Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data and Field Measurements
2.3. Methods
3. Results and Discussion
3.1. Spatial Patterns of Phenology
3.2. Correlation of CFAPAR with Phenological Variables
3.3. Consistency Check with Ground Measurements
4. Conclusions
Acknowledgments
- Author ContributionsMichele Meroni designed the research, processed the remote sensing data and drafted the manuscript. Michel Verstraete significantly contributed to the development of the phenology retrieval algorithm. Felix Rembold and Rene Gommes supported the interpretation of the correlation analysis. Anne Schucknecht and Gora Beye assisted in the analysis of ground measurements and in the validation exercise. All authors revised the manuscript and contributed to the discussion of the results.
Conflicts of Interest
References
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev.: Clim. Chang 2011, 2, 45–65. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations, The Food and Nutrition Crisis in the Sahel, Urgent Action to Support the Resilience of Vulnerable Populations; Technical Report; FAO: Rome, Italy, 2012.
- Nicholson, S.E. The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013, 2013, 453521:1–453521:32. [Google Scholar]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 2013, 5, 949–981. [Google Scholar]
- Boyd, E.; Cornforth, R.J.; Lamb, P.J.; Tarhule, A.; Lélé, M.I.; Brouder, A. Building resilience to face recurring environmental crisis in African Sahel. Nat. Clim. Chang 2013, 3, 631–637. [Google Scholar]
- Brown, M.E. Famine Early Warning Systems and Remote Sensing Data; Springer Verlag: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retro Gradation of Natural Vegetation; NASA: Greenbelt, MD, USA, 1974; p. 371. [Google Scholar]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens 2013, 5, 1704–1733. [Google Scholar]
- Meroni, M.; Verstraete, M.M.; Rembold, F.; Urbano, F.; Kayitakire, F. A phenology-based method to derive biomass production anomaly for food security monitoring in the Horn of Africa. Int. J. Remote Sens 2014, 35, 2471–2492. [Google Scholar]
- Meroni, M.; Fasbender, D.; Kayitakire, F.; Pini, G.; Rembold, F.; Urbano, F.; Verstraete, M. Early detection of production deficit hot-spots in semi-arid environment using FAPAR time series and a probabilistic approach. Remote Sens. Environ 2014, 142, 57–68. [Google Scholar]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ 2011, 115, 343–352. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol 2013, 169, 156–173. [Google Scholar]
- Baldocchi, D. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot 2008, 56, 1–26. [Google Scholar]
- Churkina, G.; Schimel, D.; Braswell, B.H.; Xiao, X.M. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol 2005, 11, 1777–1787. [Google Scholar]
- Ma, S.; Baldocchi, D.D.; Xu, L.; Hehn, T. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteorol 2007, 147, 157–171. [Google Scholar]
- Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B: Biol. Sci 2010, 365, 3227–3246. [Google Scholar] [Green Version]
- White, M.A.; Nemani, R.R. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ 2006, 104, 43–49. [Google Scholar]
- Zhang, X.; Golberg, M.D.; Yu, Y. Prototype for monitoring and forecasting fall foliage coloration in real time from satellite data. Agric. For. Meteorol 2012, 158–159, 21–29. [Google Scholar]
- Brown, M.E.; de Beurs, K.M.; Vrieling, A. The response of African land surface phenology to large scale climate oscillations. Remote Sens. Environ 2010, 114, 2286–2296. [Google Scholar]
- Proud, S.M.; Rasmussen, L.V. The influence of seasonal rainfall upon Sahel vegetation. Remote Sens. Lett 2011, 2, 241–249. [Google Scholar]
- Brown, J.; Wardlow, B.; Tadesse, T.; Hayes, M.; Reed, B. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens 2008, 45, 16–46. [Google Scholar]
- Wu, J.; Zhou, L.; Liu, M.; Zhang, J.; Leng, S.; Diao, C. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. Int. J. Appl. Earth Obs. Geoinf 2013, 23, 397–410. [Google Scholar]
- Xu, L.K.; Baldocchi, D.D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric. For. Meteorol 2004, 123, 79–96. [Google Scholar]
- Peñuelas, J.; Filella, I.; Zhang, X.; Llorens, L.; Ogaya, R.; Lloret, F.; Comas, P.; Estiarte, M.; Terrades, J. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 2004, 161, 837–846. [Google Scholar]
- UNEP and ICRAF—United Nations Environment Programme and Word Agroforestry Centre, Climate Change and Variability in the Sahel Region: Impacts and Adaptation Strategies in the Agricultural Sector; Report 44, Technical Report; UNEP and ICRAF: Nairobi, Kenya, 2006.
