
This document is published in:

IEEE Robotics and Automation Magazine (2013). 20(4), 111-120.
DOI: http://dx.doi.org/10.1109/MRA.2013.2248309

Ins t i tu t ional Repos i tory

© 2013. IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

http://dx.doi.org/10.1109/MRA.2013.2248309
http://e-archivo.uc3m.es/

This article provides a comprehensive view of the
novel fast marching (FM) methods we developed
for robot path planning. We recall some of the methods
developed in recent years and present two improvements
upon them: the saturated FM square (FM2) and an
heuristic optimization called the FM2 star (FM2*) method.
The saturated varia-tion of the existing satu-rated FM2
provides safe paths that avoid unnec-essarily long
trajectories (like those computed using the Voronoi
diagram). FM2* considerably reduces the computation
time. As a result, these methods provide not only a
trajectory but also an associated control speed for the
robot at each point of the trajectory.
The proposed methods are complete; if there is a valid
trajectory, it will always be found and will always be
optimal in estimated completion time.

Path-Planning Algorithms

Path planning is a well-known problem with a well-
under-stood mathematical basis. It already has many
approaches that successfully provide acceptable solutions for
the desired task. The characteristics of the paths pro-vided
by the different existing algo-rithms change if the path
planning is focused on video games, artificial intelligence,
mobile robots, unmanned aerial vehicles, and so on.

The path-planning objective has changed since
the first approaches were proposed. Initially, the goal
was to create an algo-rithm capable of finding a
path from an initial point to a final point with
ensured completeness (i.e., the algorithm would
find a path if it existed). As this objective has
largely been solved (i.e., Dijkstra algorithm) and
computational capacity has computational capacity
has increased exponentially, the objective has
become more objective is to find the shortest or
fastest path while maintaining safety constraints.
new methods are also expected to provide smooth,
humanlike paths. here are many different path-
planning lgorithms proposed. LaValle [1] proposes a
classification into two big groups, depending on
the way the information is discretized.
combinatorial planning constructs structures that
capture all the information needed in path planning
[2], [3] and sampling-based planning incre-mentally
searches in the space for a solution using a collision-
detection algorithm [3]. In the first group, the most
widespread methods are those based on road maps,
which mainly obtain precalculated short paths from a
road map and create the path by taking the needed
sections of the map.

The Path to Efficiency: Fast Marching Method for
Safer, More Efficient Mobile Robot Trajectories

Alberto Valero-Gomez, Robotics Lab, Universidad Carlos III de Madrid, Spain. E-mail: alberto.valero@uc3m.es.

Javier V. Gomez, Robotics Lab, Universidad Carlos III de Madrid, Spain. E-mail: jvgomez@ing.uc3m.es.

Santiago Garrido, Robotics Lab, Universidad Carlos III de Madrid, Spain. E-mail: sgarrido@ing.uc3m.es.

Luis Moreno, Robotics Lab, Universidad Carlos III de Madrid, Spain. E-mail: moreno@ing.uc3m.es.

1

In the second group, there are very different options. For
example, rapidly exploring random trees [4] provide a
fast solution based on creating random branches from an
initial point. The collision-free branches are stored,
and new branches are created iteratively until the
goal point is reached. Another option is to model the
environment in an ccupancy gridmap and apply search
algorithms, such as the Dijkstra algo-rithm or A*
algorithm, using each cell as a node. There are also
potential field-based approaches [5], in which the robot
is treated as a particle under the influence of an
artificial potential field. The main problem with these
methods is that they can have local minima. If the path
falls in a local min-ima, a correct path will not be
found even if it exists.

This article focuses on these potential field-based algo-
rithms (sampling-based algorithms). These methods are
based on creating artificial potential fields from the sampled
information through sensors and obtaining the path from
these fields. The FM method can be applied to create the
potential fields and obtain artificial local-minima-free fields,
thereby solving one of the most important drawbacks of
these path-planning methods. We apply the FM method suc-
cessfully by combining it with a Voronoi diagram [6] and
applying the method iteratively [7].

