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Fig. 1. Our method estimates geometrically and temporally consistent depth from a general video containing fast-moving objects and camera motion. The
input video (a) contains a continuous camera dolly motion following the moving person and puppy. This is a difficult case for depth estimation due to the
correlated motion between camera and subject. The video is shown reprojected into the camera at frame ¢ using our predicted depth (b), with disparity maps
of the re-projection shown below (c). On the right: x — ¢ slices for the horizontal line marked in red on frame ¢ in (a). The slice of the original video (top) shows
both camera and objects’ motion (slanted lines in the background, twisted lines in the foreground). The slice of the re-projected frames (middle) shows the
camera fixed relative to the background (vertical lines), and foreground objects moving relative to the camera (twisted lines).

We present a method to estimate depth of a dynamic scene, containing arbi-
trary moving objects, from an ordinary video captured with a moving camera.
We seek a geometrically and temporally consistent solution to this under-
constrained problem: the depth predictions of corresponding points across
frames should induce plausible, smooth motion in 3D. We formulate this
objective in a new test-time training framework where a depth-prediction
CNN is trained in tandem with an auxiliary scene-flow prediction MLP over
the entire input video. By recursively unrolling the scene-flow prediction
MLP over varying time steps, we compute both short-range scene flow to im-
pose local smooth motion priors directly in 3D, and long-range scene flow to
impose multi-view consistency constraints with wide baselines. We demon-
strate accurate and temporally coherent results on a variety of challenging
videos containing diverse moving objects (pets, people, cars), as well as
camera motion. Our depth maps give rise to a number of depth-and-motion
aware video editing effects such as object and lighting insertion.
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1 INTRODUCTION

Estimating the geometry of moving objects from ordinary videos—
where both the camera and objects in the scene are moving—is an
open, underconstrained problem. For any video of a moving object,
there is a space of solutions that satisfy the visual evidence: the
object could be far away and moving fast, or close and moving
slowly. Thus, prior knowledge about objects’ motion or shape is
necessary to estimate geometry of moving objects in video.
Learning geometric priors directly from data has proven to be a
promising approach that facilitates geometry estimation in uncon-
strained setups such as predicting depth from a single RGB image
(RGB-to-depth), or from a video where both the camera and the
people in the scene are moving. In such cases, epipolar geometry
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constraints break and triangulation-based methods are not appli-
cable, so the solution is determined by learned geometric priors.
Such geometric priors are typically learned from a large dataset
containing visual data (images/videos), and their corresponding
depth maps, which are used as supervision during training. While
powerful, a purely data-driven approach has two main weaknesses
in the case of arbitrary moving objects in a monocular video: (i)
scarcity of training data—video datasets of dynamic scenes with
ground truth depth are still limited and only available for specific
class of objects (e.g., moving people [Li et al. 2019, 2020a]), (ii) tem-
poral consistency—feed-forward models for videos consider a fixed,
short-range window of inputs (often one or two frames), resulting
in inconsistent geometry and flickering depth over time.

Instead of relying entirely on data, we take a hybrid approach
and initialize a solution from geometric priors learned from a large
dataset, then optimize the solution to satisfy space-time geometric
constraints. This approach is inspired by the recent work of [Luo
et al. 2020], which finetunes a monocular depth prediction model
for a video by assuming a static scene and requiring depth estimates
for corresponding pixels to be consistent across frames. Our method
generalizes this approach to videos of dynamic scenes by explicitly
modeling scene flow, i.e., the 3D motion of objects in the scene.

We seek a geometrically and temporally consistent solution: the
depth and scene flow at corresponding points should to be consistent
over frames, and the scene flow should change smoothly in time. Our
key contribution is a formulation of this ill-posed problem via the
optimization of two networks: a depth-prediction CNN that takes an
RGB frame as input and outputs a dense depth map; and an auxiliary
scene-flow-prediction multi-layer perceptron (MLP) that takes a 3D
point as input and outputs its 3D velocity vector. The depth network
is first initialized using a data-driven prior (pretrained weights),
and then finetuned in tandem with the scene-flow network for a
given input video, using a smooth-motion prior and multi-view
consistency losses. As in [Luo et al. 2020], we compute camera
poses and optical flow between pairs of frames in a pre-processing
step and use them as input.

Our scene-flow MLP plays two important roles: (1) it provides an
explicit, 3D representation of scene flow that aggregates informa-
tion over space and time through the shared weights of the network,
and produces plausible flow in cases where an analytic solution
derived from depth and optical flow is unstable (e.g., nearly parallel
rays between two points, as shown in Section 5.1.). (2) it provides a
mechanism to form scene flow estimates over varying time steps. As
demonstrated by stereo and MVS methods, wide baseline correspon-
dences are required to accurately estimate depth, but smooth-motion
priors must be evaluated locally. The scene-flow MLP, which maps
a 3D point at time ¢ to its velocity vector (3D offset between ¢ and
t + 1), can be evaluated recursively by unrolling. This allows us to
compute long-range scene flow to apply multi-view consistency
losses between distant frames, and short-range scene flow to apply
a smooth motion prior.

We demonstrate detailed, accurate, and temporally-consistent
depth maps produced from ordinary videos with multiple, non-
rigid, rapidly-moving objects (Fig. 1). We evaluate and ablate our
method quantitatively and show 40-45% reduction in L; relative
error vs. single-view depth prediction, and show various depth and
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motion aware editing effects in videos made possible by our depth
and scene flow estimates.

