- Liu, M.; Zhang, P.; Chen, M.; Zhang, W.; Yu, L.; Yang, X.C.; Fan, Q. Aging might increase myocardial ischemia/reperfusion-induced apoptosis in humans and rats. Age 2012, 34, 621–632. [Google Scholar]
- Simkhovich, B.Z.; Marjoram, P.; Poizat, C.; Kedes, L.; Kloner, R.A. Age-related changes of cardiac gene expression following myocardial ischemia/reperfusion. Arch. Biochem. Biophys 2003, 420, 268–278. [Google Scholar]
- Abete, P.; Testa, G.; Cacciatore, F.; Della-Morte, D.; Galizia, G.; Langellotto, A.; Rengo, F. Ischemic preconditioning in the younger and aged heart. Aging Dis 2011, 2, 138–148. [Google Scholar]
- Benigni, A.; Cassis, P.; Remuzzi, G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol. Med 2010, 2, 247–257. [Google Scholar]
- Baylis, C.; Engels, K.; Hymel, A.; Navar, L. Plasma renin activity and metabolic clearance rate of angiotensin II in the unstressed aging rat. Mech. Ageing Dev 1997, 97, 163–171. [Google Scholar]
- Thompson, M.; Oyama, T. Activity and responsiveness of the renin-angiotensin system in the aging rat. Am. J. Physiol 2000, 279, R1787–R1794. [Google Scholar]
- Nguyen Dinh Cat, A.; Touyz, R.M. A new look at the renin-angiotensin system—Focusing on the vascular system. Peptides 2011, 32, 2141–2150. [Google Scholar]
- Rajagopalan, S.; Kurz, S.; Munzel, T.; Tarpey, M.; Freeman, B.A.; Griendling, K.K.; Harrison, D.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Investig 1996, 97, 1916–1923. [Google Scholar]
- Williams, B. Angiotensin II and the pathophysiology of cardiovascular remodeling. Am. J. Cardiol 2001, 87, 10–17. [Google Scholar]
- Mohamed, M.A.; Weir, M.R. Renin angiotensin system inhibition in the older person: A review. Clin. Geriatr. Med 2009, 25, 245–257. [Google Scholar]
- Benigni, A.; Corna, D.; Zoja, C. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest 2009, 119, 524–530. [Google Scholar]
- De Cavanagh, E.M.V.; Inserra, F.; Ferder, L. Angiotensin II blockade: A strategy to slow ageing by protecting mitochondria? Cardiovasc. Res 2011, 89, 31–40. [Google Scholar]
- Jia, L.; Li, Y.; Xiao, C.; Du, J. Angiotensin II induces inflammation leading to cardiac remodeling. Front. Biosci 2012, 1, 221–231. [Google Scholar]
- Santulli, G.; Iaccarino, G. Pinpointing beta adrenergic receptor in ageing pathophysiology: Victim or executioner? Evidence from crime scenes Pinpointing beta adrenergic receptor in ageing pathophysiology: Victim or executioner? Evidence from crime scenes. Immun. Ageing 2013. [Google Scholar] [CrossRef]
- Kang, K.B.; Rajanayagam, M.A.S.; van der Zypp, A.; Majewski, H. A role for cyclooxygenase in aging-related changes of beta-adrenoceptor-mediated relaxation in rat aortas. Naunyn Schmiedebergs Arch. Pharmacol 2007, 375, 273–281. [Google Scholar]
- Yan, L.; Vatner, D.E.; O’Connor, J.P.; Ivessa, A.; Ge, H.; Chen, W.; Hirotani, S.; Ishikawa, Y.; Sadoshima, J.; Vatner, S.F. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 2007, 130, 247–258. [Google Scholar]
- Okumura, S.; Vatner, D.E.; Kurotani, R.; Bai, Y.; Gao, S.; Yuan, Z.; Iwatsubo, K.; Ulucan, C.; Kawabe, J.; Ghosh, K.; et al. Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress. Circulation 2007, 116, 1776–1783. [Google Scholar]
- Remondino, A. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Cardiocirc. Res 2003, 92, 136–138. [Google Scholar]
- Bishop, N.A.; Lu, T.; Yankner, B.A. Neural mechanisms of ageing and cognitive decline. Nature 2010, 464, 529–535. [Google Scholar]
- Mariani, E.; Polidori, M.C.; Cherubini, A.; Mecocci, P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J. Chromatogr. B 2005, 827, 65–75. [Google Scholar]
- Freeman, L.R.; Keller, J.N. Oxidative stress and cerebral endothelial cells: Regulation of the blood-brain-barrier and antioxidant based interventions. Biochim. Biophys. Acta 2012, 1822, 822–829. [Google Scholar]
