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This article provides a comprehensive view of the 
novel fast marching (FM) methods we developed 
for robot path planning. We recall some of the methods 
developed in recent years and present two improvements 
upon them: the saturated FM square (FM2) and an 
heuristic optimization called the FM2 star (FM2*) method. 
The saturated varia-tion of the existing satu-rated FM2 
provides safe paths that avoid unnec-essarily long 
trajectories (like those computed using the Voronoi 
diagram). FM2* considerably reduces the computation 
time. As a result, these methods provide not only a 
trajectory but also an associated control speed for the 
robot at each point of the trajectory. 
The proposed methods are complete; if there is a valid 
trajectory, it will always be found and will always be 
optimal in estimated completion time. 

Path-Planning Algorithms 

Path planning is a well-known problem with a well-
under-stood mathematical basis. It already has many 
approaches that successfully provide acceptable solutions for 
the desired task. The characteristics of the paths pro-vided 
by the different existing algo-rithms change if the path 
planning is focused on video games, artificial intelligence, 
mobile robots, unmanned aerial vehicles, and so on. 

The path-planning objective has changed since 
the first approaches were proposed. Initially, the goal 
was to create an algo-rithm capable of finding a 
path from an initial point to a final point with 
ensured completeness (i.e., the algorithm would 
find a path if it existed). As this objective has 
largely been solved (i.e., Dijkstra algorithm) and 
computational capacity has computational capacity 
has increased exponentially, the objective has 
become more objective is to find the shortest or 
fastest path while maintaining safety constraints. 
new methods are also expected to provide smooth, 
humanlike paths.  here are many different path-
planning lgorithms proposed. LaValle [1] proposes a 
classification into two big groups, depending on 
the way the information is discretized. 
combinatorial planning constructs structures that 
capture all the information needed in path planning 
[2], [3] and sampling-based planning incre-mentally 
searches in the space for a solution using a collision-
detection algorithm [3]. In the first group, the most 
widespread methods are those based on road maps, 
which mainly obtain precalculated short paths from a 
road map and create the path by taking the needed 
sections of the map.
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In the second group, there are very different options. For 
example, rapidly exploring random trees [4] provide a 
fast solution based on creating random branches from an 
initial point. The collision-free branches are stored, 
and new branches are created iteratively until the 
goal point is reached. Another option is to model the 
environment in an ccupancy gridmap and apply search 
algorithms, such as the Dijkstra algo-rithm or A* 
algorithm, using each cell as a node. There are also 
potential field-based approaches [5], in which the robot 
is treated as a particle under the influence of an 
artificial potential field. The main problem with these 
methods is that they can have local minima. If the path 
falls in a local min-ima, a correct path will not be 
found even if it exists.

This article focuses on these potential field-based algo-
rithms (sampling-based algorithms). These methods are 
based on creating artificial potential fields from the sampled 
information through sensors and obtaining the path from 
these fields. The FM method can be applied to create the 
potential fields and obtain artificial local-minima-free fields, 
thereby solving one of the most important drawbacks of 
these path-planning methods. We apply the FM method suc-
cessfully by combining it with a Voronoi diagram [6] and 
applying the method iteratively [7]. 

The FM Method

The FM method is a particular case of level set methods ini-
tially developed by Osher and Sethian [8]. It is an efficient 
computational numerical algorithm for tracking and model-
ing the motion of a physical wave interface (front), denoted  
as .C  This method has been applied to different research 
fields, including computer graphics, medical imaging, com-
putational fluid dynamics, image processing, computation of 
trajectories, etc. [9]–[11].

The FM method can be understood intuitively by consider-
ing the expansion of a wave. If a stone is thrown into a pond, a 
wavefront is originated, and this wave expands with a circle 
shape around the point where the stone fell. In this example, 
the fluid is always water, thus the wave expansion velocity is 
always the same, and that is why the wavefront is circular. 
However, if we repeat this experiment by mixing water and oil, 
we would observe that the wave expands at different speeds in 
each medium. As a result, the wavefront will not be circular 
anymore. If we consider another point in the fluid (a target 
point), the wavefront will arrive to that point after a certain 
time. The path that the wavefront has followed from the origin 
to the target point will be the shortest path in time, considering 
that the traveling speed along the path is the expansion veloc-
ity of the wavefront (which differs depending on the fluid).

