Bioactivities and Health Benefits of Wild Fruits
Abstract
:1. Introduction
2. Bioactivities of Wild Fruits
2.1. Antioxidant Activity
2.1.1. In Vitro Studies
2.1.2. In Vivo Studies
2.2. Antimicrobial Activity
2.2.1. Antibacterial and Antifungal Activities
2.2.2. Antiviral Activity
2.3. Anti-Inflammatory Activity
2.4. Anticancer Activity
2.5. Other Bioactivities of Wild Fruits
3. Bioactivities of Wild Berries
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baliga, M.S.; Pai, R.J.; Bhat, H.P.; Palatty, P.L.; Boloor, R. Chemistry and medicinal properties of the Bakul (Mimusops elengi Linn): A review. Food Res. Int. 2011, 44, 1823–1829. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q. Potential of fruit wastes as natural resources of bioactive compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Schwingshackl, L. Mediterranean diet supplemented with extra virgin olive oil reduces the incidence of invasive breast cancer in a randomised controlled trial. Evid. Based Med. 2016, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Forbes-Hernandez, T.Y.; Giampieri, F.; Gasparrini, M.; Mazzoni, L.; Quiles, J.L.; Alvarez-Suarez, J.M.; Battino, M. The effects of bioactive compounds from plant foods on mitochondrial function: A focus on apoptotic mechanisms. Food Chem. Toxicol. 2014, 68, 154–182. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer's disease (Review). Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: New York, NY, USA, 1999; pp. 331–332. [Google Scholar]
- Lock, K.; Pamerleau, J.; Causer, L.; Altmann, D.R.; McKee, M. The global burden of disease attributable to low consumption of fruit and vegetables: Implications for the global strategy on diet. Bull. World Health Organ. 2005, 83, 100–108. [Google Scholar] [PubMed]
- Gescher, A.; Pastorino, U.; Plummer, S.M.; Manson, M.M. Suppression of tumor development by substances derived from the diet-mechanisms and clinical implications. Br. J. Clin. Pharmacol. 1998, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ansari, K.N. The free radicals—The hidden culprits: An update. Indian J. Med. Sci. 1997, 51, 319–336. [Google Scholar] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Method Enzymol. 1990, 186, 1–85. [Google Scholar]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crop Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Deng, G.F.; Xu, X.R.; Guo, Y.J.; Xia, E.Q.; Li, S.; Wu, S.; Chen, F.; Ling, W.H.; Li, H.B. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J. Funct. Foods 2012, 4, 906–914. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Gan, R.Y.; Zhang, Y.; Xu, X.R.; Xia, E.Q.; Li, H.B. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 2011, 12, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Alezandro, M.R.; Granato, D.; Genovese, M.I. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Res. Int. 2013, 54, 650–659. [Google Scholar] [CrossRef]
- Margraf, T.; Santos, E.N.T.; de Andrade, E.F.; van Ruth, S.M.; Granato, D. Effects of geographical origin, variety and farming system on the chemical markers and in vitro antioxidant capacity of Brazilian purple grape juices. Food Res. Int. 2016, 82, 145–155. [Google Scholar] [CrossRef]
- Macedo, L.F.L.; Rogero, M.M.; Guimaraes, J.P.; Granato, D.; Lobato, L.P.; Castro, I.A. Effect of red wines with different in vitro antioxidant activity on oxidative stress of high-fat diet rats. Food Chem. 2013, 137, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Karnopp, A.R.; van Ruth, S.M. Characterization and comparison of phenolic composition, antioxidant capacity and instrumental taste profile of juices from different botanical origins. J. Sci. Food Agric. 2015, 95, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Albano, C.; Liu, Y.Z.; Nicoletti, I.; Corradini, D.; Tommasi, N.; Gerardi, C.; Mita, G.; Kitts, D.D. Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit. J. Sci. Food Agric. 2016, 96, 2641–2649. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Souza, R.O.S.; Boleti, A.P.D.A.; Bruginski, E.R.D.; Lima, E.S.; Campos, F.R.; Machado, M.B. Chemical characterization and antioxidant capacity of the araca-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res. Int. 2015, 75, 315–327. [Google Scholar] [CrossRef]
- Hasbal, G.; Yilmaz-Ozden, T.; Can, A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J. Food Drug Anal. 2015, 23, 57–62. [Google Scholar] [CrossRef]
- Cardozo, M.L.; Ordonez, R.M.; Alberto, M.R.; Zampini, I.C.; Isla, M.I. Antioxidant and anti-inflammatory activity characterization and genotoxicity evaluation of Ziziphus mistol ripe berries, exotic Argentinean fruit. Food Res. Int. 2011, 44, 2063–2071. [Google Scholar] [CrossRef]
- Barreca, D.; Lagana, G.; Ficarra, S.; Tellone, E.; Leuzzi, U.; Galtieri, A.; Bellocco, E. Evaluation of the antioxidant and cytoprotective properties of the exotic fruit Annona cherimola Mill. (Annonaceae). Food Res. Int. 2011, 44, 2302–2310. [Google Scholar] [CrossRef]
- Rawat, S.; Jugran, A.; Giri, L.; Bhatt, I.D.; Rawal, R.S. Assessment of antioxidant properties in fruits of Myrica esculenta: A popular wild edible species in Indian Himalayan Region. Evid. Based Complement. Altern. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Garzon, G.A.; Narvaez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Zheng, J.; Ding, C.; Wang, L.; Li, G.; Shi, J.; Li, H.; Wang, H.; Suo, Y. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chem. 2011, 126, 859–865. [Google Scholar] [CrossRef]
- Mezadri, T.; Villano, D.; Fernandez-Pachon, M.S.; Garcia-Parrilla, M.C.; Troncoso, A.M. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 2008, 21, 282–290. [Google Scholar] [CrossRef]
- Koca, I.; Ustun, N.S.; Koca, A.F.; Karadeniz, B. Chemical composition, antioxidant activity and anthocyanin profiles of purple mulberry (Morus rubra) fruits. J. Food Agric. Environ. 2008, 6, 39–42. [Google Scholar]
- Chizzola, R.; Saeidnejad, A.H.; Azizi, M.; Oroojalian, F.; Mardani, H. Bunium persicum: Variability in essential oil and antioxidants activity of fruits from different Iranian wild populations. Genet. Resour. Crop Evol. 2014, 61, 1621–1631. [Google Scholar] [CrossRef]
