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AbstractA methodology, aimed to be fully operational, for automatic cloud classification based on the
synergetic use of a sky camera and a ceilometer is presented. The random forest machine learning

algorithm was used to train the classifier with 19 input features: 12 extracted from the sky camera images and

7 from the ceilometer. The method was developed and tested based on a set of 717 images collected at

the radiometric stations of the Univ. of Jaén (Spain). Up to nine different types of clouds (plus clear sky)

were considered (clear sky, cumulus, stratocumulus, nimbostratus, altocumulus, altostratus, stratus,

cirrocumulus, cirrostratus, and cirrus) plus an additional category multicloud, aiming to account for the

frequent cases in which the sky is covered by several cloud types. A total of eight experiments was conducted

by (1) excluding/including the ceilometer information, (2) including/excluding the multicloud category,

and (3) using six or nine different cloud types, aside from the clear-sky and multicloud category. The method

provided accuracies ranging from 45% to 78%, being highly dependent on the use of the ceilometer

information. This information showed to be particularly relevant for accurately classifying“cumuliform”

clouds and to account for the multicloud category. In this regard, the camera information alone was found to

be not suitable to deal with this category. Finally, while the use of the ceilometer provided an overall

superior performance, some limitations were found, mainly related to the classification of clouds with similar

cloud base height and geometric thickness.

Plain Language SummaryThe different cloud types are the results of different atmospheric
processes. In addition, cloud types have a varied interaction with the solar radiation. Therefore, cloud

monitoring, have interest in a varied offields, ranging from the study of the atmospheric thermodynamic

processes to solar energy. So far, cloud monitoring is conducted based on human observation, making cloud

type databases scarce and, in general, low reliable. A procedure for automatic cloud classification is

conducted here using information from a sky camera and a ceilometer. The information derived from these

two instrument is showed provide an enhanced performance.

1. Introduction

Scientific interest in retrieving cloud information dates many decades back and was mainly related to civil

and military aviation. The attention to cloud information has grown in the framework of climate studies, since

clouds play a key role in Earth energy balance (Li et al., 2014; Wild et al., 2013). More recently, in thefield of

weather forecasting, the improvement in cloud representation has emerged as a significant researchfield.

Mainly, because clouds are involved in multiple and strong interactions, their misrepresentation may have

large impacts and implications in the atmospheric dynamics and, then, in the accuracy of the simulations

of the numerical weather prediction models (Haiden et al., 2015; Pincus et al., 2011). Lastly, the growing pene-

tration of the solar energy around the world has fostered a great interest in cloud information, since clouds

are the main source of variability of the solar energy (Martínez-Chico et al., 2011; Mateos et al., 2014;

Tzoumanikas et al., 2016). In all the previousfields of science, the establishment of proper, accurate, and

cheap cloud monitoring systems is crucial (World Meteorological Organization (WMO), 2012). Accurate and

consistent cloud observations, which are globally standardized, remain an important need (WMO, 2017).

Nevertheless, the type of cloud information (cloud parameters, temporal and spatial resolution, etc.) needed

greatly varies depending on the application. In some of the above mentioned applications, information about

the type of cloud is crucial. Human-reported information was thefirst available continuous source of informa-

tion on cloud type. But the high associated cost, the low accuracy, and issues such as the representativeness
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make this source of information under menace in many countries. The use of satellite retrieval for cloud

classification is a promising tool because of their spatial coverage. For instance, the“cloud-type”product

of EUMETSAT Application Facility on Climate Monitoring or the APOLLO project (Kriebel et al., 2003; Weya

& Schroedter-Homscheid, 2014) reports operationally a coarse cloud classification. Nevertheless, the

performance of these operational cloud-type monitoring systems is still limited due to limitations of the

satellite platforms.

The other alternative is the use of ground-based sky cameras systems. These systems, which basically date

one decade back, are now considered the reference for cloud cover estimates (Boers et al., 2010; Cazorla

et al., 2008; Long et al., 2006). More recently, the automatic recognition of cloud types has emerged as

possible product of these instruments.

There are two basic steps for automatic cloud classification. First, the extraction from the camera images of

appropriate and distinctive information of the different sky conditions and cloud types. To this end, different

features can be computed on the information from camera channels. Particularly, these features account

for characteristics such as cloud shape, texture, or the color of the sky/clouds. Second, once a set of distinctive

features are obtained, cloud classification relies on the use of automatic classification algorithms. Ultimately,

these algorithms are trained and tested with human-supervised cloud-type databases.

