Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Solution
4. Results and Discussion
5. Conclusions
- The heat transfer rate increases by enhancing in the strength of solid volume fraction to
- The stretching Reynolds number decreases the velocity profile near the lower wall of the channel for spherical and cylindrical shape of nanoparticles.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
External uniform magnetic field | |
Pressure (Pa) | |
Thermal conductivity of the solid fraction (W/m·K) | |
Thermal conductivity of the nanofluid (W/m·K) | |
Density of the solid fraction (Kg/m3) | |
Specific heat of nanofluid | |
Fluid temperature (K or °C) | |
Injection/suction | |
Thermal conductivity of the fluid (W/m·K) | |
Thermal conductivity of the nanofluid (W/m·K) | |
Shape factor through H-C Model | |
Specific heat at constant pressure (J/kg·K) | |
Velocity component in Cartesian coordinate | |
Greek symbols | |
Scaled boundary layer coordinate | |
Effective electrical conductivity of nanofluid (S.m-1) | |
Dynamic viscosity | |
Self-similar temperature | |
Nanoparticle volume fraction parameter | |
Effective dynamic viscosity of nanofluid | |
Density (kg/m3) | |
Dimensionless numbers | |
Stretching Reynolds number | |
Prandtl number | |
Density of the nanofluid | |
Magnetic parameter | |
Dynamic viscosity of the nanofluid (Pa·s) | |
Ratio of effective electrical conductivity of nanofluid to the base fluid | |
Subscripts | |
Nanofluid | |
Solid phase | |
Upper wall | |
Fluid phase | |
Lower wall |
References
- Maxwell, J.C. Electricity and Magnetism, 3rd ed.; Clarendon Press: Oxford, England, UK, 1904. [Google Scholar]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Wasp, E.J.; Kenny, J.P.; Gandhi, R.L. Solid-Liquid Flow Slurry Pipeline Transportation; Series on Bulk Materials Handling; Trans. Tech. Publications: Clausthal, Germany, 1977; Volume 1. [Google Scholar]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticle. In Developments and Applications of Non-Newtonian Flows, ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; Siginer, D.A., Wang, H.P., Eds.; pp. 99–105.
- Choi, S.U.S.; Zhang, Z.G.; Yu, W.; Lockwood, F.E.; Grulke, E.A. Anomalously thermal conductivity enhancement in nanotube suspensions. App. Phys. Lett. 2001, 79, 2252–2254. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Sarkar, J. A critical review on convective heat transfer correlations of nano- fluids. Renew. Sust. Energ. Rev. 2011, 15, 3271–3277. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transfer 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Heris, S.Z.; Esfahany, M.N.; Etemad, S.G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. Heat Fluid Flow 2007, 28, 203–210. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Sommers, A.D.; Yerkes, K.L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanopart. Res. 2010, 12, 1003–1014. [Google Scholar] [CrossRef]
- Wen, D.S.; Ding, Y.L. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transfer 2004, 47, 5181–5188. [Google Scholar] [CrossRef]
- Xuan, Y.M.; Li, Q. Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transfer 2003, 125, 151–155. [Google Scholar] [CrossRef]
- Fard, M.H.; Esfahany, M.N.; Talaie, M.R. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int. Commun. Heat Mass Transfer 2010, 37, 91–97. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Nield, D.A. Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 2010, 49, 243–247. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ashorynejad, H.R.; Domairry, G.; Hashim, I. Flow and heat transfer of Cu-water nanofluid between a stretching sheet and a porous surface in a rotating system. J. Appl. Math 2012. [Google Scholar] [CrossRef]
- Raza, J.; Rohni, A.M.; Omar, Z. A Note on Some Solutions of Copper-Water (Cu-Water) Nanofluids in a Channel with Slowly Expanding or Contracting Walls with Heat Transfer. Math. Comput. Appl. 2016, 21. [Google Scholar] [CrossRef]