In the FM method, the wavefront is called the interface. 
The interface can be a flat curve [two-dimensional (2-D)] or a 
three-dimensional (3-D) surface, but the mathematical model 
can be generalized to n dimensions. The FM method calcu-
lates the time T that a wave needs to reach every point in the 
space. The wave can originate from more than one point, and 
each source point originates one wave. Source points have an 
associated time .T 0=

In the context of the FM method, we assume that the front 
C evolves by motion in the normal direction. The speed F 
does not have to be the same everywhere, but it is always non-
negative. At a given point, the motion of the front is described 
by the equation known as the Eikonal equation (as given by 
Osher and Sethian [8])

( ) ( ) ,F x T x1 d=

where x is the position, F(x) is the expansion speed of the 
wave at that position, and T(x) is the time the wave interface 
requires to reach x.

The magnitude of the gradient of the arrival function T(x) 
is inversely proportional to the velocity

.F T1 d=

The full mathematical development of this equation and its 
discrete solution can be found in [12], [8].

It is important to highlight a property of the wave’s expan-
sion. The T(x) function originated by a wave that grows from 
one single point presents only a global minima at the source 
and no local minima. As F 0>  the wave only grows (expan-
sion), and hence, points farther from the source have greater 
T. A local minima would imply that a point has a T value 
lower than a neighboring point that is nearer to the source, 
which is impossible, as this neighbor must have been reached 
by the wave sooner.

In the following section, an algorithm to solve the Eikonal 
equation over a gridmap is presented in detail.

Implementation
Equation 5 (see “Discrete Eikonal Equation Solution”) can be 
solved iteratively over a gridmap. To do so, the cells of the 
gridmap must be labeled as one of the following types.

●● �Unknown: Cells whose T value is not yet known (the wave-
front has not reached the cell).

●● �Narrow Band: Candidate cells to be part of the front wave 
in the next iteration. They are assigned a T value that can 
still change in future iterations of the algorithm.

●● �Frozen: Cells that have already been passed over by the 
wave and, hence, their T value is fixed.

The algorithm has three stages: initialization, main loop,  
and finalization.

Initialization
The algorithm starts by setting T 0=  in the cell or cells 
in which the wave originates. These cells are labeled as 
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frozen. Afterward, it labels all their Manhattan neigh-
bors as narrow band, computing T (5) for each of them.

Main Loop
In each iteration the algorithm will solve the Eikonal equation 
(5) for the Manhattan neighbors (that are not yet frozen) of 
the narrow band cell with the lesser T value. This cell is then 

labeled as frozen. The narrow band maintains an ordered list 
of its cells. Cells are ordered by T value from lowest to highest.

Finalization
When all the cells are frozen (i.e., the narrow band is 
empty), the algorithm finishes. We can see the process in 
Figures 1 and 2. In Figure 1, the wave originates from  

Discrete Eikonal Equation Solution
The mathematical development of the equation modeling a 

wave expansion is as follows:

.F T1 d=

As the front can only expand ( ),F 0>  the arrival time T is single 
valued. Osher and Sethian [8] proposed a discrete solution for 
the Eikonal equation. In 2-D, the area is discretized using a grid-
map. We denotate the row i and column j of the gridmap, which 
corresponds to a point ( ),p x yi i  in the real world. The discretiza-
tion of the gradient Td  according to [8] leads to the following 
equation:
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In [8], Osher and Sethian propose a simpler but less accurate 
solution for (S1), expressed as follows:
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and xT  and yT  are the grid spacing in the x and y directions. 
Substituting (S3) in (S2) and letting
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we can rewrite the Eikonal equation for a discrete 2-D space as

, , .max max
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As we are assuming that the speed of the front is positive 
( ) ,F T0>  must be greater than T1  and T2  whenever the front 
wave has not already passed over the coordinates i, j. 

We can solve (S5) in three steps. First, we solve the follow-
ing quadratic:
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If T T> 1  and T T> 2  [taking the greater value of T when solv-
ing (S6)] the obtained value is the correct solution for (S5). Oth-
erwise, if T T< 1  or ,T T< 1  from (S5) the corresponding 
member of ( / , )T T x 01 T-  is 0, and hence, (S5) is reduced to
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depending on the final value of T.