The type and number of features have increased enormously in the last years, benefiting from otherfields

of research, such as automatic pattern recognition. For instance, Calbo and Sabburg (2008) used texture

properties and the Fourier transform of the camera visible channels to classify up to eight classes of sky

conditions. The methodology achieved an accuracy of about 62%. Heinle et al. (2010) proposed the use

of a combined set of textural and color features for the classification of up to seven cloud types, with a clas-

sification success rate of about 75%. Rumi et al. (2013) proposed the use of features from the infrared chan-

nels of a camera, obtaining an accuracy of 90% in the estimation of towering cumulus and cumulonimbus

cloud types. Kazantzidis et al. (2012) proposed the use of a multicolor criterion on sky images, showing an

average performance of about 87% using seven cloud categories. Kliangsuwan and Heednacram (2015)

used a new methodology, based on the fast Fourier transform, for feature extraction for cloud classification.

The overall accuracy of this methodology was shown to be 90% for the automatic classification of seven

clouds types. Wacker et al. (2015) used, as ancillary information for cloud classification, the measured long-

wave radiation. They reported an improvement of up to 10%, compared to the use of just the sky camera

information. The reported mean accuracy ranged from 80 to 90%. Cheng and Yu (2015) have proposed a

cloud classification method based on division of the image in different blocks. In this way the authors were

able to account for mixed clouds types in one image, obtaining an improved classification accuracy.

Recently, Li et al. (2016) used a novel approach for cloud-type recognition, based on the analysis of image

as a collection of patches, rather than a collection of pixels. The method showed an accuracy of 90% forfive

classes of sky conditions.

Regarding classification machine learning algorithms, the literature contains proposals ranging from artificial

neural networks (Kliangsuwan & Heednacram, 2015; Lee et al., 1990; Singh & Glennen, 2005), to k-nearest

neighbor (KNN) (Cheng & Yu, 2015; Heinle et al., 2010; Kazantzidis et al., 2012; Wacker et al., 2015) and support

vector machines (SVM) (Schmidt et al., 2015; Taravat et al., 2015; Zhen et al., 2015). ANNs are a commonly

machine learning technique used in cloud classification. It is actually a nonlinear regression technique that

can be used for classification by setting a threshold on the output(s). Typically, standard architectures with

three layers are used (input/hidden/output) and in a multiclass classification context, like cloud classification,

there are as many output neurons as classes. KNN does not need tofit a model to the data; rather, it stores all

data and classifies new instances by looking for the closest stored data instance(s). KNN does not require any

adaptation for multiclass problems. The basic version of KNN may suffer more than other methods when

there are many features, or some of them are irrelevant. It is also very slow for real use if the data set is large.

However, there are methods for KNN that can improve both accuracy (like Weinberger & Saul, 2009) and

speed (like kd-trees, Wess et al., 1993). SVMs aim to maximize the generalization capabilities byfinding

separation boundaries between classes that maximize the margin. They have fewer local minima issues

compared to ANNs, because SVMs solve a constrained convex optimization problem, with a single global

optimum. On the other hand, the most common approach to SVM trains binary classifiers, hence

requiring to train as many models as classes (one-versus-rest approach) or as many as pairs of classes
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(one-versus-one approach), although there are also approaches that deal with multiple classes directly

(Crammer & Singer, 2001).

To sum up, performance of the different approaches and studies for automatic cloud classification varies

greatly and can hardly be compared due to several reasons: different cameras, different cloud data sets,

different time representativeness, different experimental setups and evaluation methods, and different

cloud classes.

Aside from the sky cameras, the use of ceilometers for cloud property retrieval has emerged in the last few

years (Illingworth et al., 2007). Ceilometers are single-wavelength low-powered lidars (light detection and

ranging), which can provide high-frequency observations of cloud profiles, including parameters such as

the cloud base height (CBH) and cloud top height (e.g., cloud cover). Unlike satellite imagery, which generally

provides low-reliability CBH estimates at relatively low temporal resolution (very few samples per hour),

ceilometers are able to provide an accurate description of the location of the cloud vertical boundaries with

even several samples per minute (Arbizu-Barrena et al., 2015; Costa-Suros et al., 2014; Martucci et al., 2010;

Viúdez-Mora et al., 2015).