The FM Method

The FM method is a particular case of level set methods ini-
tially developed by Osher and Sethian [8]. It is an efficient
computational numerical algorithm for tracking and model-
ing the motion of a physical wave interface (front), denoted
as .C This method has been applied to different research
fields, including computer graphics, medical imaging, com-
putational fluid dynamics, image processing, computation of
trajectories, etc. [9]–[11].

The FM method can be understood intuitively by consider-
ing the expansion of a wave. If a stone is thrown into a pond, a
wavefront is originated, and this wave expands with a circle
shape around the point where the stone fell. In this example,
the fluid is always water, thus the wave expansion velocity is
always the same, and that is why the wavefront is circular.
However, if we repeat this experiment by mixing water and oil,
we would observe that the wave expands at different speeds in
each medium. As a result, the wavefront will not be circular
anymore. If we consider another point in the fluid (a target
point), the wavefront will arrive to that point after a certain
time. The path that the wavefront has followed from the origin
to the target point will be the shortest path in time, considering
that the traveling speed along the path is the expansion veloc-
ity of the wavefront (which differs depending on the fluid).

In the FM method, the wavefront is called the interface.
The interface can be a flat curve [two-dimensional (2-D)] or a
three-dimensional (3-D) surface, but the mathematical model
can be generalized to n dimensions. The FM method calcu-
lates the time T that a wave needs to reach every point in the
space. The wave can originate from more than one point, and
each source point originates one wave. Source points have an
associated time .T 0=

In the context of the FM method, we assume that the front
C evolves by motion in the normal direction. The speed F
does not have to be the same everywhere, but it is always non-
negative. At a given point, the motion of the front is described
by the equation known as the Eikonal equation (as given by
Osher and Sethian [8])

() () ,F x T x1 d=

where x is the position, F(x) is the expansion speed of the
wave at that position, and T(x) is the time the wave interface
requires to reach x.

The magnitude of the gradient of the arrival function T(x)
is inversely proportional to the velocity

.F T1 d=

The full mathematical development of this equation and its
discrete solution can be found in [12], [8].

It is important to highlight a property of the wave’s expan-
sion. The T(x) function originated by a wave that grows from
one single point presents only a global minima at the source
and no local minima. As F 0> the wave only grows (expan-
sion), and hence, points farther from the source have greater
T. A local minima would imply that a point has a T value
lower than a neighboring point that is nearer to the source,
which is impossible, as this neighbor must have been reached
by the wave sooner.

In the following section, an algorithm to solve the Eikonal
equation over a gridmap is presented in detail.

Implementation
Equation 5 (see “Discrete Eikonal Equation Solution”) can be
solved iteratively over a gridmap. To do so, the cells of the
gridmap must be labeled as one of the following types.

●● �Unknown: Cells whose T value is not yet known (the wave-
front has not reached the cell).

●● �Narrow Band: Candidate cells to be part of the front wave
in the next iteration. They are assigned a T value that can
still change in future iterations of the algorithm.

●● �Frozen: Cells that have already been passed over by the
wave and, hence, their T value is fixed.

The algorithm has three stages: initialization, main loop,
and finalization.

Initialization
The algorithm starts by setting T 0= in the cell or cells
in which the wave originates. These cells are labeled as

2

frozen. Afterward, it labels all their Manhattan neigh-
bors as narrow band, computing T (5) for each of them.

Main Loop
In each iteration the algorithm will solve the Eikonal equation
(5) for the Manhattan neighbors (that are not yet frozen) of
the narrow band cell with the lesser T value. This cell is then

labeled as frozen. The narrow band maintains an ordered list
of its cells. Cells are ordered by T value from lowest to highest.