- Domairry, D.; Sheikholeslami, M.; Ashorynejad, H.R.; Subba, R.; Gorla, R.; Khani, M. Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates. J. Nanomater. Nanoeng. Nanosyst. 2012, 225, 115–122. [Google Scholar] [CrossRef]
- Raza, J.; Rohni, A.M.; Omar, Z. MHD flow and heat transfer of Cu-water nanofluid in a semi porous channel with stretching walls. Int. J. Heat Mass Transfer 2016, 103, 336–340. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Rashidi, M.M.; Ganji, D.D. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liq. 2015, 212, 117–126. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput. Methods Appl. Mech. Eng. 2015, 283, 651–663. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D.; Javed, M.Y.; Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 2015, 374, 36–43. [Google Scholar] [CrossRef]
- Freidoonimehr, N.; Rashidi, M.M.; Mahmud, S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int. J. Therm. Sci. 2015, 87, 136–145. [Google Scholar] [CrossRef]
- Akbar, M.Z.; Ashraf, M.; Iqbal, M.F.; Ali, K. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium. AIP Advances 2016, 6, 045222. [Google Scholar] [CrossRef]
- Garoosi, F.; Jahanshaloo, L.; Rashidi, M.M.; Badakhsh, A.; Ali, M.E. Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl. Math. Comput. 2015, 254, 183–203. [Google Scholar] [CrossRef]
- Yu, S.; Ameel, T.A. Slip-flow heat transfer in rectangular microchannels. Int. J. Heat Mass Transfer 2001, 44, 4225–4234. [Google Scholar] [CrossRef]
- Watannebe, K.; Mizunuma, Y.H. Slip of Newtonian Fluids at Solid Boundary. JSME Int. J. Series B Fluids Therm. Eng. 1998, 41, 525–532. [Google Scholar] [CrossRef]
- Jain, S.R.; Sharma, P.K. Effect of Viscous Heating on Flow past a Vertical Plate in Slip-Flow Regime without Periodic Temperature Variations. J. Rajasthan Acad. Phys. Sci. 2006, 5, 383–398. [Google Scholar]
- Khaled, A.R.A.; Vafai, K. The Effect of the Slip Condition on Stokes and Couette Flows Due to an Oscillating Wall: Exact solutions. Int. J. Non-Linear Mech. 2004, 39, 759–809. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Meade, D.B.; Haran, B.S.; White, R.E. The shooting technique for the solution of two-point boundary value problems. Maple Tech. Newsl. 1996, 3, 1–8. [Google Scholar]
Density ρ (kg/m3) | Specific heat at constant pressure (J/kg·K) | Thermal conductivity (W/m·K) | Electrical conductivity (S·m–1) | |
---|---|---|---|---|
Pure water | 991.1 | 4179 | 0.613 | 0.05 |
Copper (Cu) | 8933 | 385 | 401 | |
Alumina () | 3970 | 765 | 40 | |
Silver (Ag) | 10500 | 235 | 429 | |
Titanium Oxide | 4250 | 686.2 | 8.9538 |
Solid Volume Fraction | Magnetic Parameter | Reynolds Number | Suction Parameter | Velocity Slip Condition | Thermal Slip Condition | Heat transfer Rate |
---|---|---|---|---|---|---|
0.01 | 0.5 | 4 | 1 | 0.1 | 0.1 | -4.964682800390394 |
0.03 | -4.795613667915525 | |||||
0.05 | -4.629249877087038 | |||||
0.1 | -4.225974478882998 |
Solid Volume Fraction | Magnetic Parameter | Reynolds Number | Suction Parameter | Velocity Slip Condition | Thermal Slip Condition | Heat transfer Rate |
---|---|---|---|---|---|---|
0.01 | 0.5 | 4 | 1 | 0.3 | 0.2 | -3.2951491963380715 |
0.03 | -3.218220931297281 | |||||
0.05 | -3.141039169488954 | |||||
0.1 | -2.947344452998095 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, J.; Rohni, A.M.; Omar, Z. Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects. Math. Comput. Appl. 2016, 21, 43. https://doi.org/10.3390/mca21040043
Raza J, Rohni AM, Omar Z. Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects. Mathematical and Computational Applications. 2016; 21(4):43. https://doi.org/10.3390/mca21040043
Chicago/Turabian StyleRaza, Jawad, Azizah Mohd Rohni, and Zurni Omar. 2016. "Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects" Mathematical and Computational Applications 21, no. 4: 43. https://doi.org/10.3390/mca21040043
APA StyleRaza, J., Rohni, A. M., & Omar, Z. (2016). Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects. Mathematical and Computational Applications, 21(4), 43. https://doi.org/10.3390/mca21040043