2 RELATED WORK

Learning-based depth prediction. Deep learning based methods
for predicting depth under different setups have demonstrated a
dramatic improvement in recent years. Numerous methods have
been proposed to predict depth from a single RGB image. Such
methods typically use a feed-forward CNN-based model and can be
divided into two main categories: supervised methods that regress
to ground-truth depth maps given a large dataset of images and
their corresponding depth maps [Chen et al. 2016; Eigen et al. 2014;
Fu et al. 2018; Li and Snavely 2018; Ranftl et al. 2020; Wang et al.
2019; Xian et al. 2018], and self-supervised methods [Casser et al.
2019a; Godard et al. 2017, 2019; Yang et al. 2018; Yin and Shi 2018;
Zhou et al. 2017] that learn depth prediction by optimizing for
photometric consistency, either using stereo images or monocular
video. To handle moving objects in training videos, self-supervised
methods predict an optical flow field as an additional task (e.g. [Yang
et al. 2018; Yin and Shi 2018]), or learn to mask out moving objects
(e.g. [Godard et al. 2019]).

Once trained, single-frame methods are agnostic to moving ob-
jects, and can be applied to any video in a frame-by-frame fashion.
However, because depth is predicted independently per-frame, such
an approach results in temporally inconsistent estimates. The loss
of epipolar constraints also means single-view prediction lags in
accuracy over multi-view stereo (MVS) methods [Schonberger et al.
2016; Seitz et al. 2006] for stationary regions.

Geometry estimation of dynamic scenes. Methods for estimating
geometry of a dynamic scene roughly fall into two major categories.
The first category of works aim to solve this problem by considering
either a multi-camera setup where epipolar geometry constrains can
be applied, or using RGBD data (e.g., [Bansal et al. 2020; Basha et al.
2012, 2013; Dou et al. 2016; Innmann et al. 2016; Newcombe et al.
2015; Richardt et al. 2016; Wedel et al. 2011]). The second category of
works aim to tackle this problem using monocular videos, which is
a more challenging and ill-posed task. To deal with such challenges,
some approaches aim to reconstruct the geometry of a dynamic
scene by limiting in the type of scenes and objects’ motion [Park
et al. 2010b; Rantftl et al. 2016; Russell et al. 2014; Simon et al. 2017].

Other methods combine data-driven priors with multi-view stereo
methods [Li et al. 2019; Rematas et al. 2018; Yoon et al. 2020]. For
example, [Li et al. 2019] uses parallax between two RGB frames to
estimate depth in static parts of the image, then inpaints the depth
of dynamic regions using a depth-prediction network.

In contrast, our method optimizes a pre-trained depth prediction
network over the entire video at test-time to produce consistent
estimations. The fusion method of [Yoon et al. 2020] uses the entire
video to compute MVS estimates that are combined with a single-
view CNN prediction using a learned module. Our method does not
require MVS depth as input, only camera poses, and does not require
training a fusion module. In addition, some methods [Klingner et al.
2020; Patil et al. 2020] use semantic information to guide depth pre-
diction and identify moving objects during training. Those methods
usually focuses on specific scenarios such as autonomous driving.



Our method does not require semantic information and aims to
solve for consistent depth maps for general videos.

Test-time training for depth estimation. Recently, test-time train-
ing methods for depth estimation [Casser et al. 2019b; Chen et al.
2019; Luo et al. 2020] have appeared, which use deep neural net-
works as optimizers: given an objective function defined over the
test data, the variables of optimization are the weights of a deep
network that predicts the unknowns, rather than the unknowns
themselves. By finetuning a pre-trained network on a single video,
these methods both apply data-driven depth priors and aggregate
information across the entire video. The method of [Casser et al.
2019b] segments the video and proposes separate motion models for
each segment, whereas our scene-flow MLP learns a global motion
model. Compared to GLNet [Chen et al. 2019], we explicitly model
3D motion, rather than deriving it from optical flow and depth. We
show that this explicit model of motion is important for stability and
long-range correspondence. Most closely related to our work is [Luo
et al. 2020], which shares our goal of accurate, temporally-consistent
depth from video. While their method tolerates small amounts of
object motion, it fundamentally assumes a stationary scene, whereas
our method is designed to handle large object motion.

Reconstruction from smooth motion priors and non-rigid SfM. Prior
to the rise of data-driven methods, reconstruction of dynamic scenes
was explored using Nonrigid Structure-from-Motion [Torresani et al.
2008].

Multi-view stereo methods typically treat dynamic objects as
outliers and produce either empty or spurious estimates in moving
regions. NSfM methods produce estimates for moving regions

by solving a reduced dimension approximation of the problem,
or by applying additional losses such as smooth-motion priors (see
[Jensen et al. 2020] for a recent survey).

The effectiveness of an explicit smooth-motion prior depends
heavily on accurate tracking, a notoriously difficult problem in
itself. NSfM methods use sparse feature tracks (e.g. [Vo et al. 2016])
or build an explicit geometric model and fit it to 2D observations
(e.g. [Torresani et al. 2008]). However, feature tracking can only
track sparse points, while explicit geometric models fail to capture
real-world sequences with complex motions. Instead, we train an
MLP to predict a dense scene flow field at all points in 3D, and apply
a smooth-motion prior directly to the outputs of the MLP. A similar
method of predicting scene flow was used by [Niemeyer et al. 2019]
to align body scans, however they did not take advantage of the
unrolling capability of the MLP.

