Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters
Abstract
:1. Introduction
- VLC opens up a large license-free visible region for wireless communication in comparison to the restricted and expensive RF spectrum.
- No special facilities are needed to implement the VLC systems because, in principle, they can be integrated into the existing lighting ones.
- Since visible light cannot penetrate building walls, VLC provides communication security and naturally avoids interference with other VLC systems from adjacent rooms, thus providing the entire available bandwidth for each closed environment.
- Although line-of-sight is not mandatory for enabling VLC (reflected beams keep transmitting the information), the performance falls and it is strongly jeopardized by the presence of obstacles.
- The range of VLC systems is lower than that of RF systems.
- Wireless communications in scenarios where RF communication is dangerous, such as airplanes, mines, and hospitals [10].
- In the case of PM, sLED−ac(t) is a pulse waveform that is added to the lighting level (i.e., sLED−dc). On-off keying (OOK) and pulse position modulation (PPM) are examples of PM schemes that are commonly used in VLC. Figure 1a shows an example of a PPM sequence that is made up of four symbols. Note that the position of the pulse at the beginning or at the end of the symbol period (TSym) determines the transmitted bit. Strategies based on PM are very simple to implement, but they are inefficient from the communication perspective because they have two problems. The first one is that for a given bandwidth they cannot achieve bit rates as high as the PBM schemes that are explained below. The second problem is that they are hardly jeopardized by the different trajectories that the visible light beams follow before reaching the receiver (i.e., multipath issues).
- In the case of PBM, sLED−ac(t) is a sinusoid or the sum of several sinusoids that change the amplitude and/or the phase over time according to the information that is being transmitted. This strategy achieves higher bit rates than PM for a given bandwidth and, as will be detailed below, there are certain PBM schemes that provide high immunity against the multipath issue. If the PBM scheme is made up of a single modulated sinusoid, the modulation scheme is referred to as a single-carrier modulation (SCM) scheme. The three main SCM schemes are amplitude-shift keying (ASK), where the amplitude changes over time; phase-shift keying (PSK), where the phase changes over time; and quadrature amplitude modulation (QAM), where both the amplitude and the phase change over time. Figure 1b shows an example of a 16-QAM sequence.
2. Fundamentals of Driving the LEDs of VLC with Switching-Mode dc-dc Converters
2.1. The Role of Switching-Mode Converters in Solid-State Lighting
- The switching-mode dc-to-dc converter (SMCdc-dc) converts a direct input voltage into a different direct output voltage.
- The switching-mode dc-to-ac converter (SMCdc-ac) converts a direct input voltage into an alternating output voltage.
- The switching-mode ac-to-dc converter (SMCac-dc) converts an alternating input voltage into a direct output voltage.
- The switching-mode ac-to-ac converter (SMCac-ac) converts an alternating input voltage into a different alternating output voltage.
2.2. Incorporating VLC into SSL
2.3. Buck Converter: The Backbone of the SMCdc-dc Specially Designed for VLC
2.4. Design Challenges of Using a Buck Converter as the LED Driver of a VLC Transmitter
3. Buck-Derived dc-dc Converters, a Clever Solution to Drive the LEDs of VLC Transmitters
3.1. Buck Converter with a High-Order Output Filter
3.2. Two-Input Buck Converter
3.3. Two-Phase Buck Converter
4. Experimental Section
4.1. Modulation Scheme
4.2. Filter Design
4.3. Transmission Demonstration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IEEE standard for local and metropolitan area networks—Part 15.7: Short-range wireless optical communication using visible light. In IEEE Std 802.15.7-2011; IEEE: New York, NY, USA, 2011; pp. 1–309.
- GBI Research. Visible Light Communication (VLC)—A Potential Solution to the Global Wireless Spectrum Shortage. September 2011. Available online: http://www.gbiresearch.com (accessed on 5 April 2018).
