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Low-pass filtering of sinograms in the radial direction is the most common practice to limit noise
amplification in filtered back projection (FBP) reconstruction of positron emission tomography
studies. Other filtering strategies have been proposed to prevent the loss in resolution due to
low-pass radial filters, although results have been diverse. Using the well-known properties of the
Fourier transform of a sinogram, the authors defined a binary mask that matches the expected shape
of the support region in the Fourier domain of the sinogram (“bow tie”). This mask was smoothed
by a convolution with a ten-point Gaussian kernel which not only avoids ringing but also introduces
a pre-emphasis at low frequencies. A new filtering scheme for FBP is proposed, comprising this
smoothed bow-tie filter combined with a standard radial filter and an axial filter. The authors
compared the performance of the bow-tie filtering scheme with that of other previously reported
methods: Standard radial filtering, angular filtering, and stackgram-domain filtering. All the quan-
titative data in the comparisons refer to a baseline reconstruction using a ramp filter only. When
using the smallest size of the Gaussian kernel in the stackgram domain, the authors achieved a noise
reduction of 33% at the cost of degrading radial and tangential resolutions (14.5% and 16%,
respectively, for cubic interpolation). To reduce the noise by 30%, the angular filter produced a
larger degradation of contrast (3%) and tangential resolution (46% at 10 mm from the center of the
field of view) and showed noticeable artifacts in the form of circular blurring dependent on the
distance to the center of the field of view. For a similar noise reduction (33%), the proposed bow-tie
filtering scheme yielded optimum results in resolution (gain in radial resolution of 10%) and
contrast (1% increase) when compared with any of the other filters alone. Experiments with rodent
images showed noticeable image quality enhancement when using the proposed bow-tie filtering
scheme.
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I. INTRODUCTION

One of the main shortcomings of data acquired using posi-
tron emission tomography (PET) systems is the low number
of detected events (usually referred to as “low statistics”),
which results in noisy reconstructions. In the classic recon-
struction algorithm, filtered back projection (FBP), noise re-
duction is achieved by performing low-pass filtering in the
radial direction of the sinogram, at the cost of degrading
resolution. Several works have studied the effect of alterna-
tive strategies for noise reduction. Daube-Witherspoon and
Carson'? analyzed the effect of angular and axial filtering on

noise and resolution. One of their contributions was to char-
acterize the nonuniform blurring produced by the angular
filter.

Chatziioannou and Dahlbom® studied the effect of radial
and axial filtering in transmission and emission images in the
context of attenuation correction for PET. Happonen and
Alenius proposed a new sinogram decomposition by defining
a new domain, the so-called stackgram domain.*> In this
domain, 2D projection data are represented as a volume,
where each slice is the back projection of one row of the
sinogram. This space enables easy filtering of each point in
the image following its sinusoidal trajectory in the sinogram,
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FiG. 1. 2D Fourier transform of a sinogram (left) and basic bow-tie mask in
the FT domain for £=1 (right).

which turns into a straight line in the stackgram domain (ver-
tical direction across the slices). This filtering scheme was
claimed to prevent blurring artifacts both in the radial and
angular dimensions.

On the other hand, Rattey and Lindgren6 studied the 2D
Fourier transform of the sinogram to find its optimum sam-
pling and observed that the support region of the frequency
content of any sinogram formed what they called a bow-tie
shape (Fig. 1, left panel). The bow-tie shape described by
Rattey and Lindgren implies that the support in the radial
direction is limited by the highest frequency in the image,
Wwna (determined by the acquisition process), while the limit
in the angular direction depends on the radius of the object,
Ry, according to the expression Ry |wy.+1 (Fig. 1, left
panel). A thorough discussion of these properties can be
found in Edholm er al.” The Fourier rebinning algorithm, a
rebinning method widely used in PET studies to compact a
3D acquisition dataset into a stack of ordinary 2D data,*’
makes use of this property through the so-called consistency
condition for the 2D Radon transform.'” In this case, it is
common not to take into account the actual radius of support
(object dependent) but to consider the whole field of view
(FOV). The bow-tie property has also been used to estimate
missing projection data in PET (Ref. 11) and to compensate
for spatially variant collimator blurring in single photon
emission computed tomography.12 Also, Andia" exploited
this property to develop optimal nonstationary linear filters
based on sinogram statistics.