Concurrent Work. Concurrent to our work, several methods have
been proposed to tackle reconstruction of dynamic scenes captured
by a moving camera. Dynamic NeRF methods aim at generalizing the
original Neural Radiance Field framework [Mildenhall et al. 2020] to
dynamic scenes by modeling and estimating the scene motion either
using a locally-rigid deformation [Park et al. 2020], or a scene flow
field [Li et al. 2020b]. Their training loss is primarily a reconstruction
loss over the RGB video frames. These methods have demonstrated
impressive results for synthesizing novel views of a dynamic scene,
but they are currently limited to short (2 seconds) videos [Li et al.
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2020b], or small motions [Park et al. 2020]. In contrast to NeRF-
based methods, our main goal is to estimate general purpose depth
maps for long videos with arbitrary camera and object motion.
Robust CVD [Kopf et al. 2020] also aims to produce depth maps
from monocular video, in addition to estimating camera poses. Their
method also applies a pre-trained depth prediction model but does
not model the 3D motion in the scene, instead assuming that the
depth error in dynamic regions can be removed using a spatially
and temporally smooth scaling of the initial depth. In contrast, our
method finetunes the weights of the depth prediction network while
estimating a dense scene-flow field for each frame, and so can resolve
initial depth errors that cannot be resolved by smooth scaling.

3 METHOD
3.1 Overview

Figure 2 illustrates the pipeline of our method. Our system takes a
calibrated video as input where both the objects in the scene and the
camera are naturally moving, and predicts per-frame depth maps.
This is done via an optimization framework where two networks are
trained, at test time, on the input video: (i) a single-frame CNN depth
prediction model that takes an RGB image as input and outputs a
depth map. (ii) a scene flow MLP prediction model that takes a 4D
point (x,y,z t) as input and outputs its 3D displacement to the
next time step ¢ + 1. Both the depth and the scene flow networks
are trained jointly where the depth network is initialized with a
pre-trained monocular depth prediction model (e.g., [Li et al. 2020a]
or [Ranftl et al. 2020]), and then finetuned over the input video;
this initialization equips our model with depth priors learned from
external source of data [Luo et al. 2020]. The scene flow module
allows us to explicitly model the 3D motion of arbitrary dynamic
objects in the scene, and is trained from scratch.

In a pre-processing step, we compute camera poses of all the
frames and optical flow fields between pairs of frames {I;,I;} using
off-the-shelf techniques (Section 3.2). The computed camera poses
and optical flow fields are used to apply two types of re-projection
losses: a flow consistency loss, i.e., we require that the 2D displace-
ment field between two frames resulting by projecting the predicted
depth and scene flow onto 2D would match the pre-computed 2D
optical flow field between the frames; we further apply a depth con-
sistency loss which encourages coherency between the depth and
scene flow estimates across different frames. Finally, we impose a
local linear motion prior on the predicted scene flow to reduce the
inherent ambiguity between depth and motion. We next describe
each of these losses in detail.

3.2 Pre-processing

We use a similar pre-processing strategy by presented by [Luo et al.
2020]. The input RGB frames I; are first triangulated with ORB-
SLAM2 [Mur-Artal et al. 2015] for initial pose estimates, which
is later refined by the structure-from-motion stage of COLMAP
[Schonberger and Frahm 2016] to produce camera poses R;, ¢; and

sparse depth maps fo ™ for every frame. For sequences where
motion masks are available, we use the multi-view stereo stage
of COLMAP [Schénberger et al. 2016] for more accurate poses
and denser depth maps. Then, forward optical flow v;_,;,x and
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Fig. 2. Pipeline. Our system takes as input an ordinary video with freely-
moving camera and scene objects and predicts a depth map for each frame
of the video. We assume known camera poses and compute optical flow
between frames in a per-processing step. Our system consists of two net-
works: A depth prediction CNN Fg,, which takes I; (RGB frame) as input
and outputs a depth map D;; we initialize this network with a pre-trained
monocular depth model (e.g., [Li et al. 2020a]); and a scene flow MLP Gy,
which takes a space-time point, (x, y, z, t), as input and outputs its scene
flow vector, i.e., 3D displacement vector w.r.t. ¢ + 1. The depth and scene
flow networks are trained jointly in a self-supervised manner under two
losses: LD measures the difference between the induced flow and the input
optical flow, while £%5P measures the difference between the induced depth
at time j and the predicted depth at time j. We further apply a constant
velocity prior on the scene flow vectors (see Section 3.3).

backwards optical flow v;,;_,; are computed between subsequent
frames (k = 1) and between a subset of wide-baseline frame pairs
(k € [2,4,6,8]) using RAFT [Teed and Deng 2020]. We then gener-
ate initial depth maps Dl?”it using a single-frame depth prediction
network [Li et al. 2020a; Ranftl et al. 2020]. Since such predictions
are scale-invariant, we align the scale of t; to roughly match the
the scale of initial depth estimates. Specifically, the scale s is calcu-
lated by: s = mean( median(Df"it/fom)), and applied for all camera
translations t;.

For each pair of optical flow fields v;_,;x and v;,¢_,; we find oc-
cluded regions (as well as regions of inaccurate flow) using forward-
backward consistency to generate an occlusion mask MO;_, ;4 for
masking the loss computation. All flows with inconsistency larger
than 1 pixel are considered to be occluded or unreliable. Formally:

1 050 () F 0k (X F 0,540 [ > 1
Moi—>i+k(x) = .
0, otherwise

1

where x denotes pixel locations in frame i.

3.3 Test-time Learning of Depth and Scene Flow

Given the input video, along with the pre-computed optical-flow
fields and camera poses (see Section 3.2), we turn to the task of
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Fig. 3. Depth and scene flow training losses. A pixel x in frame i is back-
projected into a 3D point X; (x) (orange point), using our predicted depth
map value D; (x). Similarly, the corresponding pixel of x in frame j, denoted
by pi—j, is backprojected to X;(p;— ;) (green point). We require consis-
tency between X (p;— ;) and X;(x) after displacement by our predicted
scene flow S;_, ;, denoted by X;_,; (x) as follows: (i) £2P penalizes the 2D
distance between the projection of X;_,;(x) onto frame j, and p;_,;. (ii)
L£91P penalizes the difference in disparity between Xij(x) and X (pisj).
See details in Section. 3.3.

fine-tuning a pre-trained, single-frame, depth-prediction network,
Fp,, that takes an RGB frame I; as input and produces a depth map
D;, and training from scratch an auxiliary scene-flow-prediction
network Gy, that takes a 3D point in world coordinate system X,
and predicts its 3D world-space scene flow S;_j41.

