Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data
Abstract
:1. Introduction
Land cover class | Range | Skid factor | |
---|---|---|---|
1 | Screes and boulders | >30 cm | 1.2–1.3 |
2 | Shrubs or mountain pines Mounds with vegetation cover Cattle treading Screes | >1 m >50 cm 10–30 cm | 1.6–1.8 |
3 | Grass vegetation incl. low bushes Fine debris mixed with vegetation Small mounds with vegetation cover Grass vegetation incl. superficial cattle treading | <1 m <10 cm <50 cm | 2.0–2.4 |
4 | Compact grassland Solid rock Fine debris mixed with soil Moist sinks | 2.6–3.2 |
2. Study Areas and Data
2.1. Study Areas
2.2. Airborne Laser Scanning Data
ALS data characteristics | Study Areas | |
---|---|---|
Bucklige Welt | Wienerwald | |
Avg. echo density (m−2) | ~30 | ~34 |
Available point cloud data format | xyz | full-waveform |
Period of acquisition | Spring 2007 | January 2007 |
laser wavelength (nm) | 1,550 | 1,550 |
Laser scanner system | Riegl LMS-Q560 | Riegl LMS-Q560 |
Avg. flying height above ground (m) | ~500 | ~500 |
Data acquisition company | Diamond Airborne Sensing | Diamond Airborne Sensing |
DTM, DSM, nDSM resolution (m) | 1.0 | 0.5 |
2.3. Reference Data
3. Methods
3.1. Surface Roughness
3.2. Terrain Roughness (TR)
3.3. Vertical Roughness Mapping
4. Results and Discussion
4.1. Surface Roughness (SR)
4.2. Terrain Roughness (TR)
4.3. Vertical Roughness Mapping
4.5. Validation of the Vertical Roughness Map
5. Conclusions
Acknowledgements
References
- Margreth, S.; Funk, M. Hazard mapping for ice and combined snow/ice avalanches—Two case studies from the Swiss and Italian Alps. Cold Regions Sci. Technol. 1999, 30, 159–173. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Heuvelink, G.B.M. Effect of support size on the accuracy of a distributed rockfall model. Int. J. Geogr. Inf. Sci. 2004, 18, 595–609. [Google Scholar] [CrossRef]
- Govers, G.; Takken, I.; Helming, K. Soil roughness and overland flow. Agronomie 2000, 20, 131–146. [Google Scholar] [CrossRef]
- Gómez, J.A.; Nearing, M.A. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 2005, 59, 253–266. [Google Scholar] [CrossRef]
- Jutzi, B.; Stilla, U. Waveform Processing of Laser Pulses for Reconstruction of Surfaces in Urban Areas. In Proceedings of 3th International Symposium: Remote Sensing and Data Fusion over Urban Areas, URBAN 2005, Tempe, AZ, USA, 14–16 March 2005; Volume 36, Part 8 W27. p. 6.
- Ghinoi, A.; Chung, C.-J. STARTER: A statistical GIS-based model for the prediction of snow avalanche susceptibility using terrain features—Application to Alta Val Badia, Italian Dolomites. Geomorphology 2005, 66, 305–325. [Google Scholar] [CrossRef]
- McClung, D.M. Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Ann. Glaciol. 2001, 32, 223–229. [Google Scholar] [CrossRef]
- Margreth, S. Lawinenverbau im Anbruchgebiet; Bundesamt für Umwelt BAFU, WSL Eidgenössisches Institut für Schnee- und Lawinenforschung SLF: Bern, Germany, 2007. [Google Scholar]
- Höller, P.; Fromm, R.; Leitinger, G. Snow forces on forest plants due to creep and glide. Forest Ecol. Manag. 2009, 257, 546–552. [Google Scholar] [CrossRef]
- Lavee, H.; Kutiel, P.; Segev, M.; Benyamini, Y. Effect of surface roughness on runoff and erosion in a Mediterranean ecosystem: the role of fire. Geomorphology 1995, 11, 227–234. [Google Scholar] [CrossRef]
- Rai, R.K.; Upadhyay, A.; Singh, V.P. Effect of variable roughness on runoff. J. Hydrol. 2010, 382, 115–127. [Google Scholar] [CrossRef]
- Markart, G.; Kohl, B.; Sotier, B.; Schauer, T.; Bunza, G.; Stern, R. Provisorische Geländeanleitung zur Abschätzung des Oberflächenabflussbeiwertes auf alpinen Boden-/Vegetationseinheiten bei konvektiven Starkregen (Version 1.0). BFW-Dokumentation. 2004, 3, 83. [Google Scholar]
- Cord, A.M.; Baratoux, D.; Mangold, N.; Martin, P.D.; Pinet, P.C.; Costard, F.; Masson, P.; Foing, B.; Neukum, G. Surface roughness and geological mapping at sub-hectometer scale from the High Resolution Stereo Camera onboard Mars Express. Icarus 2007, 191, 38–51. [Google Scholar] [CrossRef]
- Jester, W.; Klik, A. Soil surface roughness measurement—Methods, applicability, and surface representation. Catena 2005, 64, 174–192. [Google Scholar] [CrossRef]
- Smith, M.J.; Asal, F.F.F.; Priestnall, G. The Use of Photogrammetry and LIDAR for Landscape Roughness Estimation in Hydrodynamic Studies. In Proceedings of International Society for Photogrammetry and Remote Sensing XXth Congress, Istanbul, Turkey, 12–23 July 2004; Volume XXXV, WG III/8. p. 6.