The main objective of our work was to take advantage of
the bow-tie property to develop a new filtering scheme. We
compare the results of this filtering scheme with those pro-
vided by previous standard techniques (stationary 1D filter-
ing of the sinogram in the radial and angular directions) and
by filtering in the stackgram domain as proposed by Hap-
ponen and Alenius.* We study resolution, contrast, and noise
by giving the differences (as a percentage) with respect to a
baseline reconstruction consisting of FBP using the ramp fil-
ter only. Results are also presented for rodent images.

Il. MATERIAL AND METHODS
Il.A. Data acquisition and reconstruction

Data used in this work were obtained using an rPET scan-
ner (SUINSA Medical Systems, Madrid, Spain).'*"> This

system has four detectors positioned as two orthogonal pairs.
Each detector comprises an array of 30X 30 crystals of
mixed lutetium silicate (1.5X 1.5X 12 mm?) optically
coupled to a Hamamatsu H8500 position sensitive photomul-
tiplier. The system rotates 180° covering a total angle of
194.4°. List data are rearranged into 180° sinograms with
120 angular bins and 55 radial bins. The sinogram spacing is
0.8 mm and 1.5° in the radial and angular directions, respec-
tively.

Reconstruction was performed by means of a single slice
rebinning algorithm,16 followed by a 2D-FBP reconstruction
algorithm. The voxel size of the resulting image was 0.8 mm
isotropic. All the filtering schemes tested in this work were
incorporated into this reconstruction algorithm.

II.B. Bow-tie filtering scheme

The bow-tie filtering scheme proposed was based on ap-
plying a mask in the Fourier domain of the sinogram data. A
binary bow-tie-shaped mask, M, was defined by the follow-
ing expression:

wl-E+1), (1)

where w, is the radial frequency, wy is the angular frequency,
Wmax 1S maximum frequency in the image, and rect(w,,wy) is
defined by the following expression:

M(w,,wy) = rect(W,, Wmay) X rect(w,[
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This binary mask (shown in Fig. 1, right) was smoothed by a
convolution with a 15X 15-pixel Gaussian kernel. This pro-
cedure not only avoids ringing but also introduces a pre-
emphasis at low frequencies.

The complete filtering scheme proposed is a combination
of this smoothed bow-tie filter with a standard radial filter
and an additional axial filter, which provides further noise
reduction and improved isotropy without degrading tran-
saxial resolution.

We studied the effect of the proposed scheme and differ-
ent intermediate implementations (the nonsmoothed binary
mask, M, the smoothed bow-tie filter, and the smoothed
bow-tie filter combined only with a radial filter) for & values
ranging from 0.20 to 1 in steps of 0.05. The value 1 corre-
sponds to 100% of the FOV.

Il.C. Radial, angular, stackgram, and axial filters

The implementation of the radial, angular, and stackgram-
domain filters used in the analysis was as follows. Radial
filter: Butterworth kernels (12th-order) with 20 different cut-
off frequencies (5%—100% of the Nyquist frequency in steps
of 5%). Angular filter: Spatially invariant Gaussian kernels
with ten different full width at half maximum (FWHM) val-



Fi1G. 2. Top: Image quality phantom used for contrast and noise measure-
ment. Bottom left and center panels show one slice of the VOIs defined for
contrast assessment (H, hot; B, background). Bottom right panel shows a
different part of the phantom where the VOI for noise measurement was
drawn (my).

ues (1.7°-18.7° in steps of 1.7°). Stackgram-domain filter:
Gaussian kernels with ten different FWHM values (0.94—
10.34 mm in steps of 0.94 mm). These were all implemented
with three interpolation methods: nearest neighbor, linear,
and cubic. Axial filter: Gaussian kernels with FWHM values
of 0.94 and 1.88 mm.

The shapes of these filters and the range of their param-
eters were selected according to values proposed in literature
and commonly used in nuclear medicine. Gaussian kernels
have been used for angular and axial filtering in PET."? From
the several approaches proposed for radial filtering, the But-
terworth low-pass kernel is among the most commonly used
ones in FBP reconstruction.'’