Finalization
When all the cells are frozen (i.e., the narrow band is
empty), the algorithm finishes. We can see the process in
Figures 1 and 2. In Figure 1, the wave originates from

Discrete Eikonal Equation Solution
The mathematical development of the equation modeling a

wave expansion is as follows:

.F T1 d=

As the front can only expand (),F 0> the arrival time T is single
valued. Osher and Sethian [8] proposed a discrete solution for
the Eikonal equation. In 2-D, the area is discretized using a grid-
map. We denotate the row i and column j of the gridmap, which
corresponds to a point (),p x yi i in the real world. The discretiza-
tion of the gradient Td according to [8] leads to the following
equation:

(,) (,)
(,) (,)

.
max min
max min

D T D T
D T D T F

0 0
0 0

1ij
x

ij
x

ij
y

ij
y

ij

2 2

2 2 2

+ +

+ +
=

- +

- +) 3 (S1)

In [8], Osher and Sethian propose a simpler but less accurate
solution for (S1), expressed as follows:

(, ,)
(, ,)

,
max
max

D T D
D T D F

0
0

1ij
x

ij
x

ij
y

ij
y

ij

2

2 2

- +

-
=

- +

- +) 3 (S2)

where

,

,

,

,

D
x

T T

D
x

T T

D
y

T T

D
y

T T

, ,

, ,

, ,

, ,

ij
x i j i j

ij
x i j i j

ij
y i j i j

ij
i j i j

1

1

1

1 1

D

D

D

D
=

-

=
-

=
-

=
-

- -

+ +

- -

+ +

� (S3)

and xT and yT are the grid spacing in the x and y directions.
Substituting (S3) in (S2) and letting

,
(,),
(,),

min
min

T T
T T T
T T T

,

, ,

, ,

i j

i j i j

i j i j

1 1 1

2 1 1

=

=

=

- +

- + � (S4)

we can rewrite the Eikonal equation for a discrete 2-D space as

, , .max max
x

T T
y

T T
F

0 0 1
,i j

1
2

2
2

2D D
-

+
-

=c cm m � (S5)

As we are assuming that the speed of the front is positive
() ,F T0> must be greater than T1 and T2 whenever the front
wave has not already passed over the coordinates i, j.

We can solve (S5) in three steps. First, we solve the follow-
ing quadratic:

.
x

T T
y

T T
F
1

,i j

1
2

2
2

2D D
-

+
-

=c cm m (S6)

If T T> 1 and T T> 2 [taking the greater value of T when solv-
ing (S6)] the obtained value is the correct solution for (S5). Oth-
erwise, if T T< 1 or ,T T< 1 from (S5) the corresponding
member of (/ ,)T T x 01 T- is 0, and hence, (S5) is reduced to

x
T T

F
1

,i j

1

D
-

=c m (S7)

,
y

T T
F
1

,i j

2

D
-

=c m (S8)

depending on the final value of T.

Figure 1. Iterative wave expansion with one source point. Figure 2. Iterative wave expansion with two source points.

3

one point. In Figure 2, there are two wave sources. Black
points are frozen, and their T value will not change. Gray
points are the narrow band, whereas white ones are
unknown. In Figure 1, we can clearly see that the waves
grow concentrically to the source. In Figure 2, they join as

the waves develop individually and grow
together. The iterative process expands cells at
the same rate that the physical wave grows, as
the cells with lower T are expanded first.

If we consider T as the third dimension over the
z axis, the result of completing the wave expansion
of Figures 1 and 2 results in Figure 3(a) and (b),
respectively. Since ,F 0> as we move away from
the sources, the time T required to reach the point is
greater (higher on the z axis). With a single source,
there is only one minima (located at the source).
With more than one source, we have a global
minima at each one with .T 0= Algorithm 1
shows the pseudocode of the process.

FM and Path Planning
Let us consider a binary gridmap in which obsta-
cles are valued as zero and free space as one.
These values can be taken as the wave expansion
speed F over the gridmap. At obstacles, the wave
expansion speed is zero, as the wave cannot go
through obstacles, and in free space, wave expan-
sion speed is constant and equal to one. If we
want to compute the path between two points p0
and p1 we could expand a wave from p0 until it
reaches p1 (or vice versa). Because of the wave
expansion properties, the path that the wave
interface has followed from the target to the
source point will always be the shortest trajectory
in time. As the wave expansion speed is constant,
this trajectory is also the shortest solution in dis-
tance. The wave originates from the target point,
hence, the computed T(x) field will have only one
global minima at the target point. Hence, follow-
ing the maximum gradient direction from the ini-
tial point, we will reach the target point, obtaining
the trajectory. This solution is unique, and the
algorithm is complete.