- Panja, S.; Chaudhuri, D.; Ghate, N.B.; Minh, H.L.; Mandal, N. In vitro assessment of phytochemicals, antioxidant and DNA protective potential of wild edible fruit of Elaeagnus latifolia Linn. Fruits 2014, 69, 303–314. [Google Scholar] [CrossRef]
- Ma, C.H.; Dastmalchi, K.; Whitaker, B.D.; Kennelly, E.J. Two new antioxidant malonated caffeoylquinic acid isomers in fruits of wild eggplant relatives. J. Agric. Food Chem. 2011, 59, 9645–9651. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr. J. Biotechnol. 2011, 10, 283–289. [Google Scholar]
- Cespedes, C.L.; Valdez-Morales, M.; Avila, J.G.; El-Hafidi, M.; Alarcon, J.; Paredes-Lopez, O. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem. 2010, 119, 886–895. [Google Scholar] [CrossRef]
- Serce, S.; Ercisli, S.; Sengul, M.; Gunduz, K.; Orhan, E. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn. Mag. 2010, 6, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhou, X.Z.; Chen, S.G.; Sun, Y.J.; Shen, Y.; Ye, X.Q. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb.). LWT Food Sci. Technol. 2015, 60, 1262–1268. [Google Scholar] [CrossRef]
- Woguem, V.; Maggi, F.; Fogang, H.P.D.; Tapondjou, L.A.; Womeni, H.M.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; et al. Antioxidant, antiproliferative and antimicrobial activities of the volatile oil from the wild Pepper Piper capense used in Cameroon as a culinary spice. Nat. Prod. Commun. 2013, 8, 1791–1796. [Google Scholar] [PubMed]
- Choi, J.Y.; Lee, S.J.; Lee, S.J.; Park, S.; Lee, J.H.; Shim, J.H.; El-Aty, A.M.A.; Jin, J.S.; Jeong, E.D.; Lee, W.S.; et al. Analysis and tentative structure elucidation of new anthocyanins in fruit peel of Vitis coignetiae Pulliat (meoru) using LC-MS/MS: Contribution to the overall antioxidant activity. J. Sep. Sci. 2010, 33, 1192–1197. [Google Scholar] [PubMed]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Ricci, D. Antioxidant activity of Prunus spinosa L. fruit juice. Ital. J. Food Sci. 2009, 21, 337–346. [Google Scholar]
- Banerjee, A.; Dasgupta, N.; De, B. In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem. 2005, 90, 727–733. [Google Scholar] [CrossRef]
- Koh, K.; Kim, H.; Hang, S.; Park, Y.; Lee, C. Polyphenolic compounds and superoxide radical scavenging activity of Moru-Ju. Food Sci. Biotechnol. 2003, 12, 290–297. [Google Scholar]
- Zhang, Y.M.; Sun, Y.J.; Xi, W.P.; Shen, Y.; Qiao, L.P.; Zhong, L.Z.; Ye, X.Q.; Zhou, Z.Q. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014, 145, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shi, J.L.; Wang, K. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus Wild Species). J. Agric. Food Chem. 2014, 62, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wu, J.; Li, H.; Zhong, P.X.; Xu, Y.J.; Li, C.H.; Ji, K.X.; Wang, L.S. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem. 2013, 141, 4260–4268. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Antonacci, R.; Wang, Y.Y.; Lattuada, N.; dal Sasso, M.; Marabini, L.; Fibiani, M.; lo Scalzo, R. Comparative antioxidant activity of cultivated and wild Vaccinium species investigated by EPR, human neutrophil burst and COMET assay. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1987–1999. [Google Scholar] [PubMed]
- Akhbari, M.; Batooli, H.; Mozdianfard, M. Comparative study of composition and biological activities of SDE prepared essential oils from flowers and fruits of two Hypericum species from central Iran. Nat. Prod. Res. 2012, 26, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Serce, S.; Gunduz, K.; Yen, F.; Kafkas, E.; Paydas, S. Determining total phenolics and antioxidant activity of selected Fragaria genotypes. Asian J. Chem. 2007, 19, 5573–5581. [Google Scholar]
- Sasipriya, G.; Maria, C.L.; Siddhuraju, P. Influence of pressure cooking on antioxidant activity of wild (Ensete superbum) and commercial banana (Musa paradisiaca var. Monthan) unripe fruit and flower. J. Food Sci. Technol. Technol. 2014, 51, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.; Ercisli, S.; Hegedus, A.; Akbulut, M.; Topdas, E.F.; Aliman, J. Bioactive content and antioxidant characteristics of wild (Fragaria vesca L.) and cultivated strawberry (Fragaria ananassa Duch.) fruits from Turkey. J. Appl. Bot. Food. Qual. 2014, 87, 274–278. [Google Scholar]
- Dyduch-Sieminska, M.; Najda, A.; Dyduch, J.; Gantner, M.; Klimek, K. The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.). J. Anal. Methods Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mitic, M.N.; Kostic, D.A.; Pavlovic, A.N.; Dimitrijevic, D.S.; Veljkovic, J.N. Effects of solvent extraction system on concentration and antioxidant activity of strawberry phenolics. Agro FOOD Ind. Hi Tech 2014, 25, 24–28. [Google Scholar]
- Lee, H.H.; Moon, Y.S.; Yun, H.K.; Park, P.J.; Kwak, E.J. Contents of bioactive constituents and antioxidant activities of cultivated and wild raspberries. Korean J. Hortic. Sci. Technol. 2014, 32, 115–122. [Google Scholar] [CrossRef]
- Pu, F.; Ren, X.L.; Zhang, X.P. Phenolic compounds and antioxidant activity in fruits of six Diospyros kaki genotypes. Eur. Food Res. Technol. 2013, 237, 923–932. [Google Scholar] [CrossRef]
- Roman, L.; Stanila, A.; Stanila, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.L.; Liu, Y.H.; Liang, W.L.; Chyuan, J.H.; Cheng, K.T.; Liang, W.L.; Hou, W.C. Antioxidant activities of different wild bitter gourd (Momordica charantia L. var. abbreviata Seringe) cultivars. Bot. Stud. 2012, 53, 207–214. [Google Scholar]
- Esfahlan, A.; Jamei, R. Properties of biological activity of ten wild almond (Prunus amygdalus L.) species. Turk. J. Biol. 2012, 36, 201–209. [Google Scholar]
- Bunea, A.; Rugina, D.O.; Pintea, A.M.; Sconta, Z.; Bunea, C.I.; Socaciu, C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 70–76. [Google Scholar]
- Ghafar, M.F.A.; Prasad, K.N.; Weng, K.K.; Ismail, A. Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. Afr. J. Biotechnol. 2010, 9, 326–330. [Google Scholar]
- Isfahlan, A.J.; Mahmoodzadeh, A.; Hassanzadeh, A.; Heidari, R.; Jamei, R. Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells. Turk. J. Biol. 2010, 34, 165–173. [Google Scholar]