I1.D. Assessment of results

To obtain quantitative measurements of contrast, we used
the image quality phantom developed by NEMA (http://
www.nema.org/stds/nu4.cfm), shown in Fig. 2, top. The top
part of the phantom is a 19.5 ml cylinder containing two
inner cylinders of 0.75 ml. One of the inner cylinders is
empty and the other is filled with approximately four
times more activity concentration than the background
cylinder [C(H)=30.85 uCi/ml, C(B)=7.17 uCi/ml, and
C(H)/C(B)=4.30]. The phantom was placed with its axial
axis aligned with the axis of rotation of the scanner and
imaged for 20 min.

To evaluate the effect of the different filtering schemes on
the contrast, we defined two volumes of interest (VOISs) cor-
responding to the high-activity region and background of the
phantom: H and B in Fig. 2, bottom. H is a 9 pixel (7.2 mm)
diameter cylindrical region comprising six slices of the phan-
tom; B is a 33 pixel (26.4 mm) diameter cylinder comprising

FiG. 3. One slice of the point source study. The profile was obtained from an
ROI of 4 X 13 pixels and fitted to a Gaussian function (thick line).

six slices with two cylindrical holes of 13 pixel (10.4 mm)
diameter inside. In order to assess image noise, we defined
one more cylindrical VOI with a diameter of 33 pixels in 15
slices in the homogeneous part of the phantom (m, in Fig. 2,
bottom).

Relative contrast (RC) and noise (N,) were measured as

RC = M’ (3)
( Mpt+ MB)
2
O-m
No=—, (4)
/"Lﬂlo

where u is the mean, o is the standard deviation, and H, B,
and my are the VOIs as depicted in Fig. 2, bottom.

To assess resolution, we used a point source that was
0.5 mm in diameter and 1 mm in length, placed at four dif-
ferent radial positions of the FOV: Offsets from the center of
the FOV equal to 0, 5, 10, and 15 mm. The radial and tan-
gential profiles of each point source were taken by drawing a
region of interest (ROI) of 4 X 13 pixels containing the point.
The profile was fitted to a Gaussian function by using a
Powell optimization algorithm (Fig. 3). This process was re-
peated for three slices and FWHM values were averaged.

To further assess the performance of our procedure, we
conducted three animal studies with fluorodeoxyglucose
(FDG) on rodents: A 60 min FDG rat brain scan (212 g,
2.1 uCi, and 30 min uptake), a 120 min FDG mouse brain
scan (28 g, 563 uCi, and 40 min uptake), and a 60 min FDG
mouse heart scan (27 g, 605 uCi, and 40 min uptake). Quan-
titative data were also measured from the mouse heart study
in terms of peak-to-valley ratio of a profile across the myo-
cardium. We selected this study for quantification because
the expected ideal profile is well known and the heart has
also been used for similar comparisons elsewhere.'®!71°

All the results presented are expressed as a percentage
with respect to a baseline reconstruction consisting of FBP
with a ramp filter only.

lll. RESULTS

Table I shows the filters used in the comparison. Only
results for one instance of radial and axial filters in the pro-
posed filtering scheme for a ¢ value matched to the size of



TaBLE 1. Filters used in the comparison.

Filtering scheme

Type of filter

Parameter

Radial Butterworth
Angular Gaussian
Stackgram Gaussian

Binary bow-tie
Smoothed bow-tie

Binary mask [M as defined in Egs. (1) and (2)]
Binary bow-tie mask smoothed with a

Cutoff frequencies: 5%—100% of the Nyquist
frequency in steps of 5%

FWHM: 1.7°-18.7° in steps of 1.7°
FWHM: 0.94-10.34 mm in steps of 0.94 mm
£:0.20-1 in steps of 0.05.

Bow-tie £:0.20—-1 in steps of 0.05

15 X 15-pixel Gaussian kernel

Smoothed bow-tie+ radial

Smoothed bow-tie+radial +axial

Smoothed bow-tie+ radial filter, 12th-order

Smoothed bow-tie+Butterworth radial filter,
12th-order+ Gaussian filter in the axial direction

Butterworth cutoff frequency= 50% of the Nyquist
frequency. Bow-tie £:0.20—1 in steps of 0.05
Butterworth cutoff frequency=50% of the Nyquist
frequency. Gaussian FWHM=0.94 mm.
Bow-tie £:0.20-1 in steps of 0.05

the phantom are presented (£=0.75, as 75% of the FOV is
filled). We also present the results obtained with intermediate
realizations of our proposed scheme, i.e., binary bow-tie
mask, after smoothing with the Gaussian kernel, and after
applying the radial filter.