The networks’ parameters 6; and 0 are the only variables of
the optimization and are trained in conjunction: the inputs to the
scene flow network are updated at each optimization step, based
on the current depth estimate; and the scene flow losses are back-
propagated to update our depth model at each step.

Theoretically, the scene flow module is redundant—it can be ana-
lytically computed given 2D dense correspondences between frames
(optical flow) and depth estimates for each frame. However, such
estimation can often be noisy and unstable especially when the
camera rays at corresponding points are nearly parallel. Implicitly
representing the scene flow using our MLP network acts as an auxil-
iary variable that is encouraged to match the analytically computed
scene flow through the training losses. This design choice is crucial
for making the optimization stable as demonstrated in Section. 5.1.

Our objective loss for optimizing Gy_and Fg, consists of three
terms:

arg min LZD + aLdisp +ﬁLprior (2)

04,05
LD encourages the depth and scene flow between two frames
to match the pre-computed optical flow when projected onto 2D.
Ldisp encourages the predicted depth D; and scene flow w.r.t. frame
J» Si—j to be consistent with Dj, the predicted depth of frame j.
LPT7 is a smoothness prior imposed on the predicted scene flow.



The hyper-parameters a and § control the relative weighting of the
different terms. We next describe each of the loss terms in detail.

3.4 Training Losses

Given a pair of frames {I;,I;}, we define the following losses on
the predicted depth maps {D;, D;}, and the predicted scene flow
between the frames S;_, ;. An visual illustration of these losses and
our notation is presented in Fig. 3.

We unproject each pixel x € I; into a 3D point X;(x) in world
coordinates, using the predicted depth map D; and camera poses:

Xi(x) = Ri(Di(0)K} '%) + i, 3)
where x is the 2D homogenous augmentation of x, K; is the camera
intrinsics matrix, R; is the 3x3 camera rotation matrix, and ¢; is the
camera translation vector.

We can now compute the scene flow of Xj(x) w.r.t. time i + 1 by
feeding it into our MLP scene flow network. That is,

Simir1(x) = Go, (Xi(x), ). (4)

To compute the scene flow w.r.t. frame j where j — i > 1, we can
simply unroll the scene flow MLP j — i times:

Simj(x) = Gy (Xj-1,j — 1),

- - 5
X = X1 + Sk—1=k (x), k=i+1,..,j—-1 ©

Finally, the 3D position of X;(x) at time j is given by:
Ximj(x) = Xi(x) + Sim j (x). (6)

Consistency in 2D. We define a 2D consistency loss Lfg j (x) that
measures the pixel distance between the corresponding pixel of x
in frame j, and the projection of Xj_, j(x) onto camera j.

Formally, let v;— j (x) be the pre-computed optical flow vector of
pixel x € I; w.rt. frame I;. The corresponding pixel of x is given by:

Pisj(x) = x +0ij(x). 7)
The loss term £?P is given by:
Lfﬂj(x) = [|Mj (Xis j(x)) = pimsj ()] -
‘LZD = Zi,j ZXE{MO,;)]’=0} ‘EIZB)J (x)’

where ||-||; denotes the L; norm, MO;_,; denotes the occlusion
mask of frame i w.r.t frame j, and M;(X) denotes the projection of

®)

a world-space point X onto the jth camera:
M;(X;) = m(K;R] (Xi — 1)), )
where 7 is the projection operator 7 ([x, y, wlT) = [x/w, y/w]T.

Consistency in 3D. Similarly to [Luo et al. 2020], we define the
disparity consistency loss L9 which measures the consistency
between the inverse depth value of X;—, j(x) under camera j, and
the inverse of D;:

Dimsj(x) = [KGR] (Xi +Sims(x) = 1))z

L0 =

HDHIJ’(X) B Dj(Piij(X))Hl (10)

. d'
LdlSP = Zi,j ZXE{MOi—)jZO} Llff_’/ (x)
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where | - |, denotes taking the depth component of a 3D point, i.e.
z=|[xy,2]l-

Smooth 3D motion. To regularize the motion in 3D, we impose a
constant velocity prior £LP™":

Lfrior(x) = [|Simis1(x) = Gy, (Xi(x) + Simix1 (x), i + D,

L7 = 3,5 e L7 (x)
(1)

where x is the pixel location in frame i.

Optional motion masks. If motion segmentation is available for
the video sequence, we can further constrain the motion in 3D by
penalizing velocities in static regions. Formally, given a mask of
static regions at frame i, denoted as MS;, we introduce a static prior
Lstatic:

L?mtiC(x) = [[Sisi+1(0)]l1,

. . (12)
Lstatzc — Zi ZxGMS,- [’?tatw(x)A
The total loss when using static/dynamic masks is given by:
L:sflasi — £2D + aLdisp +ﬁ£prior + YLstatic. (13)

Otherwise, the loss is given by Eq. 2. We do not use any motion
segmentation throughout our experiments unless explicitly noted,;
for real videos, only the ablation study (Fig. 8) includes a motion
mask.