- Giovanelli, G.; Buratti, S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Kubota, M.; Ishikawa, C.; Sugiyama, Y.; Fukumoto, S.; Miyagi, T.; Kumazawa, S. Anthocyanins from the fruits of Rubus croceacanthus and Rubus sieboldii, wild berry plants from Okinawa, Japan. J. Food Compos. Anal. 2012, 28, 179–182. [Google Scholar] [CrossRef]
- Mazur, B.; Borowska, E.J.; Polak, M. Content of vitamin C in and antioxidant capacity of wild and cultivated cranberry fruit and of their pulps. Zywnosc Nauka Technol. Jakosc 2009, 16, 130–137. [Google Scholar]
- Vollmannova, A.; Musilova, J.; Toth, T.; Arvay, J.; Bystricka, J.; Medvecky, M.; Daniel, J. Phenolic compounds, antioxidant activity and Cu, Zn, Cd and Pb content in wild and cultivated cranberries and blueberries. Int. J. Environ. Anal. Chem. 2014, 94, 1445–1451. [Google Scholar] [CrossRef]
- Augusto, T.R.; Salinas, E.S.S.; Alencar, S.M.; D'Arce, M.A.B.R.; Camargo, A.C.D.; Vieira, T.M.F.D. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Sci. Technol. 2014, 34, 667–679. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.G.; Schwartz, S.; Konczak, I. Native Australian fruits - a novel source of antioxidants for food. Innov. Food Sci. Emerg. Technol. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Lamien-Meda, A.; Lamien, C.E.; Compaore, M.M.Y.; Meda, R.N.T.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.F.; Nacoulma, O.G. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Fazio, A.; Plastina, P.; Meijerink, J.; Witkamp, R.W.; Gabriele, B. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 2013, 140, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Malta, L.G.; Tessaro, E.P.; Eberlin, M.; Pastore, G.M.; Liu, R.H. Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Res. Int. 2013, 53, 417–425. [Google Scholar] [CrossRef]
- Omena, C.M.B.; Valentim, I.B.; Guedes, G.D.; Rabelo, L.A.; Mano, C.M.; Bechara, E.J.H.; Sawaya, A.C.H.F.; Trevisan, M.T.S.; da Costa, J.G.; Ferreira, R.C.S. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Food Res. Int. 2012, 49, 334–344. [Google Scholar] [CrossRef]
- Santacruz, L.; Carriazo, J.G.; Almanza, O.; Osorio, C. Anthocyanin composition of wild Colombian fruits and antioxidant capacity measurement by electron paramagnetic resonance spectroscopy. J. Agric. Food Chem. 2012, 60, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, A.M.C.; do Prado, G.M.; Magalhaes, C.E.D.C.; Maia, G.A.; de Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Chalise, J.P.; Acharya, K.; Gurung, N.; Bhusal, R.P.; Gurung, R.; Skalko-Basnet, N.; Basnet, P. Antioxidant activity and polyphenol content in edible wild fruits from Nepal. Int. J. Food Sci. Nutr. 2010, 61, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Ndhlala, A.R.; Mupure, C.H.; Chitindingu, K.; Benhura, M.A.; Muchuweti, M. Antioxidant potentials and degrees of polymerization of six wild fruits. Sci. Res. Essays 2006, 1, 87–92. [Google Scholar]
- Genovese, M.I.; Pinto, M.D.S.; Goncalves, A.E.D.S.; Lajolo, F.M. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- Oszmianski, J.; Nowicka, P.; Teleszko, M.; Wojdylo, A.; Cebulak, T.; Oklejewicz, K. Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.B.; Handique, P.J.; Devi, H.S. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India. J. Food Sci. Technol. 2015, 52, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodriguez, B.M.; Sanchez-Moreno, C.; de Ancos, B.; Sanchez-Mata, M.D.; Fernandez-Ruiz, V.; Camara, M.; Tardio, J. Wild Arbutus unedo L. and Rubus ulmifolius Schott fruits are underutilized sources of valuable bioactive compounds with antioxidant capacity. Fruits 2014, 69, 435–448. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, B.M.; de Ancos, B.; Sanchez-Moreno, C.; Fernandez-Ruiz, V.; Sanchez-Mata, M.D.; Camara, M.; Tardio, J. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Fernandes, F.A.N.; Brito, E.S. Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res. Int. 2011, 44, 2072–2075. [Google Scholar] [CrossRef]
- Egea, I.; Sanchez-Bel, P.; Romojaro, F.; Pretel, M.T. Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Food Hum. Nutr. 2010, 65, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ndhlala, A.R.; Chitindingu, K.; Mupure, C.; Murenje, T.; Ndhlala, F.; Benhura, M.A.; Muchuweti, M. Antioxidant properties of methanolic extracts from Diospyros mespiliformis (jackal berry), Flacourtia indica (Batoka plum), Uapaca kirkiana (wild loquat) and Ziziphus mauritiana (yellow berry) fruits. Int. J. Food Sci. Technol. 2008, 43, 284–288. [Google Scholar] [CrossRef]
- Saklani, S.; Badhani, A.; Mishra, A.P.; Chandra, S. Health promoting phytochemicals their concentration and antioxidant activity of wild edible fruits of Uttarakhand, India. Asian. J. Chem. 2012, 24, 5558–5560. [Google Scholar]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Contreras-Calderon, J.; Calderon-Jaimes, L.; Guerra-Hernandez, E.; Garcia-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- De Assis, S.; Vellosa, J.C.R.; Brunetti, I.L.; Khalil, N.M.; Leite, K.M.D.C.; Martins, A.B.G.; Oliveira, O.M.M.D. Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil. Int. J. Food Sci. Nutr. 2009, 60, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.B.; Bonafe, E.G.; Silva, B.C.; Montanher, P.F.; Santos Junior, O.O.; Boeing, J.S.; Visentainer, J.V. Antioxidant capacity, total phenolic content, fatty acids and correlation by principal component analysis of exotic and native fruits from Brazil. J. Braz. Chem. Soc. 2013, 24, 797–804. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Crozier, A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J. Sci. Food Agric. 2003, 83, 496–502. [Google Scholar] [CrossRef]
- Radovanovic, B.C.; Andelkovic, A.S.M.; Radovanovic, A.B.; Andelkovic, M.Z. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Drzewiecki, J.; Haruenkit, R.; Poovarodom, S.; Park, Y.S.; Jung, S.T.; Kang, S.G.; Trakhtenberg, S.; Gorinstein, S. Bioactive properties of snake fruit (Salacca edulis Reinw) and mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. Eur. Food Res. Technol. 2006, 223, 697–703. [Google Scholar] [CrossRef]
