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ABSTRACT. This paper is concerned with p-th moment exponential stability of fuzzy cellular

neural networks(FCNNs) with time-varying delays and stochastic effects. Constructing some suitable

Lyapunov functional and using stochastic analysis technique, some sufficient conditions are presented

to guarantee p-th moment exponential stability of stochastic FCNNs with time-varying delays. The

condition contains and improves some of the previous results in the earlier references. Moreover an

example is provided to illustrate results obtained.
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1. INTRODUCTION

The dynamical behaviors of neural networks have appeared as a novel subject

of research in theoretic and applications, including optimization, control, and image

processing(see [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]). Obviously, finding stability cri-

teria for these neural networks becomes an attractive research problem of importance.

Some well results have appeared, for example, in [4],[5],[6],[7], for stochastic delayed

Hopfield neural networks, stochastic cellular neural networks and stochastic Cohen-

Grossberg neural networks, the linear matrix inequality approach is utilized to obtain

the sufficient conditions on mean square exponential stability for the neural networks.

In particular, in [4-5], by using linear matrix inequality and stochastic analysis, the

sufficient conditions are given to guarantee the exponential stability of an equilibrium

solution.

Fuzzy cellular neural networks (FCNNs) introduced by Yang and Yang [12],[13] is

another type neural networks model. These models combined fuzzy operation (fuzzy

AND and fuzzy OR) with cellular neural networks. Recently scholars have found that

FCNNs are useful in image processing, optimization and control [14],[15],[16],[17],[18],

[19],[20],[21],[22],[23],[24],[25]. The sufficient stability criteria have become one of re-

search topic in these models. In particularly, some sufficient conditions to ensure
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global exponential stability for FCNNs with delays (including constant delay, time-

varying delay, distributed delay and proportional delay ) have been reported in re-

cent years [14],[15],[16],[17],[18],[19],[20],[21],[22],[23],[24]. However, to the best of my

knowledge, there are few results about stochastic effects to the stability property of

fuzzy cellular neural networks with delays in the literature today [22],[24]. It is worth

continuing to find new criteria on p-th moment exponential stability of fuzzy cellular

neural networks with time-varying delays.

In this paper, we are concerned with the exponential stability of equilibrium

point for FCNNs with time-varying delays and stochastic effects. Following [2], that

activation functions require Lipschitz conditions and boundedness, by utilizing sto-

chastic analysis, general Lyapunov function, Young inequality method and Poincare

contraction theory are utilized to derive the conditions guaranteeing the existence

of periodic solutions of stochastic delay cellular neural networks and the stability of

periodic solutions. Different from the linear matrix inequality approach [2], [5] and

variation parameter method, the Young inequality method is developed to investigate

the stability of stochastic FCNNs with delays. These sufficient conditions extend the

early works in Refs. [8], and they include those governing parameters of stochastic

FCNNs, so they can be easily checked by simple algebraic methods, comparing with

the results of [2], [3], [22],[24]. Furthermore, an example is given to demonstrate the

usefulness of the results in this paper.

The structure of this paper is organized as follows. In Section 2, model for-

mulation and preliminaries are given. In Section 3, some new results are given to

ascertain p-th moment exponential stability of stochastic FCNNs with time-varying

delays based on Lyapunov method and stochastic analysis. In Section 4, an example

is given to illustrate the effectiveness of our results.

2. MODEL FORMULATION AND PRELIMINARIES

In this paper, we are concerned with the model of continuous-time neural net-

works

dxi(t) =

[
−aixi(t) +

n∑
j=1

bijfj(xj(t)) +
n∧
j=1

αijfj(xj(t− τj(t)))

+
n∨
j=1

βijfj(xj(t− τj(t))) + +Ei

]
dt(2.1)

