Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation
Abstract
:1. Introduction
2. The Proposed Sp_MKL_LRR Method
2.1. Superpixel Kernel Generation
2.2. Multiple Kernel Learning
Algorithm 1. Superpixel multiple kernel learning (Sp_MKL) |
Step 1: Inputs:training dataset and corresponding labels . Step 2: Give the range of kernel scale values . Step 3: Select scales: using the KA method. Step 4: Compute superpixel kernel matrices using Equation (2). Step 5: Transform the superpixel kernel matrices to vectors and use Equation (6) to determine the optimal weights . Step 6: Compute the optimal superpixel kernel functions using Equation (8). |
2.3. Superpixel Kernel Low Rank Representation Classifier
Algorithm 2. Superpixel kernel low rank representation-based classification algorithm |
Step 1: Inputs:training sample set and corresponding category set along with the testing sample set . Step 2: Select the optimal superpixel kernel function using Algorithm 1. Step 3: Calculate () and () using Equation (8). Step 4: Initialize , , , , , and . while not converged do Step 5: Update . Step 6: Update . Step 7: Update . Step 8: Update the penalty factor with Equation (20). Step 9: Calculate the iteration stopping condition according to Equation (21). if or Break; otherwise Go to Step 5 and update . end end while Step 10: Determine the class of each pixel with Equation (12). Step 11: Output:the categories of testing samples. |
3. Results
3.1. Datasets Description and Assessment Indicators
- (1)
- SVM: Support vector marching-based classifier [46];
- (2)
- LRR: Low rank representation-based classifier [44];
- (3)
- SVMCK: Composite kernels and SVM-based method [32];
- (4)
- SMLR_SPTV: Multinomial logistic regression and spatially adaptive total variation based method [26];
- (5)
- SPCK: Superpixel based composite kernel and SVM classifier [37];
- (6)
- SCMK: Superpixel, multiple kernels and SVM-based method [42];
- (7)
- RMKL: Representative multiple kernel learning and SVM-based method [38];
- (8)
- Sp_MKL_SVM: The proposed superpixel multiple kernel learning and SVM-based method;
- (9)
- Sp_MKL_LRR: The proposed method.
3.2. Parameters Analysis
3.2.1. The Number of Superpixels
3.2.2. Impact of Parameter
3.2.3. Impact of the Number of Training Samples
3.3. Classification Results on AVIRIS Indian Pines Dataset
3.4. Classification Results on ROSIS University of Pavia Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carrino, T.A.; Crósta, A.P.; Toledo, C.L.B.; Silva, A.M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 287–300. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A review on UAV-based sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar]
- Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Joint reconstruction and anomaly detection from compressive hyperspectral images using mahalanobis distance-regularized tensor RPCA. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2919–2930. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, B. Extracting target spectrum for hyperspectral target detection: an adaptive weighted learning method using a self-completed background dictionary. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1604–1617. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, J.; Jia, S.; Jia, X.; Li, Q. Multiple 3-D feature fusion framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1873–1886. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Soomro, B.N.; Zheng, Y.; Wu, Z.; Xiao, L. Fast superpixel based subspace low rank learning method for hyperspectral denoising. IEEE Access. 2018, 6, 12031–12043. [Google Scholar] [CrossRef]
- Jia, S.; Deng, B.; Zhu, J.; Jia, X.; Li, Q. Local binary pattern-based hyperspectral image classification with superpixel guidance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 56, 749–759. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z. A novel weighted cross total variation method for hyperspectral image mixed denoising. IEEE Access. 2017, 5, 27172–27188. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef]
- Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z. Hyperspectral image restoration by using low rank representation on spectral difference image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1115–1155. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Plaza, A.; Qiao, F.; Gao, L.; Zhang, B.; Cui, Y. Approximate computing of remotely sensed data: SVM Hyperspectral image classification as a case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 5806–5818. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef]