Figure 4 shows an example. We want to trace
the shortest path from p0 to p1 . Figure 4(b)
shows the wave expansion in gray scale (the wave
is originated at the initial point marked with a red
cross). The farther the interface is from the initial
point, the lighter the map becomes. Once the
interface C has reached the target point p1
(shown in blue), the algorithm stops expanding.

The resulting gridmap stores at any pixel the
time T required by the wavefront to reach that
pixel. The isocurves join together all the points
that are passed through at the same instant in time
[Figure 4(d)]. These curves are the trace of the

front wave. If we compute the maximum gradient direction at
any point of the gridmap, we obtain the normal direction to
the isocurve, that is, the direction the curve followed while
expanding. The maximum gradient direction is computed by
applying the Sobel operator over the gridmap.

160

140

120

100

80

60

40

20

0

0 5 10

(a)

(b)

15 20 25 30 35 40 45

5
10

15
20

25
30

35
40

45

45
40

35
30

25
20

15
10

5
0

45
40

35
30

25
20

15
10

5

5
10

15
20

25
30

35
40

4454

45
40

35
30

25
20

15
10

5

150

100

50

0

Figure 3. FM method applied over a 50 # 50 gridmap. (a) One source
point. (b) Two source points.

4

To trace the path between p1 and ,p0 we just
need to follow the maximum gradient direction
starting at ,p1 (target point). The path is computed
iteratively. gradix and gradeiy are computed at every
point, pi $ p 1i+ is computed from ,pi and this pro-
cess is repeated successively until p0 is reached. As
p0 is located at the global minima, it is always
reached whenever there is a valid path.

In Figure 4(c) and (d), we can see that the created
field has just one global minima at p1 and, hence, the
solution is unique.

FM over Voronoi Diagram, FM2, and FM2*
The path calculated in the section “FM and Path
Planning” is the shortest in length, but it might not
be safe because of its proximity to obstacles. For
this reason, it is also not the shortest in time, as the
robot must move slowly when it is close to the
obstacles to avoid collisions or risky movements.
The usual solution is to expand obstacles before
calculating the path. Nonetheless, when a robot
moves through a door, we would like it to pass at an
equal distance from both walls, and the same holds
for corners, etc. In the following section, we intro-
duce three different methods based on FM: FM
over the Voronoi diagram, the FM2 method for
path planning, and an heuristic modification of
FM2 called the FM2* method. We will show how
FM2* considerably reduces the computation time
while providing the same trajectory.

FM over Voronoi Diagram
As the Voronoi diagram concept is simple and
intuitive, it can be applied to a large number of
applications, including path planning. Given a finite
set of objects in a space, all locations in that space are
associated with the closest member of the object set.
Thus, the space is partitioned into a set of regions,
called Voronoi regions. The generalized Voronoi
diagram is the set of the points that belong to the
frontier between regions.

The Voronoi diagram is used as a way to obtain a roadmap
of the map. The FM method is then used to search for a path
over the Voronoi diagram. Applying FM over the Voronoi
roadmap decreases the time spent in the search with respect
to other existing methods. The main steps of this method are
the following.
1) �Map preprocessing: The map is turned into a binary grid

map, in which the obstacles are black (value 0) and the
clear space is white (value 1). The obstacles and walls are
enlarged to ensure that the robot will not collide with walls
or obstacles and will not accept passages narrower than its
size. Also, an averaging filter is applied with the objective of
erasing small hairs of the diagram.

2) �Voronoi diagram: The diagram is obtained using morpho-
logical image-processing techniques (concretely the meth-

ods proposed by Breu [13] in 2-D and Gagvani [14] in
3-D). The diagram is dilatated, obtaining a thickened Vor-
onoi diagram wherein to apply the FM method.

3)	�FM: The FM method is used to create a potential field
that represents the propagation of a wave (from the goal
point), to which time is added as the third axis in 2-D or
the fourth in 3-D (see Figure 3).

4)	�Path extraction: The gradient method is applied to the
previously obtained potential from the current position
of the robot with the goal point as the final point.
Figure 5 shows the main aspects of this algorithm when it

is applied to the map shown in Figure 4(a).