- Papandreou, M.A.; Dimakopoulou, A.; Linardaki, Z.I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F.N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav. Brain Res. 2009, 198, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Vearasilp, S.; Haruenkit, R.; Ruamsuke, P.; Katrich, E.; Tashma, Z. Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits in vitro and in vivo studies. Food Res. Int. 2011, 44, 2222–2232. [Google Scholar] [CrossRef]
- Cilerdzic, J.; Vukojevc, J.; Stajic, M.; Stanojkovic, T.; Glamoclija, J. Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J. Ethnopharmacol. 2014, 155, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.E.; Blanco, J.L. Mycosis in domestic animals. Rev. Iberoam. Micol. 2000, 17, 2–7. [Google Scholar]
- Mariem, C.; Sameh, M.; Nadhem, S.; Soumaya, Z.; Najiba, Z.; Raoudha, E.G. Antioxidant and antimicrobial properties of the extracts from Nitraria retusa fruits and their applications to meat product preservation. Ind. Crops Prod. 2014, 55, 295–303. [Google Scholar] [CrossRef]
- Belkhir, M.; Rebai, O.; Dhaouadi, K.; Congiu, F.; Tuberoso, C.; Amri, M.; Fattouch, S. Comparative analysis of Tunisian wild Crataegus azarolus (Yellow Azarole) and Crataegus monogyna (Red Azarole) leaf, fruit, and traditionally derived syrup: Phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. J. Agric. Food Chem. 2013, 61, 9594–9601. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, B.; Koca, U.; Kaya, D.; Sekeroglu, N. Evaluation of the in vitro bioactivities of mahaleb cherry (Prunus mahaleb L.). Romanian Biotech. Lett. 2012, 17, 7863–7872. [Google Scholar]
- Kyung, K.H.; Woo, Y.H.; Kim, D.S.; Park, H.J.; Kim, Y.S. Antimicrobial activity of an edible wild plant, apiifolia Virgin's Bower (Clematis apiifolia DC). Food Sci. Biotechnol. 2007, 16, 1051–1054. [Google Scholar]
- Panlilio, B.G.; Franzblau, S.; Aguinaldo, A.M. Variability of the antitubercular activity of Ampalaya (Momordica charantia L.) from selected provinces in Luzon, Philippines. Philipp. Agric. Sci. 2007, 90, 337–340. [Google Scholar]
- Besbes, M.; Omri, A.; Cheraif, I.; Daami, M.; Ben Jannet, H.; Mastouri, M.; Aouni, M.; Selmi, B. Chemical composition and antimicrobial activity of essential oils from Scabiosa arenaria Forssk growing wild in Tunisia. Chem. Biodivers. 2012, 9, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Waheed, A.; Chaudhary, M.A.; Khan, S.R.; Hannan, A.; Barkaat, M. Nutritional and antimicrobial studies on leaves and fruit of Carissa opaca Stapf ex Haines. Asian J. Chem. 2011, 23, 2072–2076. [Google Scholar]
- Hussain, A.; Qarshi, I.A.; Liaqat, R.; Akhtar, S.; Aziz, I.; Ullah, I.; Shinwari, Z.K. Antimicrobial potential of leaf and fruit extracts and oils of wild and cultivated edible olive. Pak. J. Bot. 2014, 46, 1463–1468. [Google Scholar]
- Hassan, L.E.A.; Sirat, H.M.; Yagi, S.M.A.; Koko, W.S.; Abdelwahab, S.I. In vitro antimicrobial activities of chloroformic, hexane and ethanolic extracts of Citrullus lanatus var. citroides (wild melon). J. Med. Plants Res. 2011, 5, 1338–1344. [Google Scholar]
- McCook-Russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-Forbes, C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem. 2012, 134, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Cesoniene, L.; Jasutiene, I.; Sarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Med. Lith. 2009, 45, 992–999. [Google Scholar]
- Turker, A.U.; Yildirim, A.B.; Karakas, F.P. Antibacterial and antitumor activities of some wild fruits grown in Turkey. Biotechnol. Biotechnol. Equip. 2011, 26, 2765–2772. [Google Scholar] [CrossRef]
- Pio-Leon, J.F.; Diaz-Camacho, S.P.; Lopez-Lopez, M.A.; Uribe-Beltran, M.D.; Willms, K.; Lopez-Angulo, G.; Montes-Avila, J.; Delgado-Vargas, F. Antibacterial activity of extracts obtained from the nanchi (Byrsonima crassifolia (L.) Kunth), arrayan (Psidium sartorianum (O. Berg) Nied.) and ayale (Crescentia alata Kunth) fruits. Bol. Latinoam. Caribe Plantas Med. 2013, 12, 356–364. [Google Scholar]
- Adeola, A.A.; Adeola, O.O.; Dosumu, O.O. Comparative analyses of phytochemicals and antimicrobial properties of extracts of wild Tamarindus indica pulps. Afr. J. Microbiol. Res. 2010, 4, 2769–2779. [Google Scholar]
- Lu, Y.L.; Liu, Y.H.; Liang, W.L.; Chuang, J.H.; Cheng, K.T.; Liang, H.J.; Hou, W.C. Antibacterial and cytotoxic activities of different wild bitter gourd cultivars (Momordica charantia L. var. abbreviata Seringe). Bot. Stud. 2011, 52, 427–434. [Google Scholar]
- Boughalleb, N.; Trabelsi, L.; Harzallah-Skhiri, F. Antifungal activity from polar and non-polar extracts of some Chenopodiaceae wild species growing in Tunisia. Nat. Prod. Res. 2009, 23, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Knox, Y.M.; Suzutani, T.; Yosida, I.; Azuma, M. Anti-influenza virus activity of crude extract of Ribes nigrum L. Phytother. Res. 2003, 17, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Nikolaeva-Glomb, L.; Mukova, L.; Nikolova, N.; Badjakov, I.; Dincheva, I.; Kondakova, V.; Doumanova, L.; Galabov, A.S. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae. Nat. Prod. Commun. 2014, 9, 51–54. [Google Scholar] [PubMed]
- Cuevas-Rodriguez, E.O.; Dia, V.P.; Yousef, G.G.; Garcia-Saucedo, P.A.; Lopez-Medina, J.; Paredes-Lopez, O.; Gonzalez De Mejia, E.; Lila, M.A. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts. J. Agric. Food Chem. 2010, 58, 9542–9548. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.S.; Single, D.; Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992, 258, 1892–1902. [Google Scholar] [CrossRef]