Figure 4 shows the results for the three interpolation
schemes tested for the stackgram filter: Nearest neighbor
(diamonds), linear interpolation (squares), and cubic (tri-
angles). All of them produced different degrees of resolution
degradation even when no filtering was applied: Increase in
the root-mean-square FWHM of 16% for nearest-neighbor
interpolation, 18% for linear interpolation, and 7% for cubic
interpolation (“4,” “B.” and “A,” respectively, in Fig. 4,
right). At the same time, the noise reduction achieved with-
out any filter applied was 14% for nearest neighbor, 35% for
linear, and 19% for cubic interpolation (“4,” “B.,” and “A,”
respectively, in Fig. 4, left), and contrast decreased in 3% for
the worst case, i.e., nearest interpolation (“ 4 in Fig. 4, left).
For comparison with the rest of the filtering schemes, only
results for cubic interpolation scheme are shown in the plots.

Figures 5 and 6 show the results for noise and contrast
expressed as a percentage of change with respect to a base-

line reconstruction (ramp filter only), and resolution (both
tangential and radial). The following results are presented
filter by filter, referencing Fig. 5 for contrast vs. noise and
Fig. 6 for resolution. As the performance of any filter is
usually a trade-off between noise reduction and resolution
degradation, comparison is not obvious because the filter
with the best performance will depend on which effect is
sought. In order to be able to extract some conclusions from
the comparison, the figures given in the following paragraphs
show the effect of each filter for a realization that achieves a
minimum noise reduction of 30%, which corresponds with
the noise reduction obtained with the proposed filter.

As compared with the baseline reconstruction, the radial
filter (depicted as “+” in Figs. 5 and 6) reduces noise with-
out a noticeable impact on contrast, for reasonable cutoff
frequency values (over 20% of Nyquist frequency). For a
reduction in noise of 32%, we had a 14% loss of radial
resolution (Fig. 6, right) and a 6% loss of tangential reso-
lution (Fig. 6, left).

For a similar reduction in noise (30%), the angular filter
(depicted as “X” in Figs. 5 and 6) produced more contrast
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FIG. 4. Results of stackgram filtering for the three interpolation schemes tested. Filled symbols show the results of just transforming to the stackgram domain

and back, with no filtering applied.
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FIG. 5. Results in contrast vs noise for the filters in Table I.

degradation (3%) as well as a loss of tangential resolution
(46% at 10 mm from the center of the FOV).

When using the smallest size of the Gaussian kernel in the
stackgram domain (depicted as “—” in Figs. 5 and 6), we
achieved a noise reduction of 33% at the cost of degrading
radial and tangential resolutions (14.5% and 16%, respec-
tively).

The use of a binary bow-tie mask [M defined in Eq. (1),
depicted as “B” in Figs. 5 and 6] reduced noise by 3% al-
though contrast decreased and no noticeable gain in reso-
lution was obtained as compared with the baseline recon-
struction. The smoothed bow-tie filter (bow-tie mask
smoothed with a ten-point Gaussian kernel, depicted as “ *”
in Figs. 5 and 6) showed a gain in both radial and tangential
resolution (4% and 17%, respectively) and contrast (1%), at
the cost of an increase in noise of 38%. This increase in

noise can be compensated by the addition of a low-pass ra-
dial filter (depicted as “4” in Figs. 5 and 6). Moreover, to
achieve a more isotropic result, our proposed filtering
scheme also incorporates an axial filter (depicted as “A” in
Figs. 5 and 6). Axial filter (FWHM=0.94 mm) reduced noise
by 5% at the cost of degrading axial resolution by 6%, while
radial and tangential resolution and contrast remained unaf-
fected. Since all the methods studied are intrinsically 2D,
combination with an axial filter is a good option to obtain a
more isotropic result.

For a noise reduction of 33%, our bow-tie filtering
scheme (depicted as “A” in Figs. 5 and 6) showed better
results than any of the other filters studied in terms of both
resolution (improvement of 10% in radial resolution with no
noticeable change in tangential resolution) and contrast (1%
increase).
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F1G. 6. Results in radial and tangential resolution, measured as FWHM of a point placed 10 mm from the center of the FOV vs noise for the filters in

Table 1.
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FiG. 7. Left: Results in radial vs tangential resolution, measured as FWHM
of a point placed 10 mm from the center of the FOV for radial, angular,
stackgram, and binary bow-tie filters. Right: (a) Four point sources filtered
with a Gaussian angular filter FWHM=10°. (b) Four point sources filtered
with a bow-tie filter for a & value of 0.4 (too low for the points far from the
center). The same position-dependent blurring can be observed in both
cases.