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Haas, H.; Chen, C.; O'Brien, D. A guide to wireless networking by light. Prog. Quantum Electron. 2017, 55, 88–111. [Google Scholar] [CrossRef]
- Kim, D.R.; Yang, S.H.; Kim, H.S.; Son, Y.H.; Han, S.K. Outdoor Visible Light Communication for inter- vehicle communication using Controller Area Network. In Proceedings of the 2012 Fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, 1–3 August 2012; pp. 31–34. [Google Scholar]
- Yoo, J.-H.; Lee, R.; Oh, J.-K.; Seo, H.-W.; Kim, J.-Y.; Kim, H.-C.; Jung, S.-Y. Demonstration of vehicular visible light communication based on LED headlamp. In Proceedings of the 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 201; pp. 465–467.
- Farr, N.; Bowen, A.; Ware, J.; Pontbriand, C.; Tivey, M. An integrated, underwater optical/acoustic communications system. In Proceedings of the OCEANS 2010 IEEE, Sydney, NSW, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Weing, X.; Chung, W.T. VLC-based medical healthcare information system. Biomed. Eng. Appl. Basis Commun. 2012, 24, 155–163. [Google Scholar]
- Armstrong, J.; Lowery, A.J. Power efficient optical OFDM. Electron. Lett. 2006, 42, 370–372. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H.; Pricope, B. OFDM visible light wireless communication based on white LEDs. In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, Dublin, Ireland, 22–25 April 2007; pp. 2185–2189. [Google Scholar]
- Armstrong, J. OFDM for optical communications. J. Lightwave Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Vučić, J.; Kottke, C.; Habel, K.; Langer, K.D. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary. In Proceedings of the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–3. [Google Scholar]
- Wu, F.; Lin, C.; Wei, C.; Chen, C.; Chen, Z.; Huang, H. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation. In Proceedings of the 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 17–21 March 2013; pp. 1–3. [Google Scholar]
- Wang, Y.; Huang, X.; Zhang, J.; Wang, Y.; Chi, N. Enhanced performance of visible light communication employing 512QAM N-SC-FDE and DD-LMS. Opt. Exp. 2014, 22, 15328–15334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar]
- Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; O’Brien, D.C. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Lightwave Technol. 2016, 34, 3047–3052. [Google Scholar] [CrossRef]
- Vucic, J.; Kottke, C.; Nerreter, S.; Buttner, A.; Langer, K.D.; Walewski, J.W. White light wireless transmission at 200 {+} Mb/s net data rate by use of discrete-multitone modulation. IEEE Photonics Technol. Lett. 2009, 21, 1511–1513. [Google Scholar] [CrossRef]
- Vucic, J.; Kottke, C.; Nerreter, S.; Langer, K.D.; Walewski, J.W. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightwave Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Khalid, A.M.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Kottke, C.; Hilt, J.; Habel, K.; Vučić, J.; Langer, K.D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary. In Proceedings of the 2012 38th European Conference and Exhibition on Optical Communications, Amsterdam, The Netherlands, 16–20 September 2012; pp. 1–3. [Google Scholar]
- Fuada, S.; Adiono, T.; Putra, A.P.; Aska, Y. LED driver design for indoor lighting and low-rate data transmission purpose. Optik Int. J. Light Electron Opt. 2018, 156, 847–856. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, T.; Lu, S.; Li, H.; Wu, Z.; Li, S. Energy Efficiency of SISO and MISO in Visible Light Communication Systems. J. Lightwave Technol. 2018. [Google Scholar] [CrossRef]
- Arias, M.; Vázquez, A.; Sebastián, J. An Overview of the AC-DC and DC-DC Converters for LED Lighting Applications. Automatika J. Control Meas. Electron. Comput. Commun. 2012, 53, 156–172. [Google Scholar] [CrossRef]
- Sebastián, J.; Aller, D.G.; Rodríguez, J.; Lamar, D.G.; Miaja, P.F. On the role of the power electronics on visible light communication. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 2420–2427. [Google Scholar]