Training schedule. As discussed in Section 3.1, we initialize the
depth network with a pre-trained monocular depth model. However,
the scene flow network Gy_ has to be trained from scratch. Naively
initializing Gy, with random weights produces small initial scene
flow values that are inconsistent with the initial depth estimate
and pre-computed optical flow. Training both depth and scene flow
networks from this initialization results in large changes in the
depth prediction network in order to satisfy the consistency losses.
We overcome this issue via a “warm-up" phase in which only Gg_ is
trained using £ with f = 0 while the pre-trained depth network
Fg,, is kept fixed. In practice, we found Gg_ converged after 5 epochs,
and set the warm-up phase to 5 epochs in all our experiments, after
which both networks are finetuned jointly using £,

Note that even if the predicted scene flow matches the analytic
scene flow perfectly after warm-up, there is still a training signal
from the smooth-motion prior applied to the scene flow after the
warm up phase. The scene flow MLP will deviate from its warmed-
up state during training in order to find a solution that induces
locally linear motion while satisfying the optical flow loss terms.

4 IMPLEMENTATION DETAILS

Network architectures. In our experiments , we use either the
single-frame MannequinChallenge model [Li et al. 2019] or the Mi-
DaS v2 model [Ranftl et al. 2020] for the depth prediction network
Fg,- The scene flow network Gg_ is a MLP with positional encod-
ing [Mildenhall et al. 2020] for the input. Specifically, the positional
encoding &(x) for input x is defined as:

&(x) = [sin 7x, cos 7x, sin 27x, cos 27x, ... sin N7zx, cos Nzx],
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(b) MC Depth  (c) w/o scene flow MLP (d) Ours (¢) GT depth

Fig. 4. MLP scene flow vs. analytic scene flow. (a) Sample frames from
the cube video - the cube is moving along a straight line in 3D, while the
camera is moving side-to-side. (b) Initial depth maps computed by MC [Li
et al. 2019]. (c) Results produced when only the depth network is optimized,
while the scene flow is computed analytically (‘w/o scene flow MLP’); this
baseline fails to converge to the correct solution (e). Our method (d) produces
near perfect results under this setup. In both (c) and (d), we use ground
truth optical flow and camera poses. See more details in Section 5.1.

where we use N = 16 for all the experiments, and the encoding is
applied to both 3D locations and time. The MLP is comprised of 4
hidden layers, each with 256 units.

Hyperparameters. Throughout our experiments, we set a = 0.1,
B = 1 for the total loss defined in Eq. 2. When motion segmen-
tations are present, we set y = 100 in Eq. 13. We use a learning
rate of 10 for the depth network when initialized with the Man-
nequinChallenge model [Li et al. 2019], and a learning rate of 1076
when initialized with the MiDaS v2 model [Ranftl et al. 2020]. The
sceneflow network is optimized with a learning rate of 0.001. Both
networks are optimized using the Adam optimizer with f; = 0.9
and f2 = 0.999. Batch size is set to 1.

Training Time. The networks are trained for 20 epochs for all
experiments, so the training time of our method depends linearly
on the number of frames. For a 60-frame video, the training time is
about 75 minutes on a single NVIDIA P100 GPU. The training time
of our method is about 2x longer than CVD [Luo et al. 2020], due
to the extra scene flow network.

5 RESULTS

Our experiments demonstrate the quality of predicted depth and
the importance of the scene flow network on two synthetic datasets
and real-world videos. We first justify the design choice of the
scene flow MLP against analytically deriving scene flow (Sec. 5.1).
We then evaluate our method on the synthetic Sintel [Butler et al.
2012] dataset and show quantitative improvement over competing
methods (Sec. 5.2). To demonstrate the real-world capabilities of the
method, we show qualitative examples on videos with significant
camera and object motion (Sec. 5.3). Finally, we show multiple video
editing results based on our consistent depth estimates (Sec. 5.4).

5.1 MLP scene flow vs. Analytic scene flow

We examine the importance of representing scene flow implicitly
via our MLP model vs. analytically computing scene flow (using
the depth estimates, camera poses and optical flow fields). To do
so, we generated a simple synthetic scene where a cube is moving
along a straight line in 3D, towards the camera at a constant velocity,
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while the camera is moving along a sine curve that simulates hand-
held camera wobble (see Figure 4a, and full video in the SM). Using
ground truth optical flow fields and camera poses, we then train:

(1) Our full framework, including both depth and scene flow
networks, using Eq. 2.

(2) Only depth network only (no MLP scene flow). At each iter-
ation of training, we compute scene flow given the current
depth estimates:

Sicsir1 (%) = Xir1 (pisint (%)) = Xi (x).

where X; (x) and Xj4+1 (pi—i+1(x)) are computed by unproject-
ing pixel x € I;, and its corresponding pixel p;—+1(x) € Ii+1
to 3D, using the depth estimates {D;, Dj41 } as defined in Eq. 3.
We then plug the computed scene flow into Eq. 2 by replacing
all Si—i+1 and Gy, (X;, i) with Siyis1. Note that by construc-
tion, £2P and L9 are perfectly satisfied (the scene flow is
derived from two depth maps and flow). Thus, the only loss
that drives the optimization is £P7°". Intuitively, this baseline
simply optimizes the depth network such that the derived
scene flow is locally smooth.

As can be seen in Figure 4, the baseline w/o scene flow MLP does
not converge to the correct solution, even when ground truth optical
flow and camera poses are used to derive scene flow.

We hypothesize the failure is due to the £P°" term being ill-
posed for analytic scene flow. When the motion of the camera and
the object are nearly aligned, even momentarily, p;—+1(x) = x. In
this case analytic scene flow is ill-posed (see Appendix A.1) and the
gradient of £P"" is numerically unstable, leading to poor conver-
gence.

In contrast, our scene flow network Gy, avoids this issue by
acting as a slack variable that aggregates information across the
entire video. When LP"" is defined in terms of the output of G,
(Eq. 11), the scene flow at X;(x) potentially depends on all the rays
in the scene. Each frame of the video has ~ 217 pixels, whereas G,
has only ~ 2!8 parameters, so weights must be shared between rays.

In the presence of badly conditioned ray pairs these shared weights
act as a regularizer, allowing our method to nearly perfectly recon-
struct the ground truth cube (Fig. 4d).