Figure 1. Iterative wave expansion with one source point. Figure 2. Iterative wave expansion with two source points.
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one point. In Figure 2, there are two wave sources. Black 
points are frozen, and their T value will not change. Gray 
points are the narrow band, whereas white ones are 
unknown. In Figure 1, we can clearly see that the waves 
grow concentrically to the source. In Figure 2, they join as 

the waves develop individually and grow 
together. The iterative process expands cells at 
the same rate that the physical wave grows, as 
the cells with lower T are expanded first.

If we consider T as the third dimension over the 
z axis, the result of completing the wave expansion 
of Figures 1 and 2 results in Figure 3(a) and (b), 
respectively. Since ,F 0>  as we move away from 
the sources, the time T required to reach the point is 
greater (higher on the z axis). With a single source, 
there is only one minima (located at the source). 
With more than one source, we have a global  
minima at each one with .T 0=  Algorithm 1 
shows the pseudocode of the process.

FM and Path Planning
Let us consider a binary gridmap in which obsta-
cles are valued as zero and free space as one. 
These values can be taken as the wave expansion 
speed F over the gridmap. At obstacles, the wave 
expansion speed is zero, as the wave cannot go 
through obstacles, and in free space, wave expan-
sion speed is constant and equal to one. If we 
want to compute the path between two points p0  
and p1  we could expand a wave from p0  until it 
reaches p1  (or vice versa). Because of the wave 
expansion properties, the path that the wave 
interface has followed from the target to the 
source point will always be the shortest trajectory 
in time. As the wave expansion speed is constant, 
this trajectory is also the shortest solution in dis-
tance. The wave originates from the target point, 
hence, the computed T(x) field will have only one 
global minima at the target point. Hence, follow-
ing the maximum gradient direction from the ini-
tial point, we will reach the target point, obtaining 
the trajectory. This solution is unique, and the 
algorithm is complete.

Figure 4 shows an example. We want to trace 
the shortest path from p0  to p1 . Figure 4(b) 
shows the wave expansion in gray scale (the wave 
is originated at the initial point marked with a red 
cross). The farther the interface is from the initial 
point, the lighter the map becomes. Once the 
interface C  has reached the target point p1  
(shown in blue), the algorithm stops expanding.

The resulting gridmap stores at any pixel the 
time T required by the wavefront to reach that 
pixel. The isocurves join together all the points 
that are passed through at the same instant in time 
[Figure 4(d)]. These curves are the trace of the 

front wave. If we compute the maximum gradient direction at 
any point of the gridmap, we obtain the normal direction to 
the isocurve, that is, the direction the curve followed while 
expanding. The maximum gradient direction is computed by 
applying the Sobel operator over the gridmap.
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Figure 3. FM method applied over a 50 # 50 gridmap. (a) One source 
point. (b) Two source points.
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To trace the path between p1  and ,p0  we just 
need to follow the maximum gradient direction 
starting at ,p1  (target point). The path is computed 
iteratively. gradix  and gradeiy  are computed at every 
point, pi $ p 1i+  is computed from ,pi  and this pro-
cess is repeated successively until p0  is reached. As 
p0  is located at the global minima, it is always 
reached whenever there is a valid path.

In Figure 4(c) and (d), we can see that the created 
field has just one global minima at p1  and, hence, the 
solution is unique.

FM over Voronoi Diagram, FM2, and FM2* 
The path calculated in the section “FM and Path 
Planning” is the shortest in length, but it might not 
be safe because of its proximity to obstacles. For 
this reason, it is also not the shortest in time, as the 
robot must move slowly when it is close to the 
obstacles to avoid collisions or risky movements. 
The usual solution is to expand obstacles before 
calculating the path. Nonetheless, when a robot 
moves through a door, we would like it to pass at an 
equal distance from both walls, and the same holds 
for corners, etc. In the following section, we intro-
duce three different methods based on FM: FM 
over the Voronoi diagram, the FM2 method for 
path planning, and an heuristic modification of 
FM2 called the FM2* method. We will show how 
FM2* considerably reduces the computation time 
while providing the same trajectory.

FM over Voronoi Diagram
As the Voronoi diagram concept is simple and  
intuitive, it can be applied to a large number of  
applications, including path planning. Given a finite 
set of objects in a space, all locations in that space are 
associated with the closest member of the object set. 
Thus, the space is partitioned into a set of regions, 
called Voronoi regions. The generalized Voronoi  
diagram is the set of the points that belong to the 
frontier between regions.