In this work, we propose and evaluate a methodology for automatic cloud classification based on the syner-

getic use of the information reported by a sky camera and a ceilometer. So far, ceilometer has been not used

in automatic cloud classification, so here the added value of this instrument is evaluated. Following recent

bibliography, different features were derived from the sky camera images. These features, along with the

information reported by the ceilometer, were used as input for a state-of-the-art machine learning classifica-

tion system: random forests (RFs) (Breiman, 2001). This is a machine learning technique that has seldom been

used for cloud classification but which is known to be among the best performers in classification tasks,

according to some empirical studies (Caruana et al., 2008; Caruana & Niculescu-Mizil, 2006). In a recent work

(Cheng & Lin, 2016), RFs have been used together with other algorithms (such as SVM and a Bayesian classi-

fier) to develop a voting scheme for classifying each pixel in the image as cloud or noncloud. This is a related

but different issue as the one addressed in the present paper, where whole images are classified, rather than

individual pixels. RF belongs to the ensemble of decision trees family of algorithms. Ensemble techniques

build models by training not only one but many different submodels whose outputs are combined. In RF,

randomization techniques are used to build a varied set of submodels (decision trees). Classification is done

by majority voting. RF deals with multiclass problems with no further adaptation. Also, RF training algorithms

can easily take advantage of parallel computing.

The methodology is evaluated on a data set recorded from a camera and a ceilometer located at the radio-

metric station of the University of Jaén (Spain) over a set of days corresponding to the period 2013–2015. The

procedure here proposed aims to mimic a fully operational one. As a consequence, skies with multiple cloud

types and layers at the same time are considered and accounted for. In a recent work Wacker et al. (2015)

reported this kind of skies to be highly challenging in automatic cloud classification. Three analyses were con-

ducted: thefirst one to evaluate the role of the ceilometer and the camera information, the second to analyze

the performance of the method when skies with several clouds types are included and,finally, to evaluate the

performance of the model when using an increased number of cloud types. Evaluation was conducted on the

light of the different cloud characteristics and the nature of the camera and ceilometer information.

2. Data Description

In this section, issues concerning to data used in this work are explained. Particularly, the camera and

ceilometer hardware characteristics, data and preprocessing procedures, and the different types of clouds

used in the classification are described.

2.1. Camera and Ceilometer Hardware Description

All the measurements used in this study were collected at the meteorological station of the University of

Jaén, Andalucía (southern Spain), at coordinates 37.7877°N and 3.7782°W, and 454 m above mean sea level

(Figure 1).

A total sky imager model Yesdas TSI-880 and a Jenoptik CHM 15k Nimbus ceilometer were installed in

September 2012 (Figure 2). The TSI-880 is composed by solid-state CCD pointed downward at a hemispheric

mirror, which reflects the whole hemisphere (fish-eye vision). Reflection of the Sun is blocked by a dark strip
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(shadow band), thereby protecting the imager optics. The TSI provides 352 × 288 pixels images every 30 s

and has been designed for climate/weather applications, showing to be robust regarding environmental

conditions (Long & DeLuisi, 1998). Notably, this camera has been proven to be accurate for the estimation

of the cloud cover (Boers et al., 2010; Kreuter et al., 2009; Long et al., 2006; Mannstein et al., 2010). In the

case of high clouds, it is able to report the sky conditions over a spatial domain of about 38 km × 38 km

(Mannstein et al., 2010). In the last years, this sky camera has been used as reference instrument in solar

energy applications (Chow et al., 2011; Martínez-Chico et al., 2011; Quesada-Ruiz et al., 2014).

The Jenoptik CHM 15k nimbus ceilometer uses laser pulses at wavelength of 1,064 nm, receiving the back-

scattered signal over afield of view of 0.45 mrad. This instrument is able to detect up tofive cloud layers

simultaneously and to provide their altitude with an accuracy of ±5 m, being its vertical cloud detection range

from 5 m to 15 km. The sample rate is 15 s. This particular ceilometer is one of the very few ones able to detect

Figure 1.Study region and location of the meteorological station at the University of Jaén.

Figure 2.Meteorological station of the University of Jaen. (left) Ceilometer and Sun tracker in the background. (right) The
TSI-880 sky camera.
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clouds above 7.5 km and with less spurious values and better resolution in the upper cloud boundary than

other similar instruments (Boers et al., 2010; Martucci et al., 2010; Wiegner et al., 2014).