- Buerkert, A.; Moser, M.; Kumar, A.K.; Furst, P.; Becker, K. Variation in grain quality of peral millet from Sahelian West Africa. Field Crop Res 2001, 69, 1–11. [Google Scholar]
- Ahmed, M.M.; Sanders, J.H.; Nell, W.T. New sorghum and millet cultivar introduction in Sub-Saharan Africa: Impacts and research agenda. Agric. Syst 2000, 64, 55–65. [Google Scholar]
- Akponikpe, P.B.I. Effect of Sowing Date on the Development and Yield of Seven Sahelian Millet Genotypes under Non-Limiting and Water Nutrient Supply: Experiment and Modelling. Ph.D. Dissertation, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2008. [Google Scholar]
- FAO and WFP—Food and Agriculture Organization of the United Nations and World Food Programme, Crop and Food Security Assessment Mission to South Sudan; Special Report, Technical Report; FAO and WFP: Rome, Italy, 2012.
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang 2013, 3, 1–5. [Google Scholar]
- De Jong, R.; Verbesselt, J.; Zeiles, A.; Shaepman, M.E. Shift in global vegetation activity trends. Remote Sens 2013, 5, 1117–1133. [Google Scholar]
- Vrieling, A.; de Leeuw, J.; Said, M.Y. Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sens 2013, 5, 982–1000. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change, Climate Change 2007; Synthesis Report; Core Writing Team; Pachauri, R.K.; Reisinger, A. (Eds.) IPCC: Geneva, Switzerland, 2007; p. 104.
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.; et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 2003, 53, 941–952. [Google Scholar]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jönsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ 2007, 108, 385–392. [Google Scholar]
- Julien, Y.; Sobrino, J.A. Global land surface phenology trends from GIMMS database. Int. J. Remote Sens 2009, 30, 3495–3513. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougine, E.; Grippa, M.; Tucker, C.J. Re-greening of Sahel: 30 Years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ 2014, 140, 350–364. [Google Scholar]
- Boschetti, M.; Nutini, F.; Brivio, P.A.; Bartholomé, E.; Stroppiana, D.; Hosilo, A. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS J. Photogramm. Remote Sens 2013, 78, 26–40. [Google Scholar]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian “rain-use efficiency” using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ 2010, 115, 438–451. [Google Scholar]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. Environ 2012, 121, 144–158. [Google Scholar]
- Giannini, A.; Biasutti, M.; Verstraete, M.M. A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Glob. Planet. Chang 2008, 64, 119–128. [Google Scholar]
- Groten, S.M.E.; Ocatre, R. Monitoring the length of the season with NOAA. Int. J. Remote Sens 2002, 23, 2797–2815. [Google Scholar]
- De Beurs, K.M.; Henebry, G.M. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Phenological Research; Hudson, I.L., Keatley, M.R., Eds.; Springer Science: London, UK, 2010; pp. 77–208. [Google Scholar]
- An, N.; Price, K.P.; Blair, J.M. Estimating above-ground net primary productivity of the tallgrass prairie ecosystem of the Central Great Plains using AVHRR NDVI. Int. J. Remote Sens 2013, 34, 3717–3753. [Google Scholar]
- Hanan, N.P.; Prince, S.D.; Begue, A. Modelling vegetation primary production during HAPEX-Sahel using production efficiency and canopy conductance model formulations. J. Hydrol 1997, 189, 651–675. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S.; Stisen, S.; Diouf, A. Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sens. Environ 2006, 105, 173–188. [Google Scholar]