- Varesio, L.; Battaglia, F.; Raggi, F.L.B.; Bosco, M.C. Macrophage inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Mol. Immunol. 2010, 47, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Mulabagal, V.; Liu, Y.; Nair, M.G. Ursolic acid analogues: non-phenolic functional food components in Jamaican raspberry fruits. Food Chem. 2009, 116, 633–637. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Dunlap, K.L.; Lila, M.A. Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium Berries. J. Agric. Food Chem. 2014, 62, 4007–4017. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: The control of NF-kappa B activity. Annu. Rev. Immunol. 2000, 18, 621–663. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-κB system: A treasure trove for drug development. Nat. Rev. Drug Discov. 2004, 3, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Thakali, K.M.; Jensen, G.S.; Wu, X.L. Phenolic acids of the two major blueberry species in the US market and their antioxidant and anti-inflammatory activities. Plant Food Hum. Nutr. 2015, 70, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Tsai, T.H.; Li, Y.Y.; Wu, W.H.; Huang, C.J.; Tsai, P.J. Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chem. 2012, 135, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, C.L.; Alarcon, J.; Avila, J.; Nieto, A. Anti-inflammatory activity of Aristotelia chilensis Mol. (Stuntz) (Elaeocarpaceae). Bol. Latinoam. Caribe Plantas Med. 2010, 9, 127–135. [Google Scholar]
- Cespedes, C.L.; Alarcon, J.; Avila, J.; El-Hafidi, M. Anti-inflammatory, antioedema and gastroprotective activities of Aristotelia chilensis extracts, Part 2. Bol. Latinoam. Caribe Plantas Med. 2010, 9, 432–439. [Google Scholar]
- Do Nascimento, G.E.; Hamm, L.A.; Baggio, C.H.; Werner, M.F.D.; Iacomini, M.; Cordeiro, L.M.C. Structure of a galactoarabinoglucuronoxylan from tamarillo (Solanum betaceum), a tropical exotic fruit, and its biological activity. Food Chem. 2013, 141, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.F.; Sun, J.; Wu, X.Z.; Liu, R.H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem. 2002, 50, 6910–6916. [Google Scholar] [CrossRef]
- Liu, R.H. Health benefits of fruits and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [PubMed]
- Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Wu, S.; Xu, X.R.; Chen, F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods 2013, 5, 1298–1309. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Xu, X.R. Antiproliferative activities of tea and herbal infusions. Food Funct. 2013, 4, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.M.; Howell, A.B.; McEniry, B.; Knight, C.T.; Seigler, D.; Erdman, J.W.; Lila, M.A. Effective separation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits. J. Agric. Food Chem. 2004, 52, 6433–6442. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Dangwal, K.A.; Singh, H.; Garg, V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol. 2014, 51, 3369–3375. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lewers, K.S.; Bowman, L.; Ding, M. Antioxidant activities and anticancer cell proliferation properties of wild strawberries. J. Am. Soc. Hortic. Sci. 2007, 132, 647–658. [Google Scholar]
- Liu, X.C.; Liu, Q.; Chen, X.B.; Zhou, L.; Liu, Z.L. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag. Sci. 2015, 71, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Hassan, L.E.A.; Koko, W.S.; Osman, E.B.E.; Dahab, M.M.; Sirat, H.M. In vitro antigiardial activity of Citrullus lanatus Var. citroides extracts and cucurbitacins isolated compounds. J. Med. Plants Res. 2011, 5, 3338–3346. [Google Scholar]
- Wang, C.F.; Yang, K.; Zhang, H.M.; Cao, J.; Fang, R.; Liu, Z.L.; Du, S.S.; Wang, Y.Y.; Deng, Z.W.; Zhou, L.G. Components and insecticidal activity against the Maize Weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 2011, 16, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Jiang, C.H.; Wang, X.Y.; Zhang, H.M.; Liu, Z.L.; Zhou, L.; Du, S.S.; Deng, Z.W. Insecticidal activity of essential oil of Carum Carvi fruits from China and its main components against two grain storage insects. Molecules 2010, 15, 9391–9402. [Google Scholar] [CrossRef] [PubMed]
- Nde, C.; Njamen, D.; Mbanya, J.C.; Zierau, O.; Vollmer, G.; Fommn, Z.T. Estrogenic effects of a methanol extract of the fruit of Brenania brieyi de Wild (Rubiaceae). J. Nat. Med. 2007, 61, 86–89. [Google Scholar]
- Harris, C.S.; Cuerrier, A.; Lamont, E.; Haddad, P.S.; Arnason, J.T.; Bennett, S.A.L.; Johns, T. Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: Chemical correlates of in vitro antiglycation activity. Plant Food Hum. Nutr. 2014, 69, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.Y.; Yang, Y.N.; Zu, X.Y.; Guan, D.; Wang, Y.P. Diuretic activity of Rubus idaeus L. (Rosaceae) in rats. Trop. J. Pharm. Res. 2011, 10, 243–248. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Namiesnik, J.; Vearasilp, K.; Nemirovski, A.; Leontowicz, H.; Leontowicz, M.; Pasko, P.; Martinez-Ayala, A.L.; Gonzalez-Aguilar, G.A.; Suhaj, M.; Gorinstein, S. In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin. Appl. Biochem. Biotechnol. 2014, 172, 2849–2865. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; Lima, L.C.D.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.; Sengul, M.; Celik, F.; Hegedus, A.; Ercisli, S.; Tosun, M. Some phytochemical and antioxidant characteristics of wild and cultivated blackberry (Rubus caucasicus) fruits. J. Food Agric. Environ. 2010, 8, 156–159. [Google Scholar]
Wild Fruits | Bioactive Compounds | Effects | References |
---|---|---|---|
56 wild fruits from South China | polyphenols | antioxidant activity | [3] |
Prunus mahaleb | total anthocyanin and phenolics | scavenging free radicals (oxygen radicals) | [27] |
Psidium acutangulum | phenolics, citric, annurcoic, ω3, ω6, ω9 fatty acids, and ascorbic acid | scavenging free radicals (DPPH, ABTS) | [28] |
Sorbus torminalis | phenolic compounds | scavenging free radicals (ABTS, superoxide anion radicals), antioxidant activity | [29] |
Ziziphus mistol | polyphenols | scavenging free radicals (ABTS, DPPH, superoxide and hydroxyl radicals) | [30] |
Annona cherimola | not mentioned | scavenging free radicals (DPPH, ABTS), antioxidant activity, inhibition of lipid peroxidation | [31] |
Myrica esculenta | polyphenols | scavenging free radicals (DPPH, ABTS), antioxidant activity | [32] |
Vaccinium meridionale | phenolic compounds | scavenging free radicals (ABTS), antioxidant activity | [33] |
Lycium ruthenicum | polyphenols | scavenging free radicals (DPPH, ABTS), antioxidant activity | [34] |