+
n∑
j=1

σij(xj(t))dwj(t), i = 1, 2, · · · , n.
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where n corresponds to the number of units in a neural network. xi(t) is the activa-

tions of the i-th neuron at the time t. ai > 0 represents the amplification function. bij

denotes the synaptic connection weight of the unit j on the unit i.
∧

and
∨

denote

the fuzzy AND and fuzzy OR operation, respectively. αij and βij are elements of fuzzy

feedback MIN template and fuzzy feedback MAX template, respectively. the kernels

kj : [0,+∞)→ [0,+∞). The time delay τj(t) is any nonnegative continuous function

with 0 ≤ τj(t) ≤ τ , where τ is a constant. Ei denotes the i-th component of an ex-

ternal input source introduced from outside the network to the ith cell. fj(·) are the

activation functions. w(t) = (w1(t), w2(t), · · · , wn(t))T is an n-dimensional Brownian

motion defined on a complete probability space (Ω, F, {Ft}t ≥ 0, P ). σij(t, xj, yj) :

R+ × R × R → R is locally Lipschitz continuous and satisfies the linear growth

condition.

Let x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ C((−τ, 0], Rn), |x|, ‖x‖ denote the norms

of the vector x(t) = (x1(t), x2(t), · · · , xn(t))T , which are defined as

|x(t)| =

[
n∑
i=1

|xi(t)|p
]1/p

, ‖x(t)‖ = sup
−τ≤s≤0

[
n∑
i=1

|xi(t+ s)|p
]1/p

.

The initial conditions of system (2.1) are given by

xi(t) = ϕi(t), t ∈ (−τ, 0], i = 1, 2, · · · , n.

Throughout this paper, we will employ that each fj, j = 1, 2, · · · , n is bounded

and satisfying the following condition.

(A1) There exists constant Lj > 0, j = 1, 2, · · · , n, such that

0 ≤ fj(u)− fj(v)

u− v
≤ Lj, ∀u, v ∈ R, u 6= v.

(A2) σ(x(t)) = (σij(xj(t)))n×n, i, j = 1, 2, · · · , n, there exist nonnegative numbers

si, i = 1, 2, · · · , n such that

trace[σT (x)σ(x)] ≤
n∑
i=1

six
2
i .

Remark 2.1. In assumption (A1), the activation functions fj, j = 1, 2, · · · , n, are

typically assumed to be bounded and Lipchtiz continuous and need not to be differ-

ential. This class of functions is clearly more general than both the usual sigmoid

activation functions and the piecewise linear function.

Definition 2.2. Let x∗(t) = (x∗1(t), · · · , x∗n(t))T be an equilibrium of system (2.1)

with initial value ϕ∗(t) = (ϕ∗1(t), · · · , ϕ∗n(t))T and x(t) = (x1(t), · · · , xn(t))T be

any solution of system (2.1) with any initial value ϕ(t) = (ϕ1(t), · · · , ϕn(t))T ∈
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C((−∞, 0], Rn). x∗(t) is said to be pth moment exponentially stable, if there ex-

ist constants M ≥ 1 and λ > 0 such that

E‖xi(t)− x∗i (t)‖p ≤ME‖ϕ− ϕ∗‖pe−λt, t ≥ 0.

where E stands for the mathematical expectation operator. In this case

(2.2) lim
t→∞

sup
1

t
log(E‖xi(t)− x∗i (t)‖p) ≤ −λ.

The right-hand side of (2.2) is called the pth moment Lyapunov exponent of the

solution. It is usually called the mean square exponential stability as p = 2.

In order to obtain our result, we need the following lemma.

Lemma 2.3. [12] Let u and v be two states of system (2.1), then∣∣∣∣∣
n∧
j=1

αijfj(u)−
n∧
j=1

αijfj(v)

∣∣∣∣∣ ≤
n∑
j=1

|αij||fj(u)− fj(v)|,

and ∣∣∣∣∣
n∨
j=1

βijfj(u)−
n∨
j=1

βijfj(v)

∣∣∣∣∣ ≤
n∑
j=1

|βij||fj(u)− fj(v)|.

Lemma 2.4. Let γi > 0(i = 1, 2, · · · ,m), then

(2.3) γ1γ2 · · · γm ≤
γp1 + γp2 + · · ·+ γpm

p
,

where p ≥ 2 is a positive integer. In particular, we have

γp−11 γ2 ≤
(p− 1)γp1

p
+
γp2
p
.