- Jung, M.; Verstraete, M.; Gobron, N.; Reichstein, M.; Papale, D.; Bondeau, A.; Robustelli, M.; Pinty, B. Diagnostic assessment of European gross primary production. Glob. Chang. Biol 2008, 14, 2349–2364. [Google Scholar]
- Mbow, C.; Fensholt, R.; Rasmussen, K.; Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. J. Arid Environ 2013, 97, 56–65. [Google Scholar]
- Tucker, C.J.; Vanpraet, C.L.; Sharman, M-J.; van Ittersum, G. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ 1985, 17, 233–249. [Google Scholar]
- Funk, C.C.; Budde, M.E. Phenologically-tuned MODIS NDVI-based production anomaly for Zimbabwe. Remote Sens. Environ 2009, 113, 115–125. [Google Scholar]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ 2003, 94, 205–220. [Google Scholar]
- Meroni, M.; Verstraete, M.; Marinho, M.; Sghaier, N.; Leo, O. Remote sensing based yield estimation in a stochastic framework—Case study of Tunisia. Remote Sens 2013, 5, 539–557. [Google Scholar]
- Stige, L.C.; Stave, J.; Chan, K.-S.; Cianelli, L.; Pettorelli, N.; Glantz, M.; Herren, H.R.; Stenseth, N.C. The effect of climate variation on agro-pastoral production in Africa. PNAS 2006, 103, 3049–3053. [Google Scholar]
- Bartholomé, E.M.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth Observation data. Int. J. Remote Sens 2005, 26, 1959–1977. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr 1995, 22, 815–835. [Google Scholar]
- Weiss, M.; Baret, F.; Eerens, H.; Swinnen, E. FAPAR over Europe for the Past 29 Years: A Temporally Consistent Product Derived from AVHRR and VEGETATION Sensor. Proceedings of the Third RAQRS Workshop, Valencia, Spain, 27 September–1 October 2010; pp. 428–433.
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the spectrum. Int. J. Remote Sens 1994, 15, 123–143. [Google Scholar]
- Diouf, A.; Lambin, E.F. Monitoring land-cover changes in semi-arid regions: Remote sensing data and field observation in the Ferlo, Senegal. J. Arid Environ 2001, 48, 129–148. [Google Scholar]
- Butt, B.; Turner, M.D.; Singh, A.; Brotten, L. Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa. Remote Sens. Environ 2011, 115, 3367–3376. [Google Scholar]
- Somé, L.; Sivakumar, M.V.K. Analyse de la Longueur de la Saison Culturale en Fonction de la Date de Début de Pluies au Burkina Faso; Compte rendu des travaux No. 1; Division du Sol et Agroclimatologie, Institut d’Etudes et de Recherches Agricoles: Ouagadougou, Burkina Faso, 1994. [Google Scholar]
- Townshend, J.R.G.; Justice, C.O. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens 1986, 7, 1435–1445. [Google Scholar]
- Eklundh, L.; Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett 2003, 30, 1430–1433. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Meroni, M.; Rembold, F.; Verstraete, M.M.; Gommes, R.; Schucknecht, A.; Beye, G. Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel. Remote Sens. 2014, 6, 5868-5884. https://doi.org/10.3390/rs6065868
Meroni M, Rembold F, Verstraete MM, Gommes R, Schucknecht A, Beye G. Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel. Remote Sensing. 2014; 6(6):5868-5884. https://doi.org/10.3390/rs6065868
Chicago/Turabian StyleMeroni, Michele, Felix Rembold, Michel M. Verstraete, Rene Gommes, Anne Schucknecht, and Gora Beye. 2014. "Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel" Remote Sensing 6, no. 6: 5868-5884. https://doi.org/10.3390/rs6065868
APA StyleMeroni, M., Rembold, F., Verstraete, M. M., Gommes, R., Schucknecht, A., & Beye, G. (2014). Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel. Remote Sensing, 6(6), 5868-5884. https://doi.org/10.3390/rs6065868