The Voronoi diagram is used as a way to obtain a roadmap 
of the map. The FM method is then used to search for a path 
over the Voronoi diagram. Applying FM over the Voronoi 
roadmap decreases the time spent in the search with respect 
to other existing methods. The main steps of this method are 
the following.
1) �Map preprocessing: The map is turned into a binary grid

map, in which the obstacles are black (value 0) and the 
clear space is white (value 1). The obstacles and walls are 
enlarged to ensure that the robot will not collide with walls 
or obstacles and will not accept passages narrower than its 
size. Also, an averaging filter is applied with the objective of 
erasing small hairs of the diagram.

2) �Voronoi diagram: The diagram is obtained using morpho-
logical image-processing techniques (concretely the meth-

ods proposed by Breu [13] in 2-D and Gagvani [14] in 
3-D). The diagram is dilatated, obtaining a thickened Vor-
onoi diagram wherein to apply the FM method.

3)	�FM: The FM method is used to create a potential field
that represents the propagation of a wave (from the goal 
point), to which time is added as the third axis in 2-D or 
the fourth in 3-D (see Figure 3).

4)	�Path extraction: The gradient method is applied to the
previously obtained potential from the current position 
of the robot with the goal point as the final point.
Figure 5 shows the main aspects of this algorithm when it 

is applied to the map shown in Figure 4(a).

FM2

Let us take as evidence a gridmap in which obstacles are 
labeled as zero and free space as one. We can apply the 

Algorithm 1. FM Algorithm
1 input: A gridmap G of size m # n

2 input: �The set of cells Ori where the wave is 

originated 

3 output: �The gridmap G with the T value set for 

all cells 

4 Initialization;

5 foreach g Oriij d  do

6 . ;g T 0ij !

7     gij.state ! FROZEN;

8     foreach .g gkl ijd neighbours do

9  if gkl = FROZEN then skip; else

10 . );(g T solveEikonal gkl kl!

11   if .gkl state = NARROW BAND then

12     narrow_band.update_position ( _ );g kl
13   if .gkl state = UNKNOWN then

14   .gkl state! NARROW BAND;

15 narrow_band.insert_in_position ( );gkl

16   end

17       end

18  end

19  Iterations;

20  while narrow_band NOT EMPTY do

21       gkl ! narrow_band.popfirst();

22       foreach .g gkl ijd neighbours do

23  if gkl = FROZEN then skip; else

24 . );(g T solveEikonal gkl kl!

25   if .gkl state = NARROW BAND then

26  narrow_band.update_position ( _ );g kl
27   if .gkl state = UNKNOWN then

28         .gkl state! NARROW BAND;

29 narrow_band.insert_in_position ( );gkl

30   end

31   end

32   end

33  end

34 end
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FM method to this map, considering all the obstacles to 
be a wave source. In the section “FM over Voronoi Dia-
gram,” there was just one wave source (at the target point). 
In this case, all the obstacles are a source of the wave and, 
hence, several waves are being expanded at the same time. 
The map resulting from applying this wave expansion to 
the map shown in Figure 4(a) can be seen in Figure 6(a). 
We called the resulting map the fast marching gridmap 
(FMGridMap), which represents a potential field of the 
original map. As pixels get farther from the obstacles, the 
computed T value is greater. This map can be seen as a 
slowness map. We can consider the T value to be propor-
tional to the maximum allowed speed of the robot at each 
point. It is evident from the figure that speeds are lower 
when the pixel is close to the obstacles and greater when 
far away from them. A robot whose speed at each point is 
given by the T value will never collide, as T 0"  when 
approaching the obstacles. Making an appropriate scaling 
of the FMGridMap cell values to the robot allowed 

speeds, we obtain a slowness map, which provides a safe 
speed for the robot at any point in the environment. Fig-
ure 6(c) depicts the speed profile. In the image, it is clear 
that speeds become greater when the robot is far away 
from the obstacles.

We can now calculate the path as we did in the section 
“FM and Path Planning,” but instead of taking a constant 
value for the expansion speed F, we use the speed given by 
the slowness map. Now, if we expand a wave from one 
point of the gridmap, considering that the expansion speed 

( , ) ( , ),F x y T x y=  being F(x, y) the speed at point x, y and 
T(x, y). The value of the FMGridMap at x, y, we will see 
that the expansion speed depends on the position, pre-
cisely the safe speed given by the slowness map. As the 
slowness map provides the maximum safe speed for the 
robot, the obtained trajectory is the fastest path (in time), 
assuming the robot moves at the maximum allowed speed 
at every point.