Regarding isotropy, it can be seen from Fig. 7, left, that
the angular filter (“X” in the plot) is highly anisotropic, pro-
ducing, at positions far from the center of the FOV (10 mm
in the plots), a higher resolution degradation in the tangential
direction than in the radial direction. The same effect can be
seen when the bow-tie mask is too small since & controls the
cutoff frequency in the angular direction (“H” in the plot).

This anisotropic behavior resulted in a noticeable artifact ap-
pearing as circular blurring dependent on the distance to the
center of the FOV both for angular filter [Fig. 7(a), right],
and for the bow-tie filter with low values of & [Fig. 7(b),
right].

Experiments performed with rodent brain studies allowed
us to verify the enhancement in image quality achieved when
using our filtering scheme (Figs. 8 and 9). The parameters for
each filter in this comparison were visually selected by an
experienced user.

The proposed filtering scheme also enhanced the reso-
lution of small structures, such as a mouse heart (Fig. 10).
The baseline reconstruction included a radial Butterworth fil-
ter, with order of 12 and cutoff frequency of 45% Nyquist,
combined with an axial filter. Figure 11 shows the profiles
corresponding to the dashed lines in Fig. 10 normalized to
their maximum value. The peak-to-valley ratio measured on
a profile across the myocardium increased from 1.1 to 2.1
after adding the bow-tie filter with £€=0.30 to the baseline
reconstruction.

IV. DISCUSSION AND CONCLUSIONS

This paper presents the results of a new filtering strategy,
based on the expected shape of the sinogram in the Fourier
transform domain of sinogram data. Our “bow-tie filter
scheme” comprises a first filtering stage based on a binary
bow-tie mask smoothed with a Gaussian kernel, followed by

FiG. 8. Coronal, sagittal, and axial views of an FDG rat brain study. Upper panel: Radial filter (Butterworth, 12th-order, cutoff frequency 35% Nyquist)+axial
filter (Gaussian, FWHM 0.94 mm). Lower panel: Proposed filtering scheme: Bow-tie filter (¢§=0.50)+radial filter (Butterworth, 12th-order, cutoff frequency

35% Nyquist) +axial filter (Gaussian, FWHM 0.94 mm).



FIG. 9. Coronal, sagittal, and axial views of an FDG mouse brain study. Upper panel: Radial filter (Butterworth, 12th-order, cutoff frequency 35% Nyquist)
+axial filter (Gaussian, FWHM 0.94 mm). Lower panel: Proposed filtering scheme: Bow-tie filter (§=0.35)+radial filter (Butterworth, 12th-order, cutoff

frequency 35% Nyquist) +axial filter (Gaussian, FWHM 0.94 mm).

a conventional Butterworth radial filter and a Gaussian filter
in the axial direction. The performance of this filtering
scheme over a baseline reconstruction (ramp filter only) is
compared with that provided by other filtering strategies pro-
posed in literature: radial, angular, axial, and stackgram-
domain filtering.

As is well known, smoothing in the radial direction re-
duces noise, which is increased at high frequencies by the
ramp-filtering step in the FBP reconstruction. As an intense
radial filtering introduces considerable blurring in the image,
a more efficient filtering strategy is clearly desirable.

In our study, the use of isolated angular, radial, and stack-
gram filters reduced noise but at the cost of a severe loss of
resolution (Fig. 6) and reduced contrast (Fig. 5). The loss of
resolution was similar for radial and tangential components
when applying radial and stackgram filters, but not in the
case of applying an angular filter (Fig. 7, left), which resulted
in noticeable circular blurring, that was dependent on the
distance to the center of the FOV (Fig. 7, right), as reported
elsewhere.””"? Several approaches have been proposed to
overcome this problem. Stearns suggested a metric to enable
an automatic determination of the optimal parameters for
angular filtering, based on the information about object shape
and the amount of radial filtering applied.20 Andia et al.”’
proposed a scheme with variable-length linear angular filters
dependent on the distance from the center of the FOV.