5.2 Quantitative Evaluation

We quantitatively evaluate, ablate and compare our method on a
subset of the Sintel dataset [Butler et al. 2012], as follows.

Dataset. We test the depth prediction accuracy of our method
using the 23 sequences of the Sintel dataset. We use the motion
masks provided by [Taniai et al. 2017] as MS; and for separately
evaluating performance in static and dynamic regions. Input optical
flow is computed using RAFT [Teed and Deng 2020], not the ground-
truth flow from the dataset.

Baselines. We compare our method with three baselines: the
single-frame MannequinChallenge model(MC) [Li et al. 2019], single-
frame MiDaS v2 [Ranftl et al. 2020] and CVD. For CVD with MC
initialization, we use the original implementation provided by the
authors. We found training the original implementation of CVD
numerically unstable (training loss being NaN for some sequences)
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Table 1. Depth accuracy on Sintel. We evaluate error for the entire depth map (Full), and separately for the dynamic and static regions. We evaluate the
initial depth maps produced by MC (top) and MiDa$S (bottom), along with the depth prediction results of CVD and our method using each of the depth
initializations. Additionally, we evaluate our performance when the smooth motion prior is omitted from our objective (w/o L"), and when static/dynamic
segmentation masks are incorporated (Eq. 13). Our full method consistently improves upon the initial depth estimations, in both static and moving regions.
Since CVD assumes a static scene, it fails to recover large moving regions. Given the motion masks, our performance further improves in static and dynamic
regions, and is on par with CVD in static regions. Additionally, we observe a significant degradation in our performance when L'’ is omitted, demonstrating
its importance in reducing the ambiguity between depth and 3D motion. CVD' denotes our implementation of CVD under MiDa$ initialization, as the original
code fails to train on some of the sequences (see Sec. 5 for more details.)

Method Full Dynamic Static

Lyrel.] 1logRMSE| RMSE| | Lirel. | logRMSE| RMSE| | Lyrel. | logRMSE| RMSE ]
MC [Li et al. 2019] 0.6508 1.1978 4.0830 | 0.5083 0.4974 3.6870 | 1.3691 1.3443 2.9392
CVD, MC init [Luo et al. 2020] | 1.5208 0.6874 3.3531 | 2.9116 0.8814 4.9374 | 0.3291 0.2902 1.8832
Ours, MC init, w/o LPrior 0.6753 0.7837 3.7396 | 0.8227 0.6575 3.7171 | 0.6654 0.6803 2.5594
Ours, MC init 0.5280 0.6907 3.1284 | 0.4841 0.5655 3.0244 | 0.9963 0.5723 2.2443
Ours, MC init, w/ mask 0.3540 0.4877 2.8530 | 0.4707 0.5464 2.8469 | 0.3494 0.2845 1.8480
MiDaS [Ranftl et al. 2020] 0.4506 0.7440 3.2763 | 0.5202 0.6361 2.5613 | 0.5743 0.6243 2.7371
CVD', MiDas init 0.6245 1.0754 47060 | 1.7494 1.4744 6.9751 | 0.2321 0.3154 1.6662
Ours, MiDas init, w/o LP"" 0.4095 1.7713 3.8590 | 0.5758 0.6400 2.6002 | 0.2865 0.5438 2.7245
Ours, MiDas init 0.3838 0.5097 2.6733 | 0.4520 0.4997 2.5374 | 0.3746 0.3814 1.9427
Ours, MiDas init, w/ mask 0.3063 0.4708 2.4941 | 0.4468 0.3990 2.5018 | 0.2455 0.3347 1.6082

MiDas Init.

| L R L L L
ln" AR TaNTy
P

(b) Initialization (c) CVD (d) Ours w/o motion reg. (e) Ours full (f) Ours w/ motion mask (g) Ground truth depth

(a) Sample Frames

Fig. 5. Qualitative results on Sintel. Variants of our method are shown in (d,e,f) using MiDaS$ v2 [Ranftl et al. 2020] as initialization, along with initial depth
estimates (b) and CVD (c). Top two rows show initialization with MiDa$, while bottom two show initialization with MC. Both MiDa$S and MC initialization are
roughly correct but show visible errors. CVD improves static regions over the initialization, but fails on moving regions. Without the acceleration regularizer,
our method fails to recover the moving character (d, top row); with the regularizer (e), the character is put at the correct depth. Adding a motion mask to our
method (f) further improves the depth prediction quality on static regions.

when initialized with MiDaS due to the near-zero disparity values
MiDaS produces in background areas. We therefore implemented a
modified version of CVD that clips near-zero disparity to a small,
non-zero value using our frame work: removing the scene flow MLP
and replace our losses with the ones proposed by the original paper.

Ablation. We compare our method when: the smooth motion
prior is omitted from our objective (“w/o motion prior”), and w/o
and w/ dynamic/static motion segmentation masks (Eq. 2 and Eq. 13,
respectively.)