Malpighia ernarginata | phenolic acids | scavenging free radicals (DPPH, ABTS, oxygen radical) | [35] |
Morus rubra | not mentioned | antioxidant activity | [36] |
Bunium persicum | Phenolics and flavonoids | scavenging free radicals (DPPH), antioxidant activity | [37] |
Elaeagnus latifolia | phenolics and flavonoids | scavenging hydroxyl radicals, superoxide radicals, singlet oxygen radicals, hypochlorous acid | [38] |
Solanum incanum | 3-O-acetyl-and4-O-acetyl-5-O-(E)-caffeoylquinic acids | scavenging free radicals (ABTS, DPPH) and iron chelation activity | [39] |
Rosa canina | α-tocopherol, β-carotene, reducing sugar, and ascorbic acid | scavenging free radicals (DPPH), reducing power, inhibition of β-carotene bleaching and lipid peroxidation | [40] |
Mespilus germanica | not mentioned | scavenging nitric oxide and H2O2 radicals, inhibition of lipid peroxidation | [41] |
Aristotelia chilensis | phenolics | scavenging free radicals (DPPH, superoxide radicals, oxygen radicals), antioxidant activity, inhibition of lipid peroxidation | [42] |
Myrtus communis | not mentioned | scavenging free radicals (DPPH, β-carotene-linoleic acid) | [43] |
Rubus hirsutus | Phenolics and flavonoids | scavenging free radicals (DPPH), antioxidant activity | [44] |
Piper capense | not mentioned | scavenging free radicals (ABTS) | [45] |
Vitis coignetiae | anthocyanins | scavenging free radicals (ABTS, DPPH) | [46] |
Syzygium cumini | phenolics, tannins, and anthocyanins | scavenging free radicals (DPPH, hydroxyl radical and superoxide radical), inhibition of lipid peroxidation | [48] |
Vatis amurensis | catechin, epicatechin, 4-methyl-catechol, gallic, protocatechuic, chlorogenic, caffeic, p-coumaric, and syringic acids | scavenging superoxide radicals | [49] |
14 wild genotypes of Citrus reticulata | not mentioned | scavenging free radicals (DPPH, ABTS, oxygen radicals), antioxidant activity | [50] |
10 crabapples (Malus wild species) | polyphenols, flavonoids | scavenging free radicals (DPPH, ABTS), antioxidant activity | [51] |
C. speciosa, C. thibetica, C. cathayensis, C. sinensis, C. japonica | polyphenols | scavenging free radicals (DPPH, ABTS), antioxidant activity | [52] |
wild genotype of Vaccinium spp. | anthocyanin, polyphenols | scavenging free radicals (ABTS, superoxide anion and hydroxyl radical) | [53] |
Hypericum perforatum, Hypericum scabrum | α-pinene | scavenging free radicals (DPPH), inhibition of β-carotene bleaching | [54] |
wild Fragaria genotypes | not mentioned | antioxidant activity | [55] |
Ensete superbum | Phenolics and tannin | scavenging free radicals (DPPH, ABTS), antioxidant activity | [56] |
Fragaria vesca | phenolics | scavenging free radicals (DPPH), antioxidant activity | [57] |
Fragaria vesca | not mentioned | scavenging free radicals (DPPH) | [58] |
wild strawberries | not mentioned | antioxidant activity | [59] |
2 wild raspberries | not mentioned | scavenging free radicals (DPPH, ABTS), antioxidant activity | [60] |
6 genotypes of Diospyros kaki | gallic acid, vanillic acid, caffeic acid, syringic acid, and quercetin | scavenging free radicals (DPPH, ABTS, hydroxyl radical), antioxidant activity | [61] |
Rosa canina | polyphenols and vitamin C | scavenging free radicals (DPPH) | [62] |
Momordica charantia | not mentioned | scavenging free radicals (DPPH, hydroxyl radicals), protection against Cu2+-induced low-density-lipoprotein peroxidation | [63] |
Prunus amygdalus | not mentioned | scavenging free radicals (DPPH), reducing power | [64] |
2 wild blueberries | polyphenols | scavenging free radicals (DPPH, ABTS, oxygen radicals), antioxidant activity | [65] |
Citrus hystrix | phenolics | scavenging free radicals (DPPH), antioxidant activity | [66] |
Amygdalus lycioides, Amygdalus kotschyi, Amygdalus pabotti, Amygdalus trichamygdalus | phenolics | scavenging free radicals (nitrite, hydrogen peroxide, superoxide radicals), reducing power | [67] |
Vaccinium miyrtillus | phenolics | scavenging free radicals (DPPH), antioxidant activity | [68] |
Rubus croceacanthus and Rubus sieboldii | anthocyanins, ascorbic acid | scavenging oxygen radicals | [69] |
wild cranberry | not mentioned | scavenging free radicals (ABTS) | [70] |
wild blueberry and cranberry | not mentioned | scavenging free radicals (DPPH) | [71] |
Ugni molinae | polyphenols | scavenging free radicals (DPPH, ABTS) | [72] |
12 native Australian fruits | total phenolics | scavenging free radicals | [73] |
14 species of wild fruits | phenolics and flavonoids | scavenging free radicals (DPPH, ABTS), antioxidant activity | [74] |
Rubus ulmifolius and Sambucus nigra | phenolics | scavenging free radicals (DPPH) | [75] |
Campomanesia cambessedeana, Byrsonoma verbascifolia, Pouteria guardneriana | phenolics and flavonoids | scavenging free radicals (oxygen radicals, peroxyl radicals), cellular antioxidant activity | [76] |
Genipa americana, Spondia tuberose, Spondia purpurea | chlorogenic acid | scavenging free radicals (ABTS), antioxidant activity, inhibition of lipid peroxidation in a biomimetic membrane system and mouse liver, inhibition of lipid peroxidation in mouse liver | [77] |
Rubus megalococcus, Myrciaria aft cauliflora, Hyeronima macrocarpa | anthocyanin | scavenging free radicals (ABTS, DPPH) | [78] |
11 exotic fruits from Brazil | phenolics | scavenging free radicals (DPPH, ABTS) | [79] |
15 wild fruits | polyphenols | scavenging free radicals (DPPH) | [80] |
Ximenia caffra, Sclerocarya birrea, Parinari curatellifolia, Vitex payos, Bridelia molis, Berchemia zeyheri | not mentioned | scavenging free radicals (DPPH, superoxide anion radical), reducing power, inhibition of phospholipids peroxidation | [81] |
cambuci, araca-boi, camu-camu, jaracatia, araca | not mentioned | scavenging free radicals (DPPH) | [82] |
23 wild blueberry fruits | phenolic compounds | scavenging free radicals (ABTS), antioxidant activity | [83] |
Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola | phenolics | antioxidant activity | [84] |
Arbutus unedo, Rubus ulmifolius | phenolic acids, anthocyanins, ascorbic acid | scavenging free radicals (ABTS, DPPH), antioxidant activity | [85] |