- Rodriguez, J.; Lamar, D.G.; Sebastian, J.; Miaja, P.F. Taking advantage of the output voltage ripple of a two-phase buck converter to perform quadrature amplitude modulation for visible light communication. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 2116–2123. [Google Scholar]
- Rodriguez, J.; Miaja, P.F.; Lamar, D.G.; Sebastian, J. Reproducing single-carrier digital modulation schemes for VLC by controlling the first switching harmonic of the DC-DC power converter output voltage ripple. IEEE Trans. Power Electron. 2017. [Google Scholar] [CrossRef]
- Yousefzadeh, V.; Wang, N.; Popovic, Z.; Maksimovic, D. A digitally controlled DC/DC converter for an RF power amplifier. IEEE Trans. Power Electron. 2006, 21, 164–172. [Google Scholar] [CrossRef]
- Rodriguez, J.; Aller, D.G.; Lamar, D.G.; Sebastian, J. Energy efficient visible light communication transmitter based on the split of the power. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 217–224. [Google Scholar]
- Rodriguez, J.; Aller, D.G.; Lamar, D.G.; Sebastian, J. Performance evaluation of a VLC transmitter based on the split of the power. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018. [Google Scholar]
- Sebastián, J.; Fernández-Miaja, P.; Ortega-González, F.J.; Patiño, M.; Rodríguez, M. Design of a two-phase buck converter with fourth-order output filter for envelope amplifiers of limited bandwidth. IEEE Trans. Power Electron. 2014, 29, 5933–5948. [Google Scholar] [CrossRef]
- Miaja, P.F.; Rodríguez, A.; Sebastián, J. Buck-derived converters based on gallium nitride devices for envelope tracking applications. IEEE Trans. Power Electron. 2015, 30, 2084–2095. [Google Scholar] [CrossRef]
- Zhang, Y.; Rodríguez, M.; Maksimović, D. Output filter design in high-efficiency wide-bandwidth multi-phase buck envelope amplifiers. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 2026–2032. [Google Scholar]
- Zhang, Y.; Strydom, J.; de Rooij, M.; Maksimović, D. Envelope tracking GaN power supply for 4G cell phone base stations. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 2292–2297. [Google Scholar]
- Hoyerby, M.C.W.; Andersen, M.A.E. Ultrafast tracking power supply with fourth-order output filter and fixed-frequency hysteretic control. IEEE Trans. Power Electron. 2008, 23, 2387–2398. [Google Scholar] [CrossRef]
- Garcia i Tormo, A.; Poveda, A.; Alarcon, E.; Guinjoan, F. Design-oriented characterisation of adaptive asynchronous ΣΔ modulation switching power amplifiers for bandlimited signals. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 2882–2885. [Google Scholar]
- Sebastián, J.; Fernández-Miaja, P.; Rodríguez, A.; Rodríguez, M. Analysis and design of the output filter for buck envelope amplifiers. IEEE Trans. Power Electron. 2014, 29, 213–233. [Google Scholar] [CrossRef]
- Miaja, P.F.; Sebastián, J.; Marante, R.; García, J.A. A linear assisted switching envelope amplifier for a UHF polar transmitter. IEEE Trans. Power Electron. 2014, 29, 1850–1861. [Google Scholar] [CrossRef]
- Rodríguez, M.; Zhang, Y.; Maksimović, D. High-frequency PWM buck converters using GaN-on-SiC HEMTs. IEEE Trans. Power Electron. 2014, 29, 2462–2473. [Google Scholar] [CrossRef]
- Sebastian, J.; Villegas, P.J.; Nuno, F.; Hernando, M.M. High-efficiency and wide-bandwidth performance obtainable from a two-input buck converter. IEEE Trans. Power Electron. 1998, 13, 706–717. [Google Scholar] [CrossRef]
- Rodríguez, M.; Fernández-Miaja, P.; Rodríguez, A.; Sebastián, J. A Multiple-Input Digitally Controlled Buck Converter for Envelope Tracking Applications in Radiofrequency Power Amplifiers. IEEE Trans. Power Electron. 2010, 25, 369–381. [Google Scholar] [CrossRef]
- Urtasun, A.; Lu, D.D.C. Control of a Single-Switch Two-Input Buck Converter for MPPT of Two PV Strings. IEEE Trans. Ind. Electron. 2015, 62, 7051–7060. [Google Scholar] [CrossRef]
- Chen, W. High Efficiency, High Density, Polyphase Converters for High Current Applications; Linear Technology Corporation: Milpitas, CA, USA, 1999; Available online: http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1042,C1032,C1062,P1726,D4166 (accessed on 5 April 2018).