FM2

Let us take as evidence a gridmap in which obstacles are
labeled as zero and free space as one. We can apply the

Algorithm 1. FM Algorithm
1 input: A gridmap G of size m # n

2 input: �The set of cells Ori where the wave is

originated

3 output: �The gridmap G with the T value set for

all cells

4 Initialization;

5 foreach g Oriij d do

6 . ;g T 0ij !

7    gij.state ! FROZEN;

8    foreach .g gkl ijd neighbours do

9 if gkl = FROZEN then skip; else

10 .);(g T solveEikonal gkl kl!

11   if .gkl state = NARROW BAND then

12    narrow_band.update_position (_);g kl
13   if .gkl state = UNKNOWN then

14 .gkl state! NARROW BAND;

15 narrow_band.insert_in_position ();gkl

16   end

17     end

18 end

19 Iterations;

20 while narrow_band NOT EMPTY do

21     gkl ! narrow_band.popfirst();

22     foreach .g gkl ijd neighbours do

23 if gkl = FROZEN then skip; else

24 .);(g T solveEikonal gkl kl!

25   if .gkl state = NARROW BAND then

26 narrow_band.update_position (_);g kl
27   if .gkl state = UNKNOWN then

28       .gkl state! NARROW BAND;

29 narrow_band.insert_in_position ();gkl

30   end

31   end

32   end

33 end

34 end

5

FM method to this map, considering all the obstacles to
be a wave source. In the section “FM over Voronoi Dia-
gram,” there was just one wave source (at the target point).
In this case, all the obstacles are a source of the wave and,
hence, several waves are being expanded at the same time.
The map resulting from applying this wave expansion to
the map shown in Figure 4(a) can be seen in Figure 6(a).
We called the resulting map the fast marching gridmap
(FMGridMap), which represents a potential field of the
original map. As pixels get farther from the obstacles, the
computed T value is greater. This map can be seen as a
slowness map. We can consider the T value to be propor-
tional to the maximum allowed speed of the robot at each
point. It is evident from the figure that speeds are lower
when the pixel is close to the obstacles and greater when
far away from them. A robot whose speed at each point is
given by the T value will never collide, as T 0" when
approaching the obstacles. Making an appropriate scaling
of the FMGridMap cell values to the robot allowed

speeds, we obtain a slowness map, which provides a safe
speed for the robot at any point in the environment. Fig-
ure 6(c) depicts the speed profile. In the image, it is clear
that speeds become greater when the robot is far away
from the obstacles.

We can now calculate the path as we did in the section
“FM and Path Planning,” but instead of taking a constant
value for the expansion speed F, we use the speed given by
the slowness map. Now, if we expand a wave from one
point of the gridmap, considering that the expansion speed

(,) (,),F x y T x y= being F(x, y) the speed at point x, y and
T(x, y). The value of the FMGridMap at x, y, we will see
that the expansion speed depends on the position, pre-
cisely the safe speed given by the slowness map. As the
slowness map provides the maximum safe speed for the
robot, the obtained trajectory is the fastest path (in time),
assuming the robot moves at the maximum allowed speed
at every point.

There is a previous version of the FM2 method called
Voronoi FM (VFM) [15]. The intuition of this method is the
same as FM2: derive a first potential (slowness or viscosity
potential), and propagate a wave over this potential, creating
a second potential from which the path is extracted. The
main change is the way of obtaining the first potential. In
VFM, the first potential is obtained using the extended Vor-
onoi transform, which assigns a value to each cell of the grid
map proportional to the Euclidean distance of that cell to the
closest obstacle in the environment. The main advantage of
FM2 over VFM is that FM2 is easier to implement, as both
methods have a similar computational cost and the paths
provided are the same.

(b)(a)

300
250
200
150
100
50
0

25
0

20
0

15
0

10
0

50 0 0

(c)

50
100

150
200

250
300

350
400

450
500

(d)

200

150

100

50

50 100 150 200 250 300 350 400 450

Figure 4. FM and path planning. (a) Original map. (b) Path and wave expansion in gray scale. (c) FM field: One unique global
minimum. (d) FM field: Isometric curves.