There is a previous version of the FM2 method called 
Voronoi FM (VFM) [15]. The intuition of this method is the 
same as FM2: derive a first potential (slowness or viscosity 
potential), and propagate a wave over this potential, creating 
a second potential from which the path is extracted. The 
main change is the way of obtaining the first potential. In 
VFM, the first potential is obtained using the extended Vor-
onoi transform, which assigns a value to each cell of the grid 
map proportional to the Euclidean distance of that cell to the 
closest obstacle in the environment. The main advantage of 
FM2 over VFM is that FM2 is easier to implement, as both 
methods have a similar computational cost and the paths 
provided are the same.
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FM2: The Saturated Variation
In Figure 6(e), we can see that the computed path is not the 
logical/optimal trajectory we would expect. The FM2-com-
puted path, as it is presented, tries to keep the trajectory as 
far as possible from obstacles. This computed trajectory is 
similar to the path computed with the Voronoi diagram [16]. 
However, there are environments in which there is no need 
to follow a trajectory so far away from obstacles, as a smaller 
distance might be safe enough to navigate. To solve this, we 
implemented a saturated variation of the FMGridMap. 

When the first FM has been computed, the FMGridMap is 
first scaled and then saturated.

The map is scaled according to two configuration 
parameters:

●● �maximum allowed speed, which is the maximum control 
speed the robot may receive

●● �safe distance, which is the distance from the closest obsta-
cle at which the maximum speed can be reached.
Finally, the map is saturated to the maximum allowed 

speed.  After  this  scaling  and  saturation  process,  the  
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slowness map provides the maximum speed for all 
the points that are farther than the safe distance 
from the obstacles and the control 
speed, which ranges from zero (at obstacles)

to the maximum speed (at safe distance), for the rest 
of the points.

Figure 6(b) shows the saturated variation of Figure 6(e) 
with the new  computed trajectory. We can see that now 
the path is as expected. In Figure 6(d), the speed profile 
with the saturated area is shown. A video showing how 
the saturation value affects the computed path can be 
found with the digital edition of this article on IEEE 
Xplore.

The Heuristic FM2: FM2*
Consider the map of Figure 7(a), in which a trajectory between 
two points in a free space must be computed. Figure 7(b)  
shows the FM2 wave expansion that originated from the target 
point. As illustrated in the figure, the wave grows concentrically 
around the target point until it reaches the initial point.  
The FM2* method is an extension of the FM2 method. It tries  
to reduce the total number of expanded cells (wave expansion) 
by incorporating an heuristic estimate of the cost to get to the 
goal from a given point.

The FM2* algorithm works in exactly the same way as the 
FM2 algorithm. The only difference is the function used to 
sort the narrow band queue. FM2 sorts the narrow band cells 
in increasing T order so that, in each iteration, the first ele-
ment in the queue (lowest T ) becomes frozen and expands. 
In FM2*, the algorithm uses the cost-to-come T, which is 
known, and the optimal cost-to-go, that is, the minimum 
amount of time the robot would take to reach the target. This 
implies that the narrow band queue is sorted by estimates of 
the optimal cost from the given cell to the target. Whenever 
the optimal cost-to-go is an underestimate of the real cost-to-
go, the algorithm will still work. If we take the optimal cost-
to-go as zero, the FM2* algorithm is equivalent to the FM2 
algorithm. If the estimation is greater than the real cost-to-
go, the FM2* algorithm might take more computational steps 
than FM2 to find the path, and the path might not be the 
shortest one.

In this problem, the optimal cost-to-go (optimal time to 
reach the target) would be achieved if the robot went 
straight forward at maximum speed. This cost-to-go is 
given by the Cartesian distance (minimum distance) 
divided by the maximum speed the robot can reach. We 
know that the real cost-to-go will always be greater than 
this computed value, so the narrow band queue is ordered 
according to the value T*

robot_ _speed
cartesian_distance_to_target

.maxT T= +*

These two methods are analogous to Djikstra and A* in 
path-finding over graphs [3]. The wave expansion computed 
with FM2 is shown in Figure 7(b), and the wave expansion 
computed with FM2* is shown in Figure 7(c).