2.2. Sky Camera Images and Ceilometer Data Preprocessing

A total of 717 TSI images, and the corresponding ceilometer estimates, was processed for this study. The

images, corresponding to a total of 131 days of the years 2013 to 2015, were selected in order to have a repre-

sentative sample, with different solar zenithal angles, of the 11 categories described in the following section.

Every sample was meant to be representative of 5 min intervals, that is, images of each of the 11 categories

were carefully selected to ensure that during thefive previous minutes period exactly the same category was

presented. First, the TSI images were masked in order to highlight the border, buildings, and band in the

images. Second, the images were projected following Marquez and Coimbra (2013). This procedure trans-

forms the images from a spherical to a rectangular grid. In order to prevent horizon distortion effects, this

transformation was conducted only for zenithal angles below 65°, that is, a 130°field of view of the camera.

Figure 3 shows some examples of the TSI raw and processed images.

The ceilometer reports every 15 s cloud profiles representative of the column at the ceilometer location,

namely, cloud base height (CBH) and cloud penetration depth (CPD). In this work, up to three different cloud

layers were considered. The CPD can be regarded as a proxy of the cloud geometrical thickness. Due to the

nature of the clouds (high variability in space and time), ceilometer data should be properly processed in

order to provide meaningful information linked to the TSI images, at the 5 min time interval used here.

This is particularly relevant for some cloud types, such as cumulus, stratocumulus and cirrocumulus and, in

general, cumuliform clouds. These clouds form patches, and therefore, the ceilometer may not report cloud

information in some of the 20 samples of the 5 min evaluation period used here. In addition, the ceilometer

sometimes provides spurious measures, or out of range values, which are related to the nature of the

Figure 3.Two examples of raw and processed TSI images. (top row) Raw/processed image corresponding to day 2015-01-
22 at 12:27:33 UTC. This image was classified as cumulus cloud according to Table 1. (Bottom row) Raw/processed
image corresponding to the day 2015-02-14 at 17:22:18 UTC. This image was classified containing several cloud layers, that

is, multicloud type according to Table 1.
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backscattering signal processed by these instruments. Given these

issues, and since the methodology used in this work aims at emulating

a fully operational system, ceilometer data were processed to provide

meaningful cloud profile information. First, based on the 20 collected

ceilometer samples, a number of candidate group of measurements

are selected according to the active layers (up to three). Second, clear-

sky values were removed from the 20 samples. Then, based on the

CBH values of the remaining samples, a cluster analysis was carried

out. The number of centroids in this cluster analysis provided the

number of cloud layers, up to a maximum of 3. Finally, for each

centroid, a mean CBH and CPD were computed, after applying afilter

for outliers. If the 20 measurement are reported as clear sky (i.e., no

clouds are detected), the ceilometer procedurefinal output is the

presence of“0”cloud layers. Figure 4 shows an example of outputs of

this processing procedure.

Since this process has been evaluated trying to mimic an operational

system, some problems have been found. Particularly, in about 3%

of the samples (24 images), the ceilometer reported no cloud informa-

tion in cases for which the TSI-880 image was classified in some cloud

category different from clear sky. A further analysis confirmed that 15

of these cases corresponded to cirrocumulus and cumulus. These

clouds, in many cases, do not cover the whole sky dome and may

not overpass the ceilometer column with the 5 min window here

used. The other nine cases correspond to cloud types such as cirrus

and nimbostratus. In these cases, the ceilometer was not able to pro-

vide the proper cloud information due to technical issues, reporting a

very low detection range.

2.3. Sky Conditions and Cloud Classes

The sky images and the ceilometer information were used to manually

classify the 717 samples according to classes displayed in Table 1.

Particularly, two types of classification experiments were conducted. In

thefirst ones, up to seven cloud types were used (first column in

Table 1). These cloud categories are most commonly used in the biblio-

graphy (Heinle et al., 2010; Kazantzidis et al., 2012) and try to group

cloud types with similar characteristics. In the second one, compound

categories are decomposed into the individual cloud types, resulting

in 10 cloud types (second column in Table 1). In both cases we have

added the multicloud category, which aims to represent cases in which

the sky is covered by several cloud types at the same time, including the

case of several cloud layers. This category is commonly found and should be considered in fully operational

systems. The multicloud category has been scarcely addressed in the literature. Wacker et al. (2015) describe

the problems for automatic recognition of this category, but no attempt for classification was made. Only in Li

et al. (2016) the multicloud case is considered in an automatic cloud classification procedure. This multicloud

category is described as a mix of the sky conditions considered in this work and covering more than 20% of

the sky.