- Chang, C.I. Recursive Hyperspectral sample processing of maximum likelihood estimation. In Real-Time Recursive Hyperspectral Sample and Band Processing; Springer International Publishing: New York, NY, USA, 2017; pp. 289–317. [Google Scholar]
- Wu, Z.; Wang, Q.; Plaza, A.; Li, J.; Sun, L.; Wei, Z. Parallel implementation of sparse representation classifiers for hyperspectral imagery on GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2912–2925. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Wang, J.; Zheng, Y.; Jeon, B. Hyperspectral classification employing spatial–spectral low rank representation in hidden fields. J. Ambient Intell. Humaniz. Comput. 2017, 1–12. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Wei, Z. Spectral–spatial classification of hyperspectral image based on low-rank decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2370–2380. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Su, H.; Liu, K. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 2014, 6, 5795–5814. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 2094–2107. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Plaza, A.; Li, Y. Discriminative low-rank Gabor filtering for spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1381–1395. [Google Scholar] [CrossRef]
- Gan, L.; Du, P.; Xia, J.; Meng, Y. Kernel fused representation-based classifier for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 684–688. [Google Scholar] [CrossRef]
- Jia, S.; Deng, B.; Zhu, J.; Jia, X.; Li, Q. Superpixel-based multitask learning framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2575–2588. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B. Combining Support vector machines and Markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2734–2752. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Huang, Y.; Zhang, L. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 2056–2065. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization. IEEE Trans. Cybern. 2017, 46, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [Google Scholar] [CrossRef]
- Luo, H.; Tang, Y.; Yang, X.; Yang, L.; Li, H. Autoencoder with extended morphological profile for hyperspectral image classification. In Proceeding of the 3rd IEEE International Conference on Cybernetics (CYBCONF 2017), Exeter, UK, 21–23 June 2017; pp. 1–4. [Google Scholar]
- Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.; Chanussot, J. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247. [Google Scholar] [CrossRef]
- Makantasis, K.; Doulamis, A.D.; Doulamis, N.D.; Nikitakis, A. Tensor-based classification models for hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. Tensor discriminative locality alignment for hyperspectral image spectral–spatial feature extraction. IEEE Trans. Geosci. Remote Sens. 2013, 51, 242–256. [Google Scholar] [CrossRef]
- Guo, X.; Huang, X.; Zhang, L.; Zhang, L.; Plaza, A.; Benediktsson, J.A. Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3248–3264. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-France, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.; Plaza, A.; Bioucas-Dias, J.; Benediktsson, J. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2462–2471. [Google Scholar] [CrossRef]
- Li, S.; Lu, T.; Fang, L.; Jia, X.; Benediktsson, J. Probabilistic fusion of pixel-level and superpixel-level hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 4, 7416–7420. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, X.; Hu, J. Superpixel-based graphical model for remote sensing image mapping. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5861–5871. [Google Scholar] [CrossRef]
- Duan, W.; Li, S.; Fang, L. Superpixel-based composite kernel for hyperspectral image classification. In Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015), Millan, Italy, 26–31 July 2015; pp. 1698–1701. [Google Scholar]
- Gu, Y.; Wang, C.; You, D.; Zhang, Y.; Wang, S.; Zhang, Y. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2852–2865. [Google Scholar] [CrossRef]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J. Multiple kernel learning for hyperspectral image classification: A review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Bajorski, P. Statistical inference in PCA for hyperspectral images. IEEE J. Sel. Top. Signal Process. 2011, 5, 438–445. [Google Scholar] [CrossRef]