Prunus spinosa and Crataegus monogyna | phenolic compounds | scavenging free radicals (DPPH, ABTS), antioxidant activity | [86] |
wild bacuri, caja, camu-camu, carnauba, gurguri, jabuticaba, jambolao, jucara, murta, black puca and puca fruits | not mentioned | scavenging free radicals (DPPH) | [87] |
Crataegus azarolus, Crataegus monogyna, Prunus spinosa, Rosa canina, Rubus ulmifolius, Sorbus domestica | Phenolics and carotenoids | scavenging free radicals (ABTS, H2O2) | [88] |
Diospyros mespiliformis, Flacourtia indica, Uapaca kirkiana and Ziziphus mauritiana | not mentioned | scavenging free radicals (DPPH, superoxide anion radical), reducing power | [89] |
Fragaria indica, Prunus armeniaca, Pyracantha crenulata and Rubus ellipticus | not mentioned | scavenging free radicals (DPPH, ABTS), antioxidant activity | [90] |
20 exotic fruits | not mentioned | scavenging free radicals (DPPH, ABTS, oxygen radicals), antioxidant activity | [91] |
24 exotic Colombian fruits | soluble phenolics | scavenging free radicals (ABTS), antioxidant activity | [92] |
wild abiu, acerola, wax jambu, cashew, mamey sapote, carambola or star fruit, Surinam cherry, longan, sapodilla and jaboticaba fruits | not mentioned | scavenging free radicals (hypochlorous acid, ABTS, and DPPH) | [93] |
exotic araca-boi, cajamanga, sirihuela, dovialis, landim, murici, tomatinho do mato fruits | phenolics | scavenging free radicals (ABTS, DPPH), antioxidant activity | [94] |
17 exotic fruits | phenolics and proanthocyanidins | antioxidant activity | [95] |
Cornus mas, Prunus spinosa, Rubus fruticosus | polyphenolics | scavenging free radicals | [96] |
Salacca edulis Reinw, Garcinia mangostana | phenolics | hindering the rise in plasma lipids and decrease of antioxidant activity in rats fed with cholesterol | [97] |
Vaccinium angustifolium | polyphenols | improving brain antioxidant properties in mice (antioxidant activity, improving ascorbic acid concentration and glutathione levels, reducing lipid peroxidation products) | [98] |
wild durian, snake fruit and mangosteen | not mentioned | scavenging free radicals (ABTS, DPPH), antioxidant activity | [99] |
Wild Fruits | Bioactive Compounds | Effects | References |
---|---|---|---|
Hypericum perforatum, Hypericum scabrum | not mentioned | inhibition of S. aureus and E. coli | [54] |
Cornus mas, Prunus spinosa, Rubus fruticosus | polyphenols | inhibition of all the tested bacterial strains | [96] |
Piper capense | not mentioned | inhibition of S. aureus, E. faecalis, and C. albicans | [45] |
Nitraria retusa | not mentioned | inhibition of S. typhimurium, K. pneumonia, and B. thuringiensis | [102] |
Crataegus azarolus | phenolics | inhibition of S. aureus and S. faecalis | [103] |
Prunus mahaleb | not mentioned | inhibition of some Gram (+) and Gram (−) bacteria and fungi | [104] |
Clematis apiifolia | protoanemonin | inhibition of various yeasts and non-lactic acid bacteria | [105] |
Momordica charantia | not mentioned | inhibition of Mycobacterium tuberculosis | [106] |
Scabiosa arenaria | not mentioned | inhibition of some bacteria, Candida species, and phytopathogenic fungi | [107] |
Carissa opaca | not mentioned | inhibition of some bacteria | [108] |
Olea ferruginea | not mentioned | inhibition of some Gram (+) and Gram (−) bacteria | [109] |
Citrullus lanatus | not mentioned | inhibition of S. aureus, B. subtilis, P. valgaris, and P. aerguinosa | [110] |
Psidium cattleianum | not mentioned | inhibition of B. subtilis and S. aureus | [111] |
Ribes nigrum L. | not mentioned | inhibition influenza virus types A and B | [118] |
Viburnum lantana, Pyracantha coccinea, Crataegus monogyna | not mentioned | inhibition of S. aureus, S. epidermidis, and S. pyogenes | [113] |
Byrsonima crassifolia, Psidium sartorianum, Crescentia alata | not mentioned | inhibition of E. coli, Salmonella spp., Shigella spp., and S. aureus | [114] |
Tamarindus indica | not mentioned | inhibition of some human pathogenic microorganisms | [115] |
Momordica charantia | not mentioned | inhibition of E. coli and Salmonella enterica | [116] |
Atriplex inflata | not mentioned | inhibition of Botrytis cinerea | [117] |
Fragaria vesca, Rubus idaeus, Vaccinium myrtillis, Vaccinium vitis-idaea | anthocyanins | inhibition of the replication of coxsackie virus B1 and influenza virus A/H3N2 | [119] |
wild European cranberry | not mentioned | inhibition of E. coli and S. typhimurium, E. faecalis, Listeria monocytogenes, S. aureus, and B. subtilis | [112] |
Wild Fruits | Bioactive Compounds | Effects | References |
---|---|---|---|
Ziziphus mistol | not mentioned | inhibition of LOX activity | [30] |
Rubus ulmifolius, Sambucus nigra | not mentioned | inhibition of LPS-induced inflammatory mediators (NO, CCL20) | [75] |
Psidium cattleianum | not mentioned | inhibition expression of COX-2 enzyme | [111] |
wild blueberry (Rubus spp.) | anthocyanin-rich, proanthocyanidin-rich, and polyphenolic-rich fraction | inhibition expression of COX-2, NO, and iNOS | [120] |
Rubus jamaicensis, Rubus rosifolius, Rubus racemosus | not mentioned | inhibition the expression of COX-1 and COX-2 enzymes | [123] |
Rubus rosifolius | ursolic acid analogues | inhibition expression of COX-1 enzyme | [124] |
Vaccinium vitis-idaea, Vaccinium uliginosum | polyphenol-rich fraction | inhibition of LPS-elicited induction of IL-1 β in RAW 264.7 cells | [125] |
Vaccinium angustifolium | phenolic acids | inhibiting NF-κB activation and production of inflammatory cytokines (TNF-α and IL-6) | [128] |
Momordica charantia | phytol and lutein | suppressing pro-inflammatory cytokine and MMP-9 levels, attenuating P. acnes-induced ear swelling and granulomatous inflammation in mice | [129] |
Aristotelia chilensis | not mentioned | inhibition of carrageenan-induced inflammation in ear of the mouse edema in TPA inflammation mode | [130,131] |
Solanum betaceum | not mentioned | antinociceptive effect on inflammatory pain mice models | [132] |
Wild Fruits | Bioactive Compounds | Effects | References |
---|---|---|---|