Lemma 2.5. [26] If there exists a constant 0 < u < 1 such that 0 < H2 < uH1. As-

sume Z(t) is nonnegative continuous function on [t0−τ, t0] and satisfies the following

inequality

D+Z(t) ≤ −H1Z(t) +H2‖Zt‖, t ≥ 0.

Then Z(t) ≤ ‖Zt0‖e−λ(t−t0), where λ is the root of the equation λ = H1 −H2e
λτ and

the upper right Dini derivative of Z(t) is defined as

D+Z(t) = lim
δ→0+

sup
Z(t+ δ)− Z(t)

δ
.

Let C2,1(Rn×R+;R+) denote the family of all non-negative functions V (x, t) on

Rn×R+ which are continuously twice differentiable in x and once differentiable in t.
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For each V ∈ C2,1(Rn × R+;R+), define an operator LV associated with stochastic

delayed neural networks (2.1) from Rn ×R+ by

LV (x, t) = Vt(x, t) +
n∑
i=1

Vxi(x, t)

{[
−aixi(t) +

n∑
j=1

bijfj(xj(t))

+
n∧
j=1

αijfj(xj(t− τj(t))) +
n∨
j=1

βijfj(xj(t− τj(t))) + Ei

]
dt

}
(2.4)

+
1

2
trace[σTVxx(x, t)σ].

where

Vt(x, t) =
∂V (x, t)

∂t
, Vxi(x, t) =

∂V (x, t)

∂xi
, Vxx(x, t) =

(
∂2V (x, t)

∂xi∂xj

)
n×n

.

3. STABILITY OF EQUILIBRIUM POINT

In this section, using Lyapunov functional, stochastic analysis and differential

inequality [27], we study pth moment exponential stability of system (2.1).

Theorem 3.1. Suppose that assumptions (A1)-(A2) hold true. If there exist positive

diagonal matrices D = diag{d1, d2, · · · , dn} and a positive constant 0 < u < 1 such

that

0 < H2 ≤ uH1.

where

H1 = min
1≤i≤n

{
pai −

n∑
j=1

(p− 1)|bij|Lj −
n∑
j=1

|bji|Lj −
n∑
j=1

(p− 1)(|αij|+ |βij|)Lj

−
n∑
j=1

(p− 1)(p− 2)

2
sj −

n∑
j=1

dj
di

(p− 1)si

}

H2 = max
1≤i≤n

n∑
j=1

dj
di

(|αij|+ |βij|)Lj.

Then there exists unique equilibrium point of system (2.1) which is pth moment ex-

ponentially stable.

Proof. Assume that x∗(t) = (x∗1(t), x
∗
2(t), · · · , x∗n(t))T is an equilibrium of Eq. (2.1).

Let yi(t) = xi(t)− x∗i (t) and σ̃ij(yj(t)) = σij(yj(t) + x∗j)− σij(x∗j), then system (2.1)
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can become the following system

dyi(t) =

[
−aiyi(t) +

n∑
j=1

bij[fj(yj(t) + x∗j(t))− fj(x∗j)]

+
n∧
j=1

αijfj(yj(t− τj(t)) + x∗j)−
n∧
j=1

αijfj(x
∗
j(t))(3.1)

+
n∨
j=1

βijfj(yj(t− τj(t)) + x∗j)−
n∨
j=1

βijfj(x
∗
j)

]
dt

+
n∑
j=1

σij(yj(t))dwj(t)

To prove the stability of x∗ of Eq. (2.1), it is sufficient to prove the stability of the

trivial solution of Eq. (3.1). Consider the following Lyapunov function defined by

(3.2) V (y, t) =
n∑
i=1

di|yi(t)|p =
n∑
i=1

di|xi(t)− x∗i |p, p ≥ 2.
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Applying Lemma 2.3, we calculate and estimate LV (y, t) along the trajectories of

system (3.1) as follows

LV (y, t) =

p

n∑
i=1

di|yi(t)|p−1sgn{yi(t)}

[
−aiyi(t) +

n∑
j=1

bij[fj(yj(t) + x∗j(t))− fj(x∗j(t))]

+
n∧
j=1

αijfj(yj(t− τj(t)) + x∗j(t))−
n∧
j=1

αijfj(x
∗
j(t))