Results
Figure 8 shows the path that results from applying FM2 
and FM2* over a realistic map of 50 # 18 m. The gridmap 
has 500 # 180 pixels. Starting points are shown in red, and 
final points are shown in blue. Figure 8(b) shows the slow-
ness map computed with saturation. The maximum speed 
is 1.5 m/s, and the safe distance is 2 m; that is, at 2 m from 
the obstacles, the control speed will be 1.5 m/s, and it will 
linearly decrease when approaching the obstacles.  
Figure 8(c)–(e) shows the computed trajectory and  
the wave expansion field resulting of applying FM2.  
Figure 8(d) and (f) shows the computed trajectory and the 

(a)

(b)

(c)

Figure 7. Comparison between FM2 and FM2*. (a) Original 
grid map. (b) Wave expansion and path with FM2. (c) Wave 
expansion and path with FM2*.

8



wave expansion field resulting from applying FM2*. We 
can clearly see that the three paths are the same, but the 
FM2* heuristic reduces the number of cells expanded. The 
computation times are listed in Table 1. 

The third computed path has to expand over almost the 
entire map and, hence, computational times do not diverge 
too much. In the most favorable case of the first two trajecto-
ries, the path is computed over four times faster with FM2*.

A video showing a comparison of the wave expansion 
between the FM2 and the FM2* methods can be found with 
the digital edition of this article on IEEE Xplore. This video 
clearly shows how the FM2 wave expands concentrically 
around the initial point, whereas, in the FM2* expansion, 
the waves are directed toward the target point, reducing the 
number of cells expanded and thus the computation time.

Conclusions and Further Work
In this article, we presented the mathematical foundations 

of the FM method developed by Osher and Sethian [12]. 
We 

presented the algorithm that we have implemented to apply 
FM over a gridmap and demonstrated how the FM method 
can be applied to compute the visibility path between two 
points in a gridmap. This methodology is limited in that it 
provides the shortest path in distance, which leads to risk 
because of its closeness to obstacles. The FM2 method was 
explained in detail. FM2 and all its variations were developed 
by the authors of this article. FM2 computed two wave 
expansions over the gridmap. The first expansion computed 
the FMGridMap, a slowness map that provided the maxi-
mum allowed speed of the robot at each point on the map. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. FM2 versus FM2*. (a) Original map. (b) Saturated FMGridMap–slowness map. (c) FM2-computed trajectory. (d) FM2*-
computed trajectory. (e) FM2-computed trajectory. (f) FM2*-computed trajectory. (g) FM2-computed trajectory. (h) FM2*-computed 
trajectory.

Computation Time (s)

Trajectories FM2 FM2*
Figure 8(c) and (d) 0.130669 0.032623

Figure 8(e) and (f) 0.130914 0.031855

Figure 8(g) and (h) 0.189093 0.147036

Table 1: FM2 and FM2* computation times.
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This slowness map was used to compute the second expan-
sion, from the target point to the initial point. As a result of 
the second expansion, the trajectory was computed using the 
maximum gradient direction. This solution provided both a 
path (way point) and the control speed at each point. As a 
result, this trajectory was safe and optimal in time. FM2 
computes paths that tend to navigate far from obstacles; 
however, this results in increased navi-gation 
completion time (increased path lengths), and it is not 
always neces-sary. To avoid this problem, a variation to 
FM2 was presented, called the saturated FM2. To reduce 
the computation time of                                           FM2, an heuristic FM2, FM2*, 
was presented. The experimental analysis showed that 
the computation time was reduced up to four times with 
respect to FM2, while provid-ing the same trajectory.

In the video attached to the digital edition, several appli-
cations of the FM methods for path planning are shown, 
including robot formations, multirobot reactive navigation, 
and road map calculation. A sequence of a robot using FM 
is also shown.

In a future article, we will focus on expanding FM2* to 
more dimensions. Previous FM methods like FM2 or VFM 
were applied successfully to higher-level problems, such as 
outdoor path planning [17], robot formation motion plan-
ning [18], exploration, and SLAM [19], but the computa-
tional complexity of these methods limited them to 2-D 
problems (although different options had been suggested to 
decrease the computational complexity when expanding to 
three or more dimensions). Using the faster FM2*, those 
high-level problems can be studied easily. Our results indi-
cate that FM2* is ideal for use in swarm robotics or in 
dynamic environments.

The source code in C++ of FM2 and FM2* and the recent 
developments of these algorithms can be retrieved from the 
subversion repository: http://svn.iearobotics.com/openmrl/. 
All the code stored there was distributed under the attribu-
tion–share alike–creative commons license.
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