- Alikunju, S.; Abdul Muneer, P.M.; Zhang, Y.; Szlachetka, A.M.; Haorah, J. The inflammatory footprints of alcohol-induced oxidative damage in neurovascular components. Brain Behav. Immun 2011, 25, S129–S136. [Google Scholar]
- Perfeito, R.; Cunha-Oliveira, T.; Rego, A.C. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—Resemblance to the effect of amphetamine drugs of abuse. Free Radic. Bio. Med 2012, 53, 1791–1806. [Google Scholar]
- Chen, C.M.; Liu, J.L.; Wu, Y.R.; Chen, Y.C.; Cheng, H.S.; Cheng, M.L.; Chiu, D.T.Y. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol. Dis 2009, 33, 429–435. [Google Scholar]
- Rogakou, E.P.; Boon, C.; Redon, C.; Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol 1999, 146, 905–916. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev 2010, 3, 2–12. [Google Scholar]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc 2007, 2, 221–226. [Google Scholar]
- Smith, C.D. Structural imaging in early pre-states of dementia. Biochim. Biophys. Acta 2012, 1822, 317–324. [Google Scholar]
- Morley, J.E.; Armbrecht, H.J.; Farr, S.A.; Kumar, V.B. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim. Biophys. Acta 2012, 1822, 650–656. [Google Scholar]
- Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther 2011, 17, 514–524. [Google Scholar]
- Jack, C.R., Jr; Garwood, M.; Wengenack, T.M.; Curran, G.L.; Lin, J.; Adriany, G.; Grohn, H.J.; Grimm, R.; Poduslo, J.F. In vivo visualization of Alzheimer’s amyloid paques by MRI in transgenic mice without a contrast agent. Magn. Reson. Med. 2004, 52, 1263–1271. [Google Scholar]
- Coskun, P.E.; Beal, M.F.; Wallace, D.C. Alzheimer’ s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA 2014, 101, 10726–10731. [Google Scholar]
- Glenner, G.; Wong, C. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun 1984, 120, 885–890. [Google Scholar]
- Karran, E.; Mercken, M.; de Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov 2011, 10, 698–712. [Google Scholar]
- Swerdlow, R.; Khan, S. The Alzheimer’s disease mitochondrial cascade hypothesis: An update. Exp. Neurol 2009, 218, 308–315. [Google Scholar]
- Napoli, C.; Palinski, W. Neurodegenerative diseases: Insights into pathogenic mechanisms from atherosclerosis. Neurobiol. Aging 2005, 26, 293–302. [Google Scholar]
- Taylor, J.M.; Main, B.S.; Crack, P.J. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem. Internatl 2013, 62, 803–819. [Google Scholar]
- Ahlskog, J.E. Challenging conventional wisdom: The etiologic role of dopamine oxidative stress in Parkinson’s disease. Mov. Disord 2005, 20, 271–282. [Google Scholar]
- Srinivasan, V.; Cardinali, D.P.; Srinivasan, U.S.; Kaur, C.; Brown, G.M.; Spence, D.W.; Hardeland, R.; Pandi-Perumal, S.R. Therapeutic potential of melatonin and its analogs in Parkinson’s disease: Focus on sleep and neuroprotection. Ther. Adv. Neurol. Disord 2011, 4, 297–317. [Google Scholar]
- Bueler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp. Neurol 2009, 218, 235–246. [Google Scholar]
- Mangialasche, F.; Polidori, M.C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res. Rev 2009, 8, 285–305. [Google Scholar]
- Luckhaus, C.; Cohnen, M.; Fluss, M.O.; Janner, M.; Grass-Kapanke, B.; Teipel, S.J.; Grothe, M.; Hampel, H.; Peters, O.; Kornhuber, J.; et al. The relation of regional cerebral perfusion and atrophy in mild cognitive impairment (MCI) and early Alzheimer’s dementia. Psychiatry Res 2010, 183, 44–51. [Google Scholar]
- Hampel, H.; Teipel, S.J.; Fuchsberger, T.; Andreasen, N.; Wiltfang, J.; Otto, M.; Shen, Y.; Dodel, R.; Blennow, K.; Buerger, K. Value of CSF β-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol. Psychiatry 2004, 9, 705–710. [Google Scholar]