+
n∨
j=1

βijfj(yj(t− τj(t)) + x∗j(t))−
n∨
j=1

βijfj(x
∗
j(s))

]

+
p(p− 1)

2

n∑
i=1

|yi(t)|p−2
n∑
j=1

σ̃ij(yj(t))

≤ −p
n∑
i=1

di|yi(t)|p−1aiyi(t)sgn{yi(t)}

+p
n∑
i=1

di|yi(t)|p−1
n∑
j=1

|bij|Lj|yj(t)|sgn{yi(t)}(3.3)

+p
n∑
i=1

di|yi(t)|p−1
n∑
j=1

(|αij|+ |βij|)Lj|yj(t− τj(t))|sgn{yi(t)}

+
p(p− 1)

2

n∑
i=1

|yi(t)|p−2
n∑
j=1

σ2
ijsgn{yi(t)}

≤ −p
n∑
i=1

di|yi(t)|p−1ai|yi(t)|+ p
n∑
i=1

di|yi(t)|p−1
n∑
j=1

|bij|Lj|yj(t)|

+p
n∑
i=1

di|yi(t)|p−1
n∑
j=1

(|αij|+ |βij|)Lj|yj(t− τj(t))|

+
p(p− 1)

2

n∑
i=1

|yi(t)|p−2
n∑
j=1

σ2
ij

Using Lemma 2.4, we obtain that

LV (y, t) ≤

−
n∑
i=1

di

{
pai −

n∑
j=1

(p− 1)|bij|Lj −
n∑
j=1

|bji|Lj −
n∑
j=1

(p− 1)(|αij|+ |βij|)Lj

−
n∑
j=1

(p− 1)(p− 2)

2
sj −

n∑
j=1

dj
di

(p− 1)si

}
|yi(t)|p(3.4)
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+
n∑
i=1

di

n∑
j=1

dj
di

(|αij|+ |βij|)Lj|yj(t− τj(t))|p

≤ −H1V (y(t), t) +H2 sup
t−τ≤s≤t

V (y(s), s)

By Itö’s formula, for t ≥ t0, we have

V (y(t+ δ), t+ δ)− V (y(t), t)

=

∫ t+δ

t

LV (y(s), s)ds+

∫ t+δ

t

Vy(y(s), s)σ(y(s), s)dω(s)(3.5)

Calculating the expectation of both sides of (3.5), since E[Vy(y(s), s)σ(y(s), s)dω(s)] =

0, and noting (3.4), we have

E[V (y(t+ δ), t+ δ)]− E[V (y(t), t)]

≤
∫ t+δ

t

[
−H1E[V (y(s), s)] +H2E

(
sup

s−τ≤θ≤s
V (y(θ), θ)

)]
ds(3.6)

The Dini derivative D+ of EV (y(t), t) is

(3.7) D+EV (y(t), t) = lim
δ→0+

sup
1

δ
E[V (y(t+ δ), t+ δ)]− E[V (y(t), t)].

Let Z(t) = EV (y(t), t), from (3.6), it can implies that

(3.8) D+Z(t) ≤ −H1Z(t) +H2‖Zt‖p

By virtue of Lemma 2.5, we have

Z(t) ≤ ‖Z(t0)‖pe−λ(t−t0).

Namely,

E[‖x(t)− x∗‖p] ≤ME[‖ϕ− x∗‖p]e−λ(t−t0), t ≥ t0.

where M =
max1≤i≤n{di}
min1≤i≤n{di}

> 1. λ is the root of the equation λ = H1−H2e
λτ . Therefore

the equilibrium point x∗ of system (2.1) is p-th moment exponentially stable. The

proof is completed.

Remark 3.2. The criteria of stochastic stability of system (1.1) can generalize sto-

chastic fuzzy Cohen-Grossberg neural networks with time-varying delays.
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Consider the following fuzzy Cohen-Grossberg neural networks with time-varying

delays.

(3.9)



dxi(t) = −ai(xi(t))
[
ci(xi(t))−

∑n
j=1 bijfj(xj(t)) + Ei

−
∧n
j=1 αijfj(xj(t− τj(t)))−

∨n
j=1 βijfj(xj(t− τj(t)))

]
dt,

+
∑n

j=1 σij(xj(t))dwj(t)

xi(t) = ϕi(t), t ∈ (−τ, t], i = 1, 2, · · · , n.