For stackgram filtering, there was an important low-pass
effect (degradation of resolution and noise reduction), before

the application of any filter, due to the interpolations in-
volved in the transformation to and from the stackgram do-
main (Fig. 4). We tested three different interpolation
schemes, and cubic interpolation showed the best perfor-
mance, in agreement with other authors.”” Another drawback
of stackgram-domain filtering is its computational burden,
which is five times higher than that of any of the other meth-
ods for cubic interpolation. These drawbacks of stackgram
filtering have been addressed in a new approach presented by
Peltonen and Ruotsalainen,” who proposed a new sinogram-
domain filtering which approximates the stackgram filter,
thus eliminating the need for transformations between the
sinogram and stackgram domains.

The noise reduction of 4% achieved by the constant-
amplitude binary bow-tie mask is probably due to the re-
moval of inconsistent events from the sinogram (those lo-
cated outside the expected area in the Fourier domain).
Further noise reduction was achieved in our filtering scheme
by including radial and axial filters (Figs. 5 and 6). The ad-
vantage of including an axial filter is that it provides noise
reduction without degrading transaxial resolution, thus im-
proving isotropy.

The bow-tie filtering scheme proposed in this paper
yielded excellent results in terms of resolution, contrast, and
peak-to valley ratio. The increase in resolution probably
comes from the pre-emphasis component of the filter, which
slightly reduces the low frequencies. We believe that this
pre-emphasis could also decrease the influence of scatter in



FiG. 10. Coronal, sagittal, and axial views of an FDG mouse heart study. Upper panel: Radial filter (Butterworth, 12th-order, cutoff frequency 45%
Nyquist) +axial filter (Gaussian, FWHM 0.94 mm). Lower panel: Proposed filtering scheme: Bow-tie filter (§=0.30)+radial filter (Butterworth, 12th-order,

cutoff frequency 45% Nyquist)+axial filter (Gaussian, FWHM 0.94 mm).

the image, thus helping to reduce image glare. The rationale
is that, since scatter can typically be modeled by a wide
Gaussian,zé"25 its Fourier transform would correspond to a
peak in the low frequency range. This could also explain the
enhancement observed in contrast and peak-to-valley ratio.
Parameter ¢ in the smoothed bow-tie filter should be ad-
justed to the size of the object for optimum behavior. If it is
too small, the filtering scheme produces an effect similar to
that of using excessive angular filtering since ¢ controls the
cutoff frequency in the angular direction. An easy automatic

=) i
g 0.8
o
® 0.5 4
>
- S R
Q
8047
)
= \
2 02 — — Radial+Axial \
Proposed scheme
O L} T T L) 1

0 16 32 48 64 8
Point in profile (mm)

FiG. 11. Normalized profiles corresponding to the dotted lines in Fig. 10:
Dashed line, radial+axial filtering; solid line, radial+bow-tie+axial filter
(proposed method). Arrows indicate the peak-to-valley ratio.

procedure could be implemented to obtain the optimum
value for this parameter by extracting the boundaries of the
image from two orthogonal projections.

We tested a wide range of values for the other parameters
of our proposed filtering scheme, i.e., type and cutoff fre-
quency (radial and axial filters). We present only one set of
results for the sake of clarity in the plots, although these were
selected visually by an experienced user, as is commonly the
case in practice.

The promising results with the bow-tie filtering scheme
presented in this paper were obtained with a very straightfor-
ward implementation of the filter: A windowed binary mask
with smoothed edges and pre-emphasis. Presumably, better
results could be obtained with a more refined implementa-
tion, optimized to better remove scatter and randoms compo-
nents. Another interesting issue that warrants further study is
the effect of this filtering scheme on the quantitative proper-
ties of the resulting image.

In summary, we assessed the performance of what we call
a bow-tie filtering scheme, which comprises a bow-tie mask
smoothed with a Gaussian kernel in combination with a con-
ventional Butterworth radial filter and a Gaussian axial filter.
A thorough comparison is presented against other filtering
strategies proposed in nuclear medicine. The bow-tie filtering
scheme was the best option, achieving the necessary noise
reduction with the best contrast and reducing degradation of
resolution. Experiments on rodent images showed a notice-
able improvement in visual image quality.
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