- Straatsma, M.W.; Baptist, M.J. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ. 2008, 112, 1062–1080. [Google Scholar] [CrossRef]
- Aubrecht, C.; Höfle, B.; Hollaus, M.; Köstl, M.; Steinnocher, K.; Wagner, W. Vertical Roughness Mapping—ALS Based Classification of the Vertical Vegetation Structure in Forested Areas. In Proceedings of ISPRS TC VII Symposium: 100 Years ISPRS, Vienna, Austria, 5–7 July 2010; Volume XXXVIII, Part 7B. pp. 35–40.
- Hollaus, M.; Höfle, B. Terrain Roughness Parameters from Full-Waveform Airborne LiDAR Data. In Proceedings of ISPRS TC VII Symposium: 100 Years ISPRS, Vienna, Austria, 5–7 July 2010; Volume XXXVIII, Part 7B. pp. 287–292.
- Wagner, W.; Ullrich, A.; Melzer, T.; Briese, C.; Kraus, K. From Single-Pulse to Full-Waveform Airborne Laser Scanners: Potential and Practical Challenges. In Proceedings of International Society for Photogrammetry and Remote Sensing XXth Congress, Istanbul, Turkey, 12–23 July 2004; Volume XXXV, Part B/3. p. 6.
- Hollaus, M.; Mücke, W.; Höfle, B.; Dorigo, W.; Pfeifer, N.; Wagner, W.; Bauerhansl, C.; Regner, B. Tree Species Classification Based on Full-Waveform Airborne Laser Scanning Data. In Proceedings of 9th International Silvilaser Conference, College Station, TX, USA, 14–16 October 2009; pp. 54–62.
- SCOP++—Programpackage for Digital Terrain Models. Tuwien: Vienna, Austria; Available online: http://www.inpho.de (accessed on 1 June 2010).
- Hollaus, M.; Mandlburger, G.; Pfeifer, N.; Mücke, W. Land Cover Dependent Derivation of Digital Surface Models from Airborne Laser Scanning Data. In Proceedings of ISPRS Technical Commission III Symposium: Photogrammetric Computer Vision and Image Analysis, Paris, France, 1–3 September 2010; Volume 39, p. 6.
- OPALS—Orientation and Processing of Airborne Laser Scanning Data. Tuwien: Vienna, Austria. Available online: http://www.ipf.tuwien.ac.at/opals/ (accessed 1 June 2010).
- Kraus, K. Photogrammetry: Geometry from Images and Laser Scans, 2nd ed; Walter de Gruyter: Berlin, Germany, 2007; p. 459. [Google Scholar]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Höfle, B. Detection and Utilization of the Information Potential of Airborne Laser Scanning Point Cloud and Intensity Data by Developing a Management and Analysis System. Ph.D. Thesis, Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, Innsbruck, Austria, 2007. [Google Scholar]
- Geist, T.; Höfle, B.; Rutzinger, M.; Pfeifer, N.; Stötter, J. Laser scanning—A paradigm change in topographic data acquisition for natural hazard management. In Sustainable Natural Hazard Management in Alpine Environments; Veulliet, E., Stötter, J., Weck-Hannemann, H., Eds.; Springer: Berlin, Germany, 2009; pp. 309–344. [Google Scholar]
- Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 2006, 60, 100–112. [Google Scholar] [CrossRef]
- Doneus, M.; Briese, C.; Fera, M.; Janner, M. Archaeological prospection of forested areas using full-waveform airborne laser scanning. J. Archaeol. Sci. 2008, 35, 882–893. [Google Scholar] [CrossRef]
- Lin, Y.; Mills, J. Factors influencing pulse width of small footprint, full waveform airborne laser scanning data. Photogramm. Eng. Remote Sensing 2010, 76, 49–59. [Google Scholar] [CrossRef]
- Mücke, W. Analysis of Full-Waveform Airborne Laser Scanning Data for the Improvement of DTM Generation. M.Sc. Thesis, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna, Austria, 2008; p. 67. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hollaus, M.; Aubrecht, C.; Höfle, B.; Steinnocher, K.; Wagner, W. Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sens. 2011, 3, 503-523. https://doi.org/10.3390/rs3030503
Hollaus M, Aubrecht C, Höfle B, Steinnocher K, Wagner W. Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sensing. 2011; 3(3):503-523. https://doi.org/10.3390/rs3030503
Chicago/Turabian StyleHollaus, Markus, Christoph Aubrecht, Bernhard Höfle, Klaus Steinnocher, and Wolfgang Wagner. 2011. "Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data" Remote Sensing 3, no. 3: 503-523. https://doi.org/10.3390/rs3030503