Metrics. We use three metrics to evaluate the quality of the depth
maps: Ly relative, log RMSE, and RMSE [Butler et al. 2012]. To
examine temporal consistency, we do not match the scale of each
individual frame against the ground truth during evaluation. Instead,
we apply a single calibrated scale for the entire sequence during the
preprocessing stage, as described in Sec. 3.2. We also evaluate sepa-
rately on moving and static regions using the ground truth motion
mask. We follow the common practice of excluding depth values that
exceed 80m during evaluation, as distant, high-magnitude outliers
otherwise confuse the results.
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(a) Sample frames (b) SfIM/COLMAP (c¢) MIDAS (mono.) (d) CVD (video) (e) Ours (video) (f) x-t depth slices

CVD

Ours

Fig. 6. Results on real videos. (a) Two representative video frames. (b) Sparse depth maps produced by running SfM/MVS (see Section 3.2); top two rows
show COLMAP SfM output, and the rest COLMAP MVS results (dynamic regions are filtered out and assigned zero depth). (c) Initial depth maps produced by
MiDaS (single-frame model), and by (d) CVD which optimizes single-frame depth prediction model over the input video. (e) Our predicted depth maps (no
motion segmentation masks were used). (f) Corresponding x — t slice for each of the methods (the sampled horizontal line is marked in red in (a)): MiDas
produces inconsistent depth over time, apparent by the zigzagging patterns in the slice. CVD outputs temporally consistent depth estimates in the static
regions, but fails in the dynamic regions (darker regions in the slice). Note that the last row depicts small, in-place motion (person is waving), in which case
most of the person region is reconstructed by MVS. In all example, our method is able to produce temporally consistent depth estimates in both static and
dynamic regions.
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(b) Optical flow

(a) Image (c) Initial scene flow (d) Our scene flow

Fig. 7. Scene flow results. Colors correspond to the direction of the pro-
jected flow, while saturation corresponds to magnitude (white is zero flow).
Optical flow (b) contains both background and foreground motion. Pro-
jected scene flow derived from the initial depth estimate (c) and optical flow
(b) has small, but still noticeable motion in stationary areas. Our projected
scene flow (d) is concentrated in the truly moving regions of the scene.

As can be shown in Table 1, our method, when initialized with the
corresponding single-frame depth prediction model, consistently
improves upon the initialization in both moving and static regions
by an average of 40-45% in L relative error. Our method outper-
forms CVD in moving regions by a large margin due to our ex-
plicit handling of motion, while CVD still performs well in static
regions. When motion masks are incorporated into our framework,
we achieve similar performance to CVD in static regions. Finally,
removing the motion prior £P7°" for our objective leads to 150-175%
increase in Lp relative error, which demonstrates the importance of
this regularization.

Figure 5 shows several qualitative results. Note that our method
(e) using MiDaS v2 [Ranftl et al. 2020] as initialization improves
depth in both moving and static regions compare to the initial depth
estimates (b) even when motion segmentation masks are not used.
Using the motion masks further improves our results (e,f). CVD
improves the static regions but fails to produce correct depth for
moving objects, tending to erase them to the background value (c).

5.3 Real Videos — Qualitative Results

We test our method on real world videos containing a variety of
moving objects (people, pets, cars) performing complex motions
such as running or dancing. Representative results are shown in
Fig. 6, and the full set of videos is provided in the SM. All of our
results on real videos are produced with MiDa$S [Ranftl et al. 2020]
initialization. In addition to depth maps, we also present depth x-¢
slices (Fig. 6f) for qualitative comparison of temporal consistency
of our results compared to the initial depth (MiDas) and CVD.
While the per-frame depth maps produced by MiDaS (Fig. 6c)
are generally sharp and accurate in terms of overall depth ordering,
our method shows improved temporal consistency as shown by the
reduced zigzagging patterns and color variation in the x-t slices.
The full-video method CVD produces good temporal consistency
and can reconstruct some small motions (e.g. waving hand, Fig. 6
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Input RGB Input Motion Mask

w/o Mas

w/ Mask COLMAP

/

Input RGB

Input Motion Mask

COLMAP

w/o Mask

w/ Mask

Fig. 8. Results with a motion mask. When an accurate motion mask is
available as input, our method can incorporate it to improve static regions
(top): note the hedge on right and sharper background. However, if the
motion mask is inaccurate, it can negatively affect the results (bottom): note
truck is not marked as moving (red box) and is spuriously pulled towards
the camera.

bottom). However, CVD tends to push large moving regions to in-
finity (Fig. 6d) due to the violation of epipolar constraints, while
our method works well for the moving regions as well as the static
regions. Note that no input segmentation of moving vs. static re-
gions is used for these results. The CVD results shown in Fig. 6
is produced by the original implementation by the authors, using
the MannequinChallenge model as initialization. CVD with MiDaS
initialization fail to train on some of the sequences due to reasons
described in Sec. 5.2

The output of the scene flow MLP is visualized in Fig. 7 by project-
ing to image space. The scene flow of our method (d) is almost zero
on static regions, while scene flows derived from the initial depth
estimates (c) assign significant motion to stationary objects, in some
cases of similar magnitude as moving objects (ground and wall in
first row, hedge and sky in second row). This spurious motion stems
from the lack of temporal coherence in the initial depth maps. Note
that our method produces accurate, non-zero scene flow even when
optical flow is close to zero (head of left person in second row, center
person in bottom row).

When an accurate motion mask is available for a real video, our
method can incorporate it to improve results in static parts of the
scene (Fig. 8, top). Using an inaccurate motion mask can harm
results, however (Fig. 8, bottom): the truck is incorrectly marked as
stationary, and is spuriously pulled towards the camera as a result.
We do not use motion masks for any results other than Fig 8.

5.4 Applications

We explore several applications of our depth maps, including insert-
ing virtual objects into a video, inserting a new light source that
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Original Insertion Result

Original Relighting Result

Fig. 9. Object and light insertion. Because of their temporal coherence, the depth buffers produced by our method may be used to insert objects (top) or
position-dependent lighting effects (bottom) without distracting flickering. Please see supplemental material for a video comparison with single-frame depth

prediction.

travels the scene, or segmenting the video via tracking of simple
proxy geometries in 3D. In all these applications, the geometrical
and temporal consistency of the depth maps play a critical role
in producing realistic effects in which depth ordering of moving
objects is preserved and the result is consistent over time.