- Zhou, X.; Wong, P.L.; Xu, P.; Lee, F.C.; Huang, A.Q. Investigation of candidate VRM topologies for future microprocessors. IEEE Trans. Power Electron. 2000, 15, 1172–1182. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, P.; Lee, F.C. A novel current-sharing control technique for low-voltage high-current voltage regulator module applications. IEEE Trans. Power Electron. 2000, 15, 1153–1162. [Google Scholar] [CrossRef]
- Soto, A.; Oliver, J.A.; Cobos, J.A.; Cezon, J.; Arevalo, F. Power supply for a radio transmitter with modulated supply voltage. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC’04, Anaheim, CA, USA, 22–26 February 2004; Volume 1, pp. 392–398. [Google Scholar]
- Hoyerby, M.C.W.; Andersen, M.E. High-bandwidth, high-efficiency envelope tracking power supply for 40W RF power amplifier using paralleled bandpass current sources. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005; pp. 2804–2809. [Google Scholar]
- Garcia, O.; de Castro, A.; Soto, A.; Oliver, J.A.; Cobos, J.A.; Cezon, J. Digital control for power supply of a transmitter with variable reference. In Proceedings of the 2006 Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition APEC’06, Dallas, TX, USA, 19–13 March 2006; p. 6. [Google Scholar]
- Cheng, P.; Vasić, M.; García, O.; Oliver, J.Á.; Alou, P.; Cobos, J.A. Minimum time control for multiphase buck converter: Analysis and application. IEEE Trans. Power Electron. 2014, 29, 958–967. [Google Scholar] [CrossRef]
Symbol | Normalized Amplitude | Phase (◦) | Bit Code | Symbol | Normalized Amplitude | Phase (◦) | Bit Code |
---|---|---|---|---|---|---|---|
S1 | 0.74 | 18.5 | 0000 | S9 | 0.74 | 198.5 | 1000 |
S2 | 0.33 | 45 | 0001 | S10 | 0.33 | 225 | 1001 |
S3 | 1 | 45 | 0010 | S11 | 1 | 225 | 1010 |
S4 | 0.74 | 71.5 | 0011 | S12 | 0.74 | 251.5 | 1011 |
S5 | 0.74 | 108.5 | 0100 | S13 | 0.74 | 288.5 | 1100 |
S6 | 0.33 | 135 | 0101 | S14 | 0.33 | 315 | 1101 |
S7 | 1 | 135 | 0110 | S15 | 1 | 315 | 1110 |
S8 | 0.74 | 161.5 | 0111 | S16 | 0.74 | 341.5 | 1111 |
L1-a and L1-b | C2 | L3 | C4 |
---|---|---|---|
3.4 μH | 70 nF | 1.5 μH | 27 nF |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, J.; Lamar, D.G.; Aller, D.G.; Miaja, P.F.; Sebastián, J. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters. Sensors 2018, 18, 1127. https://doi.org/10.3390/s18041127
Rodríguez J, Lamar DG, Aller DG, Miaja PF, Sebastián J. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters. Sensors. 2018; 18(4):1127. https://doi.org/10.3390/s18041127
Chicago/Turabian StyleRodríguez, Juan, Diego G. Lamar, Daniel G. Aller, Pablo F. Miaja, and Javier Sebastián. 2018. "Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters" Sensors 18, no. 4: 1127. https://doi.org/10.3390/s18041127