Similarly, we can obtain easily the following results on stochastic fuzzy Cohen-

Grossberg neural networks with time-varying delays.

Theorem 3.3. Suppose that assumptions (A1)-(A2) hold true, furthermore the fol-

lowing conditions satisfy

(A3) there exist positive constants ai, ai such that

0 < ai ≤ ai(x) ≤ ai, x ∈ R, i = 1, 2, · · · , n.

(A4) For ci(x) ∈ C(R,R), there exists ki > 0 such that

bi(u)− bi(v)

u− v
≥ ki, u, v ∈ R, u 6= v, i = 1, 2, · · · , n.

If there exist positive diagonal matrices D = diag{d1, d2, · · · , dn} and a positive con-

stant 0 < u < 1 such that

0 < H2 ≤ uH1.

where

H1 = min
1≤i≤n

{
paiki −

n∑
j=1

ai(p− 1)|bij|Lj −
n∑
j=1

aj|bji|Lj −
n∑
j=1

ai(p− 1)(|αij|+ |βij|)Lj

−
n∑
j=1

(p− 1)(p− 2)

2
sj −

n∑
j=1

dj
di

(p− 1)si

}

H2 = max
1≤i≤n

n∑
j=1

ai
dj
di

(|αij|+ |βij|)Lj.

Then there exists unique equilibrium point of system (3.9) which is pth moment ex-

ponentially stable.
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4. AN ILLUSTRATIVE EXAMPLE

In this section, an example is used to demonstrate that the method presented in

this paper is effective.

Example 4.1 Consider the following fuzzy cellular neural networks with time-

varying delay and stochastic noise.

(4.1)



dx1(t) =
[
−a1x1(t) +

∑2
j=1 b1jfj(xj(t)) +

∧2
j=1 α1jfj(xj(t− τj(t)))

+
∨2
j=1 β1jfj(xj(t− τj(t))) + E1

]
dt+

∑2
j=1 σij(xj(t))dωj

dx2(t) =
[
−a2x2(t) +

∑2
j=1 b2jfj(xj(t)) +

∧2
j=1 α2jfj(xj(t− τj(t)))

+
∨2
j=1 β2jfj(xj(t− τj(t))) + E2

]
dt+

∑2
j=1 σ2j(xj(t))dωj

where a1 = 3, a2 = 4, fj(x) = 1
2
(|x + 1| − |x − 1|)(j = 1, 2), σ11(x) = 0.2x, σ12(x) =

0.1x, σ21(x) = 0.3x, σ22(x) = 0.2x, τ1(t) = τ2(t) = 1
4

sin t, E1 = 0.05, E2 = 0.06.

(bij)2×2 =

(
0.1 −0.7

−0.6 0.9

)
, (αij)2×2 =

(
0.4 −0.5

−0.8 0.2

)
, (βij)2×2 =

(
0.6 −0.7

−0.8 0.9

)
There exist positive diagonal matrices D = diag(d1, d2) = (3, 2). and Lj = 1(j =

1, 2), τ = 0.25, s1 = 0.05, s2 = 0.13. So assumptions (A1) − (A2) are satisfied. Let

p = 2, it is easy to get H1 = 1.47, H2 = 0.83, there exists u = 0.8. namely, we have

0 < H2 ≤ uH1, Therefore, by virtue of Theorem 3.1, the equilibrium point (x∗1, x
∗
2) of

system (4.1) is mean square exponentially stable.(see Fig. 1.)

=8cm=6cm bhm4.eps

Fig.1. Numerical solution x(t) = (x1(t), x2(t))
T of systems (4.1)

for initial value ϕ(s) = (10,−8)T , s ∈ (−2, 0).

5. Conclusion

In this paper, p-th moment exponential stability of fuzzy cellular neural networks

with time-varying delays and stochastic noise is considered. Some sufficient conditions

set up here are easily verified and these conditions are correlated with stochastic noise

and parameters of the system (2.1), The criteria obtained can be applied to design

exponential stability of fuzzy cellular neural networks.
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