Object and Light Insertion. Fig. 9 shows the results of inserting
synthetic objects and lights into real-world videos. The 3D scene
is created by unprojecting our depth maps per-frame using the
per-frame input camera, without further 3D processing. To slightly
improve the sharpness of depth edges, we identify edges between
moving and static regions using the depth map and projected scene
flow, then separately apply morphological erosion followed by di-
lation to the moving and static regions in order to replace values
along depth edges with depth values from interior regions. Lights
and objects were placed manually using NUKE [Ltd 2018].

Temporal coherence is critical for creating effective insertion
results: while the human eye is often not sensitive to small inaccu-
racies in shadow or lighting placement, it is extremely sensitive to
the jitter or flashing that can occur when the depth predictions near
an inserted object are unstable. The depth maps produced by our
method are stable enough to avoid distracting artifacts compared
with single-frame depth prediction, even with large moving objects
(see supplementary video for comparison).

3D Segmentation. The stability of our depth maps allows for effec-
tive manual segmentation of videos using 3D information. The user
may place simple proxy geometry around the objects in 3D, then
color the points by the proxy geometry they fall inside (Fig. 10). The
proxies may be animated to track moving objects such as the dog
and walking person (Fig. 10, left). Loose proxy geometry usually
suffices to separate the objects in 3D: for the “puppy” sequence, each
segment was represented by either a box (dog, person) or a plane
(ground, wall, background). The position of the bounding boxes was
manually adjusted over time. Only 8 keyframes for the 121 frame
sequence were required. This 3D setup can be achieved in a few
minutes using a 3D video editing package such as NUKE [Ltd 2018].

Unlike data-drive segmentation models such as Mask R-CNN [He
et al. 2017], this approach allows the user to segment objects that
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3D Proxy Geometry

Segmentation

Fig. 10. Image segmentation using 3D proxy geometry. An input image
(left) may be segmented by using simple proxy geometry in 3D (center).
Points that lie within boxes (dog, person) or behind planes (ground, wall,
background) are colored by the respective proxies’ color to produce the
segmentation (right). Black indicates areas outside of a proxy or inside
multiple proxies. The green and blue boxes track the dog and person using
manual keyframes. Because of the temporal coherence of the depth maps,
keyframes were needed on only 8 of 121 frames for this sequence.

may not correspond to a specific label in the segmentation training
set (e.g., the red wall in Fig. 10, right). To obtain this result using
learned, image-based segmentation, a dataset of ground-truth seg-
mentations with labels corresponding to geometric features would
typically be required.

6 DISCUSSION AND LIMITATIONS

Our method generates high-quality, temporally consistent depth
maps for arbitrary moving objects in video, suitable for effects such
as object insertion, relighting, and 3D segmentation. There are two
main areas for improvement, however: failures due to inaccuracy of
optical flow, and accuracy of occlusion boundaries.

Our performance is affected by the accuracy of the optical flow
estimates. While state-of-the art optical flow methods are getting
better and better, they still have errors in some cases. Our method



Input Optical Flow Our Result

Flow Consistency

Fig. 11. Effect of optical flow failure. Even when evaluated with wide
baselines, RAFT optical flow [Teed and Deng 2020] may be inaccurate.
Where our mask MO;_,;x marks flow as inaccurate, our depth estimates
are robust to flow errors (top: note head of person is dark in consistency
map). If, however, flow is self-consistent but wrong, our method produces
incorrect results (bottom, note heads are marked consistent).

can handle optical flow errors to some extent as long as the erro-
neous regions can be identified using a left-right consistency check
and removed from our objective (as described in Sec. 3.3). We ob-
served that in some cases, severe errors such as removal of heads
and limbs can still be left-right consistent (with less than a pixel
error). In such cases, the optical flow errors translate into errors
in our depth prediction (Fig. 11). This problem can be potentially
alleviated by developing more intelligent confidence measurements,
or by exploring the use of photometric reconstruction losses.

The occlusion boundaries produced by our method may be inac-
curate by a few pixels, and so are not yet suitable for demanding
effects such as novel view synthesis. Blurring of depth boundaries is
a common side effect of CNN depth prediction, and semi-transparent
effects such as hair are not solvable using a single depth map. Edge-
aware filtering of depth maps [Barron and Poole 2016] may improve
sharpness, but may reduce temporal consistency. In future work,
we hope to integrate a matting or layering approach (e.g. [Lu et al.
2020]) to better handle difficult depth boundaries.
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A APPENDIX
A.1 Instability of Analytic Scene Flow

Scene flow computed directly from depth and optical flow is unstable

when the angle between associated camera rays is small, as can be

shown with the following derivation. Please see [Park et al. 2010a]

for further explanation of the multi-view geometry. Under analytical
. prior

sceneflow, we can rewrite £ (x) as:

L) = [Xier(x1) = Xi(x) = Xina (x2) + Xie (x1)]2

= X5 (3) — 2X521 (x1) + Xina (52 2 (1)

where x1 = x + vji41 (%), x2 = x1 + vi+1—i+2(x1). We can rewrite
Xi(x) as ri(x)d} (x) + ti, where r;(x) is the camera ray direction
vector at x, d] (x) the ray depth at x and ¢; the camera translation
vector. To simplify notation, we write r(x) as ro, ri+1(x1) as r; and
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ri+2(x2) as ra. With similar rewriting for d] and ¢;, we can rewrite
Lf " (x) as :

Lfrwr(x) = |rodf) + to — 2r1d] — 2ty + r2d}y + t2]2 (15)
Optimizing Lf rior(x) then becomes solving Rd = t under least
squares, where ri,r and r3 are columns of R, d = [dg, —Zd{,dg]
and t = 2t; — t3 — to. This problem is ill-posed when R is poorly
conditioned, which happens when the angles between rq, ry and r3
are small, for example when the object’s and camera’s motion align
over the span of 3 frames.
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