Figure 5. FM over thickened Voronoi diagram.

6

FM2: The Saturated Variation
In Figure 6(e), we can see that the computed path is not the
logical/optimal trajectory we would expect. The FM2-com-
puted path, as it is presented, tries to keep the trajectory as
far as possible from obstacles. This computed trajectory is
similar to the path computed with the Voronoi diagram [16].
However, there are environments in which there is no need
to follow a trajectory so far away from obstacles, as a smaller
distance might be safe enough to navigate. To solve this, we
implemented a saturated variation of the FMGridMap.

When the first FM has been computed, the FMGridMap is
first scaled and then saturated.

The map is scaled according to two configuration
parameters:

●● �maximum allowed speed, which is the maximum control
speed the robot may receive

●● �safe distance, which is the distance from the closest obsta-
cle at which the maximum speed can be reached.
Finally, the map is saturated to the maximum allowed

speed.  After  this  scaling  and  saturation  process,  the

100

80

60

40

20
0

15
020

025
0

10
0

50 00

(c)

(a)

(e)

(g) (h)

50
100

150
200

250
300

350
400

450
500 15

020
025

0

10
0

50 0 0 50
100

150
200

250
300

350
400

450
500

(d)

(b)

(f)

15
020

0
0

10
0

50 5 10
15

200
250

300
350

400
450

5

300
250
200
150
100
50
0

0 100 200 300 400 500 600
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Distance

S
pe

ed
 (

m
/s

)

0 100 200 300 400 500 600
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Distance

S
pe

ed
 (

m
/s

)

Figure 6. FM2 and saturated FM2. (a) FMGridMap. (b) Saturated FMGridMap. (c) 3-D representation. (d) 3-D representation.
(e) Second FM and path. (f) Second FM and path. (g) Speed profile. (h) Speed profile.

7

slowness map provides the maximum speed for all
the points that are farther than the safe distance
from the obstacles and the control
speed, which ranges from zero (at obstacles)

to the maximum speed (at safe distance), for the rest
of the points.

Figure 6(b) shows the saturated variation of Figure 6(e)
with the new computed trajectory. We can see that now
the path is as expected. In Figure 6(d), the speed profile
with the saturated area is shown. A video showing how
the saturation value affects the computed path can be
found with the digital edition of this article on IEEE
Xplore.

The Heuristic FM2: FM2*
Consider the map of Figure 7(a), in which a trajectory between
two points in a free space must be computed. Figure 7(b)
shows the FM2 wave expansion that originated from the target
point. As illustrated in the figure, the wave grows concentrically
around the target point until it reaches the initial point.
The FM2* method is an extension of the FM2 method. It tries
to reduce the total number of expanded cells (wave expansion)
by incorporating an heuristic estimate of the cost to get to the
goal from a given point.

The FM2* algorithm works in exactly the same way as the
FM2 algorithm. The only difference is the function used to
sort the narrow band queue. FM2 sorts the narrow band cells
in increasing T order so that, in each iteration, the first ele-
ment in the queue (lowest T ) becomes frozen and expands.
In FM2*, the algorithm uses the cost-to-come T, which is
known, and the optimal cost-to-go, that is, the minimum
amount of time the robot would take to reach the target. This
implies that the narrow band queue is sorted by estimates of
the optimal cost from the given cell to the target. Whenever
the optimal cost-to-go is an underestimate of the real cost-to-
go, the algorithm will still work. If we take the optimal cost-
to-go as zero, the FM2* algorithm is equivalent to the FM2
algorithm. If the estimation is greater than the real cost-to-
go, the FM2* algorithm might take more computational steps
than FM2 to find the path, and the path might not be the
shortest one.

In this problem, the optimal cost-to-go (optimal time to
reach the target) would be achieved if the robot went
straight forward at maximum speed. This cost-to-go is
given by the Cartesian distance (minimum distance)
divided by the maximum speed the robot can reach. We
know that the real cost-to-go will always be greater than
this computed value, so the narrow band queue is ordered
according to the value T*

robot_ _speed
cartesian_distance_to_target

.maxT T= +*

These two methods are analogous to Djikstra and A* in
path-finding over graphs [3]. The wave expansion computed
with FM2 is shown in Figure 7(b), and the wave expansion
computed with FM2* is shown in Figure 7(c).