Campomanesia cambessedeana, Byrsonoma verbascifolia, Pouteria guardneriana | phenolic compounds | inhibiting growth of HepG2 human liver cancer cells | [77] |
Piper capense | essential oil | inhibiting growth of human breast adenocarcinoma, malignant melanoma, and colon carcinoma cells | [45] |
Rubus caesius, Viburnum lantana, Crataegus monogyna, Crataegus tanacetifolia | not mentioned | inhibition of tumor cells | [114] |
Momordica charantia | not mentioned | cytotoxic activities on human fibrosarcoma HT 1080 cells | [117] |
Rubus rosifolius | hyptatic acid B, 4-epi-nigaichigoside F1 | inhibiting growth of colon tumor cells | [124] |
Vaccinium angustifolium | oligomeric proanthocyanidins fraction | inhibiting growth of human prostate and mouse liver cancer cell lines | [139] |
Rubus ellipticus | not mentioned | inhibiting growth of human cervical cancer cells (C33A) | [140] |
Fragaria virginiana, F. chiloensis, F. xananassa | not mentioned | inhibiting growth of A549 human lung epithelial cancer cells | [141] |
Wild Fruits | Bioactive Compounds | Effects | References |
---|---|---|---|
Sorbus torminalis | not mentioned | antiacetylcholinesterase activity | [29] |
Genipa americana, Spondia tuberosa, Spondia purpurea | chlorogenic acid | antiacetylcholinesterase activity | [78] |
Elaeagnus latifolia | phenolic and flavonoid compounds | protection of pUC18 DNA | [37] |
Vaccinium angustifolium | polyphenol-rich extract | decreasing acetylcholinesterase activity and enhancing cognition in adult mice | [98] |
Aristotelia chilensis | aglycone and phenolic compounds | inhibition of the carrageenan- induced inflammation in the paw rat and gastroprotective activity in rats | [131] |
Tetradium glabrifolium | 2-tridecanone, 2-undecanone and d-limonene | larvicidal activity against the early fourth-instar larvae of A. albopictus | [142] |
Citrullus lanatus | cucurbitacin E, cucurbitacin L 2-O-β-glucoside | antigiardial activities | [143] |
Zanthoxylum schinifolium | estragole, linalool and sabinene | fumigant toxicity against S. zeamais | [144] |
Carum carvi | (R)-carvone and d-limonene | contact toxicity against S. and T. castaneum adults | [145] |
Brenania brieyi | not mentioned | estrogenic effects | [146] |
12 species of wild berries | phenolics, anthocyanins | antiglycation activity | [147] |
Rubus idaeus | not mentioned | diuretic activity | [148] |
Bioactivity | Wild Berry | Effects | References |
---|---|---|---|
antioxidant activity | Rubus megalococcus | scavenging free radical | [78] |
Rubus ulmifolius | scavenging free radicals (ABTS, DPPH, H2O2), antioxidant activity | [85,88] | |
Rubus hirsutus | scavenging free radicals (DPPH), antioxidant activity | [44] | |
Rubus ellipticus | scavenging free radicals (DPPH, ABTS), antioxidant activity | [90] | |
Rubus croceacanthus, Rubus sieboldii | scavenging oxygen radicals | [69] | |
Rubus fruticosus | scavenging free radical (DPPH) | [96] | |
Rubus caucasicus | antioxidant activity in β-carotene-linoleic acid, DPPH free radical scavenging, and FRAP assays | [152] | |
Vaccinium meridionale | scavenging free radical (ABTS), antioxidant activity | [33] | |
wild genotype of Vaccinium spp. | scavenging free radicals (ABTS, superoxide anion, and hydroxyl radical) | [53] | |
Vaccinium angustifolium | improving brain antioxidant properties in mice (antioxidant activity, improving ascorbic acid concentration, reducing glutathione levels, reducing lipid peroxidation products) | [98] | |
Vaccinium miyrtillus | scavenging free radicals (DPPH), antioxidant activity | [68] | |
Sorbus torminalis | scavenging free radicals (ABTS, superoxide anion radicals), antioxidant activity | [29] | |
Sambucus nigra | scavenging free radicals (DPPH) | [75] | |
Fragaria vesca | scavenging free radicals (DPPH), antioxidant activity | [57,58] | |
Sorbus domestica | scavenging free radicals (ABTS, H2O2) | [88] | |
Fragaria indica | scavenging free radicals (DPPH, ABTS), antioxidant activity | [90] | |
Vitis coignetiae | scavenging free radicals (ABTS, DPPH) | [46] | |
antimicrobial activity | wild European cranberry | inhibition of E. coli and S. typhimurium, E. faecalis, Listeria monocytogenes, S. aureus, and B. subtilis | [112] |
Rubus fruticosus | inhibition of all the tested bacterial strains | [96] | |
Fragaria vesca, Rubus idaeus, Vaccinium myrtillis, Vaccinium vitis-idaea | inhibition the replication of coxsackie virus B1 and influenza virus A/H3N2 | [119] | |
anti-inflammatory activity | Rubus ulmifolius, Sambucus nigra | inhibition of LPS-induced inflammatory mediators (NO, CCL20) | [75] |
Rubus jamaicensis, Rubus rosifolius, Rubus racemosus | inhibition the expression of COX-1 and COX-2 enzymes | [123] | |
Rubus rosifolius | inhibition expression of COX-1 enzyme | [124] | |
Vaccinium vitis-idaea, Vaccinium uliginosum | inhibition of LPS-elicited induction of IL-1 β in RAW 264.7 cells | [125] | |
Vaccinium angustifolium | inhibiting NF-κB activation and production of inflammatory cytokines (TNF-α and IL-6) | [128] | |
anticancer activity | Rubus caesius | inhibition of tumor cells | [114] |
Rubus rosifolius | inhibiting growth of colon tumor cells | [124] | |
Vaccinium angustifolium | inhibiting growth of human prostate and mouse liver cancer cell lines | [139] | |
Rubus ellipticus | inhibiting growth of human cervical cancer cells (C33A) | [140] | |
Fragaria virginiana, F. chiloensis, F. xananassa | inhibiting growth of A549 human lung epithelial cancer cells | [141] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, J.-J.; Xu, D.-P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.-B. Bioactivities and Health Benefits of Wild Fruits. Int. J. Mol. Sci. 2016, 17, 1258. https://doi.org/10.3390/ijms17081258
Li Y, Zhang J-J, Xu D-P, Zhou T, Zhou Y, Li S, Li H-B. Bioactivities and Health Benefits of Wild Fruits. International Journal of Molecular Sciences. 2016; 17(8):1258. https://doi.org/10.3390/ijms17081258
Chicago/Turabian StyleLi, Ya, Jiao-Jiao Zhang, Dong-Ping Xu, Tong Zhou, Yue Zhou, Sha Li, and Hua-Bin Li. 2016. "Bioactivities and Health Benefits of Wild Fruits" International Journal of Molecular Sciences 17, no. 8: 1258. https://doi.org/10.3390/ijms17081258