- Hampel, H.; Burger, K.; Teipel, S.J.; Bokde, A.L.W.; Zetterberg, H.; Blennow, K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement 2008, 4, 38–48. [Google Scholar]
- Hampel, H.; Prvulovic, D.; Teipel, S.; Jessen, F.; Luckhaus, C.; Frolich, L.; Riepe, M.W.; Dodel, R.; Leyhe, T.; Bertram, L.; et al. The future of Alzheimer’s disease: The next 10 years. Prog. Neurobiol 2011, 95, 718–728. [Google Scholar]
- Fox, J.H.; Connor, T.; Stiles, M.; Kama, J.; Lu, Z.; Dorsey, K.; Lieberman, G.; Sapp, E.; Cherny, R.A.; Banks, M.; et al. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J. Biol. Chem 2011, 286, 18320–18330. [Google Scholar]
- Sorolla, M.A.; Rodriguez-Colman, M.J.; Tamarit, J.; Ortega, Z.; Lucas, J.J.; Ferrer, I.; Ros, J.; Cabiscol, E. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic. Bio. Med 2010, 49, 612–621. [Google Scholar]
- Sorolla, M.A.; Rodriguez-Colman, M.J.; Vall-Llaura, N.; Tamarit, J.; Ros, J.; Cabiscol, E. Protein oxidation in Huntington disease. Biofactors 2012, 38, 173–185. [Google Scholar]
- Barja, G. Endogenous oxidative stress: Relationship to aging, longevity and caloric restriction. Ageing Res. Rev 2002, 1, 397–411. [Google Scholar]
- Willcox, B.J.; Willcox, D.C.; Todoriki, H.; Fujiyoshi, A.; Yano, K.; He, Q.; Curb, J.D.; Suzuki, M. Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann. N. Y. Acad. Sci 2007, 1114, 434–455. [Google Scholar]
- Wolf, F.I.; Fasanella, S.; Tedesco, B.; Cavallini, G.; Donati, A.; Bergamini, E.; Cittadini, A. Peripheral lymphocyte 8-OHdG levels correlate with age-associated increase of tissue oxidative DNA damage in Sprague-Dawley rats. Protective effects of caloric restriction. Exp. Gerontol 2005, 40, 181–188. [Google Scholar]
- Contestabile, A. Benefits of caloric restriction on brain aging and related pathological States: Understanding mechanisms to devise novel therapies. Curr. Med. Chem 2009, 16, 350–361. [Google Scholar]
- Oien, D.B.; Osterhaus, G.L.; Lundquist, B.L.; Fowler, S.C.; Moskovitz, J. Caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse. Neurosci. Lett 2010, 468, 38–41. [Google Scholar]
- Pamplona, R.; Barja, G. Mitochondrial oxidative stress, aging and caloric restriction: The protein and methionine connection. Biochim. Biophys. Acta 2006, 1757, 496–508. [Google Scholar]
- Gillette-Guyonnet, S.; Vellas, B. Caloric restriction and brain function. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 686–692. [Google Scholar]
- Ungvari, Z.; Parrado-Fernandez, C.; Csiszar, A.; de Cabo, R. Mechanisms underlying caloric restriction and lifespan regulation: Implications for vascular aging. Cardiocirc. Res 2008, 102, 519–528. [Google Scholar]
- Shinmura, K. Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: Potential role of cardiac sirtuins. Oxid. Med. Cell. Longev. 2013. [Google Scholar] [CrossRef]
- Halagappa, V.K.M.; Guo, Z.; Pearson, M.; Matsuoka, Y.; Cutler, R.G.; Laferla, F.M.; Mattson, M.P. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis 2007, 26, 212–220. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Venkataraman, K.; Khurana, S.; Tai, T.C. Oxidative Stress in Aging-Matters of the Heart and Mind. Int. J. Mol. Sci. 2013, 14, 17897-17925. https://doi.org/10.3390/ijms140917897
Venkataraman K, Khurana S, Tai TC. Oxidative Stress in Aging-Matters of the Heart and Mind. International Journal of Molecular Sciences. 2013; 14(9):17897-17925. https://doi.org/10.3390/ijms140917897
Chicago/Turabian StyleVenkataraman, Krishnan, Sandhya Khurana, and T. C. Tai. 2013. "Oxidative Stress in Aging-Matters of the Heart and Mind" International Journal of Molecular Sciences 14, no. 9: 17897-17925. https://doi.org/10.3390/ijms140917897