Results
Figure 8 shows the path that results from applying FM2
and FM2* over a realistic map of 50 # 18 m. The gridmap
has 500 # 180 pixels. Starting points are shown in red, and
final points are shown in blue. Figure 8(b) shows the slow-
ness map computed with saturation. The maximum speed
is 1.5 m/s, and the safe distance is 2 m; that is, at 2 m from
the obstacles, the control speed will be 1.5 m/s, and it will
linearly decrease when approaching the obstacles.
Figure 8(c)–(e) shows the computed trajectory and
the wave expansion field resulting of applying FM2.
Figure 8(d) and (f) shows the computed trajectory and the

(a)

(b)

(c)

Figure 7. Comparison between FM2 and FM2*. (a) Original
grid map. (b) Wave expansion and path with FM2. (c) Wave
expansion and path with FM2*.

8

wave expansion field resulting from applying FM2*. We
can clearly see that the three paths are the same, but the
FM2* heuristic reduces the number of cells expanded. The
computation times are listed in Table 1.

The third computed path has to expand over almost the
entire map and, hence, computational times do not diverge
too much. In the most favorable case of the first two trajecto-
ries, the path is computed over four times faster with FM2*.

A video showing a comparison of the wave expansion
between the FM2 and the FM2* methods can be found with
the digital edition of this article on IEEE Xplore. This video
clearly shows how the FM2 wave expands concentrically
around the initial point, whereas, in the FM2* expansion,
the waves are directed toward the target point, reducing the
number of cells expanded and thus the computation time.

Conclusions and Further Work
In this article, we presented the mathematical foundations

of the FM method developed by Osher and Sethian [12].
We

presented the algorithm that we have implemented to apply
FM over a gridmap and demonstrated how the FM method
can be applied to compute the visibility path between two
points in a gridmap. This methodology is limited in that it
provides the shortest path in distance, which leads to risk
because of its closeness to obstacles. The FM2 method was
explained in detail. FM2 and all its variations were developed
by the authors of this article. FM2 computed two wave
expansions over the gridmap. The first expansion computed
the FMGridMap, a slowness map that provided the maxi-
mum allowed speed of the robot at each point on the map.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. FM2 versus FM2*. (a) Original map. (b) Saturated FMGridMap–slowness map. (c) FM2-computed trajectory. (d) FM2*-
computed trajectory. (e) FM2-computed trajectory. (f) FM2*-computed trajectory. (g) FM2-computed trajectory. (h) FM2*-computed
trajectory.

Computation Time (s)

Trajectories FM2 FM2*
Figure 8(c) and (d) 0.130669 0.032623

Figure 8(e) and (f) 0.130914 0.031855

Figure 8(g) and (h) 0.189093 0.147036

Table 1: FM2 and FM2* computation times.

9

This slowness map was used to compute the second expan-
sion, from the target point to the initial point. As a result of
the second expansion, the trajectory was computed using the
maximum gradient direction. This solution provided both a
path (way point) and the control speed at each point. As a
result, this trajectory was safe and optimal in time. FM2
computes paths that tend to navigate far from obstacles;
however, this results in increased navi-gation
completion time (increased path lengths), and it is not
always neces-sary. To avoid this problem, a variation to
FM2 was presented, called the saturated FM2. To reduce
the computation time of FM2, an heuristic FM2, FM2*,
was presented. The experimental analysis showed that
the computation time was reduced up to four times with
respect to FM2, while provid-ing the same trajectory.

In the video attached to the digital edition, several appli-
cations of the FM methods for path planning are shown,
including robot formations, multirobot reactive navigation,
and road map calculation. A sequence of a robot using FM
is also shown.