- Liu, M.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: Piscataway, NJ, USA; pp. 2097–2104. [Google Scholar]
- Du, L.; Wu, Z.; Xu, Y.; Liu, W.; Wei, Z. Kernel low-rank representation for hyperspectral image classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA; pp. 477–480. [Google Scholar]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J. Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Machi. Intell. 2010, 35, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Systems Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
Class | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
SVM | LRR | SVMCK [32] | SMLR_SPTV [26] | SPCK [37] | SCMK [42] | RMKL [38] | Sp_MKL_SVM | Sp_MKL_LRR | |
Alfalfa | 0.446 | 0.824 | 0.445 | 0.565 | 0.829 | 0.963 | 0.659 | 0.86 | 1 |
Corn-no till | 0.763 | 0.766 | 0.844 | 0.9 | 0.905 | 0.884 | 0.847 | 0.884 | 0.971 |
Corn-min till | 0.662 | 0.713 | 0.833 | 0.836 | 0.919 | 0.892 | 0.76 | 0.929 | 0.996 |
Corn | 0.604 | 0.882 | 0.659 | 0.794 | 0.792 | 0.774 | 0.667 | 0.833 | 0.956 |
Grass-pasture | 0.903 | 0.914 | 0.853 | 0.851 | 0.893 | 0.905 | 0.944 | 0.836 | 0.817 |
Grass-trees | 0.951 | 0.956 | 0.947 | 0.978 | 0.974 | 0.953 | 0.957 | 0.925 | 0.978 |
Grass-pasture-mowed | 0 | 0.824 | 0.586 | 0.8 | 0.776 | 0.736 | 0.941 | 0.736 | 1 |
Hay-windrowed | 0.993 | 0.99 | 0.973 | 1 | 0.987 | 0.987 | 0.996 | 0.984 | 0.998 |
Oats | 0 | 0.333 | 0.711 | 0 | 0.979 | 0.995 | 0.125 | 0.7 | 0.842 |
Soybean-no till | 0.566 | 0.596 | 0.801 | 0.835 | 0.814 | 0.913 | 0.726 | 0.891 | 0.978 |
Soybean-min till | 0.822 | 0.842 | 0.867 | 0.969 | 0.913 | 0.944 | 0.851 | 0.972 | 0.992 |
Soybean-clean till | 0.751 | 0.769 | 0.752 | 0.861 | 0.815 | 0.769 | 0.89 | 0.919 | 0.84 |
Wheat | 0.984 | 0.994 | 0.941 | 0.995 | 0.995 | 0.989 | 0.99 | 0.986 | 0.942 |
Woods | 0.965 | 0.962 | 0.848 | 0.985 | 0.965 | 0.987 | 0.967 | 0.979 | 0.998 |
Buildings-grass-trees | 0.571 | 0.648 | 0.673 | 0.741 | 0.771 | 0.88 | 0.614 | 0.934 | 0.989 |
Stone-still-towers | 0.817 | 0.923 | 0.933 | 0.571 | 0.989 | 0.899 | 0.933 | 0.903 | 1 |
OA | 0.797 | 0.823 | 0.856 | 0.907 | 0.905 | 0.919 | 0.856 | 0.931 | 0.969 |
AA | 0.677 | 0.809 | 0.798 | 0.895 | 0.895 | 0.904 | 0.804 | 0.892 | 0.956 |
Kappa | 0.767 | 0.797 | 0.835 | 0.891 | 0.891 | 0.907 | 0.835 | 0.921 | 0.964 |
Class | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
SVM | LRR | SVMCK [32] | SMLR_SPTV [26] | SPCK [37] | SCMK [42] | RMKL [38] | Sp_MKL_SVM | Sp_MKL_LRR | |
Asphalt | 0.7285 | 0.7026 | 0.8579 | 0.8478 | 0.8683 | 0.8213 | 0.7849 | 0.8037 | 0.8645 |
Meadows | 0.6124 | 0.7704 | 0.8684 | 0.8873 | 0.8598 | 0.8803 | 0.8366 | 0.8763 | 0.9843 |
Gravel | 0.633 | 0.7744 | 0.8402 | 0.8351 | 0.9012 | 0.9542 | 0.7519 | 0.9619 | 0.9981 |
Tress | 0.953 | 0.9484 | 0.9233 | 0.8785 | 0.9612 | 0.9587 | 0.9295 | 0.7699 | 0.8233 |
Metal sheets | 0.9894 | 0.9936 | 0.9913 | 0.9974 | 0.9798 | 0.9965 | 0.9936 | 0.9713 | 1 |
Bare soil | 0.682 | 0.7277 | 0.8283 | 0.933 | 0.7849 | 0.8717 | 0.8174 | 0.9444 | 0.9241 |
Bitumen | 0.8168 | 0.8659 | 0.9303 | 0.9977 | 0.9454 | 0.9378 | 0.8894 | 0.9897 | 1 |
Bricks | 0.8258 | 0.6625 | 0.7384 | 0.9054 | 0.8581 | 0.87 | 0.7582 | 0.951 | 0.9629 |
Shadows | 0.9666 | 0.9858 | 0.9943 | 0.3147 | 0.9837 | 0.9884 | 0.9988 | 0.99 | 0.6268 |
OA | 0.708 | 0.7722 | 0.8619 | 0.8793 | 0.8705 | 0.8862 | 0.8316 | 0.885 | 0.9391 |
AA | 0.8088 | 0.8257 | 0.8859 | 0.8441 | 0.9048 | 0.9199 | 0.8623 | 0.9176 | 0.9093 |
Kappa | 0.6369 | 0.7068 | 0.8208 | 0.8435 | 0.8325 | 0.8523 | 0.781 | 0.8519 | 0.9192 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, T.; Sun, L.; Xu, Y.; Yang, G.; Zhang, Y.; Wu, Z. Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation. Remote Sens. 2018, 10, 1639. https://doi.org/10.3390/rs10101639
Zhan T, Sun L, Xu Y, Yang G, Zhang Y, Wu Z. Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation. Remote Sensing. 2018; 10(10):1639. https://doi.org/10.3390/rs10101639
Chicago/Turabian StyleZhan, Tianming, Le Sun, Yang Xu, Guowei Yang, Yan Zhang, and Zebin Wu. 2018. "Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation" Remote Sensing 10, no. 10: 1639. https://doi.org/10.3390/rs10101639
APA StyleZhan, T., Sun, L., Xu, Y., Yang, G., Zhang, Y., & Wu, Z. (2018). Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation. Remote Sensing, 10(10), 1639. https://doi.org/10.3390/rs10101639