In a future article, we will focus on expanding FM2* to
more dimensions. Previous FM methods like FM2 or VFM
were applied successfully to higher-level problems, such as
outdoor path planning [17], robot formation motion plan-
ning [18], exploration, and SLAM [19], but the computa-
tional complexity of these methods limited them to 2-D
problems (although different options had been suggested to
decrease the computational complexity when expanding to
three or more dimensions). Using the faster FM2*, those
high-level problems can be studied easily. Our results indi-
cate that FM2* is ideal for use in swarm robotics or in
dynamic environments.

The source code in C++ of FM2 and FM2* and the recent
developments of these algorithms can be retrieved from the
subversion repository: http://svn.iearobotics.com/openmrl/.
All the code stored there was distributed under the attribu-
tion–share alike–creative commons license.

References
[1] S. LaValle, “Motion planning,” IEEE Robot. Autom. Mag., vol. 18, no. 1,
pp. 79–89, 2011.
[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, 3rd ed. New York: Springer-Verlag, 2008.
[3] S. M. LaValle. (2006). Planning Algorithms. Cambridge, U.K.: Cambridge
Univ. Press. [Online]. Available: http://planning.cs.uiuc.edu/
[4] J. J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in Proc. Robotics Automation, ICRA ’00. IEEE Int. Conf.,
2000, vol. 2, pp. 995–1001.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field
techniques for robot path planning,” in Proc. Robots Unstructured Environ-
ments, 91 ICAR, 5th Int. Conf. Advanced Robotics, 1991, vol. 2, pp. 1012–1017.
[6] S. Garrido, L. Moreno, and D. Blanco, “Voronoi diagram and fast marching
applied to path planning,” in Proc. Robotics Automation, ICRA IEEE Int. Conf.,
May 2006, pp. 3049–3054.
[7] S. Garrido, L. Moreno, M. Abderrahim, and D. Blanco, “FM2: A realtime
sensor-based feedback controller for mobile robots,” Int. J. Robot. Autom., vol.
24, no. 1, pp. 48–65, 2009.
[8] S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys.,
vol. 79, no. 1, pp. 12–49, 1988.
[9] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and H.
Benali, “Accurate anisotropic fast marching for diffusion-based geodesic trac-
tography,” Int. J. Biomed. Imaging., vol. 2008, p. 12, Jan. 2008.
[10] H. Li, Z. Xue, K. Cui, and S. T. C. Wong, “Diffusion tensor-based fast
marching for modeling human brain connectivity network,” Comp. Med.
Imag. Graph., vol. 35, no. 3, pp. 167–178, 2011.
[11] K. Yang, M. Li, Y. Liu, and C. Jiang, “Multi-points fast marching: A novel
method for road extraction,” in Proc. 18th Int. Conf. Geoinformatics: GIScience
in Change, Geoinformatics, June 2010, pp. 1–5.
[12] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge,
U.K.: Cambridge Univ. Press, 1999.
[13] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time Euclidean
distance transform algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
17, no. 5, pp. 529–533, 1995.
[14] N. Gagvani and D. Silver, “Parameter controlled skeletonization of three
dimensional objects,” Dept. Elect. and Comput. Eng., Rutgers Univ., Piscata-
way, NJ, Tech. Rep. CAIP-TR-216, 1997.
[15] S. Garrido, L. Moreno, D. Blanco, and M. I. Munoz, “Sensor-based global
planning for mobile robot navigation,” Robotica, vol. 25, no. 2, pp. 189–199, 2007.
[16] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots. Scituate, MA: Bradford, 2004.
[17] L. de Sanctis, S. Garrido, L. Moreno, and D. Blanco, “Outdoor motion plan-
ning using fast marching,” in Proc. CLAWAR, Istanbul, Turkey, Sept. 2009.
[18] J. V. Gomez, S. Garrido, and L. Moreno, “Adaptive robot formations using
fast marching square working under uncertainty conditions,” in IEEE Proc.
Workshop Advanced Robotics Social Impacts, Oct. 2011, pp. 68–71.
[19] S. Garrido, L. Moreno, and D. Blanco, “Exploration of 2D and 3D environ-
ments using Voronoi transform and Fast Marching method,” J. Intell. Robot.
Syst., vol. 55, no. 1, pp. 55–80, 2009.

10