3. Methods and Evaluation

In this section, automatic cloud classification is addressed. First, the features extracted from the images and

ceilometer information, to be used as inputs to machine learning algorithm, are described. Next, a short

description of random forest algorithm is included. Finally, the metrics and procedure used in this work to

evaluate the performance of the classifier are also presented.

Figure 4.(top) Raw and processed ceilometer data corresponding to the
image in Figure 3, top. The blue shaded area represents the range
between the measured cloud base height and this values plus the cloud

penetration depth. Values correspond to thefive previous minutes at which
the image was obtained. The bottom straight line shows thefinal estimate

of the cloud base height for this sample, while the difference between the
top and bottom straight lines shows thefinal estimate of the cloud
penetration depth. Note that only some measurements were available

during the 5 min interval. Triangular points at the top indicate the maximum
detection range of the ceilometer for this particular measurement interval.

(bottom) As in Figure 4, top but for the bottom image in Figure 3. Similarly to
the previous case, the shaded areas indicate the measurements and the
straight lines, thefinal cloud base height and cloud penetration depth

estimates. Note that, in this case, three cloud layers were detected.
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3.1. Features for Cloud Automatic Classification

In this work, we employ a wide set of features (see Table 2) as inputs to the cloud classifier. They are divided

into two main groups, depending on which instrument was used to compute them: image features

(extracted from the ground camera, features 1 to 12) and cloud layer features (extracted from the ceilometer,

features 13 to 19).

3.1.1. Features From the Camera

Most of the image features used in this work are based on Heinle et al. (2010), and they have been obtained

from the red, green, and blue channels of images. These channels are represented using three matricesMr,

Mg, andMb,red, green, and blue respectively. Each (i, j)location in the matrices corresponds to a pixel in

the image, with integer values between0and255. There are several types of image features: spectral fea-

tures, textural features, and cloud coverage.

The spectral features (rows from 1 to 7 in Table 2) use the color matrixMcexclusively (wherec=r,g,orb),

extracting statistical measures directly from it. These are the simplest from the feature set and require very

little processing.

The textural features (rows from 8 to 11 in Table 2) make use of a gray level co-occurrence matrix (GLCM). This

is a transformation over one of the color channels. The result is agxgmatrix,gbeing the number of gray

levels considered in the image. Thus, every element of the GLCMs in rows from 8 to 11 in Table 2 (pci;j) repre-

sents the relative frequency of two adjacent pixel valuesiandj.crepresents the color of the source channel.

Here we useg = 256 value levels. GLCMs represent the relative frequency of two pixel values appearing

together in the image, at a given offset (in this case,x0=x+1,y0=y+ 0). This matrix is commonly used in

image analysis for detecting textures in gray images or in a given color channel and are supposed to give

information on the spatial distribution of color, which spectral features are unable to provide. Textures are

relevant in the detection of cloud types. There are several other textural features, as proposed by Haralick

and Shanmugam (1973). However, the four used in the article are the subset of features proposed by

Heinle et al. (2010). These measure different properties of the GLCM and are the following: energy (it mea-

sures the homogeneity of gray level differences), entropy (it measures the randomness of gray level differ-

ences), contrast (it measures local variation within the gray level matrix), and homogeneity (it measures

similarity of adjacent gray levels within the matrix).

Finally, a cloud coverage statistic (row 12 in Table 2) is used in the procedure. To obtain this cloud coverage,

first, the original red-green-blue image was converted to hue-saturation-value (HSV) color space following

Smith (1978) and Jayadevan et al. (2015). Hue describes the color itself, while saturation denotes the degree

of difference between a color and gray and value represents the brightness. Saturation (“Sat”in Table 2)fits

Table 1

Categories Used for the Cloud Classification and Main Characteristics Derived From the Ceilometer

Cloud types CBH CPD

Seven cloud types + multicloud 10 cloud types + multicloud Number of images Mean (SD) Mean (SD)

Clear sky Clear sky (CLS) 48

Cirrus and cirrostratus Cirrus (ci) 131 9,086 (1,515) 951 (501)
Cirrostratus (cs) 39 7,684 (676) 1,829 (422)

Cirrocumulus and altocumulus Cirrocumulus (cc) 13 6,832 (2,023) 469 (238)
Altocumulus (ac) 75 4,494 (2,257) 726 (516)

Altostratus and stratus Altostratus (as) 57 6,701 (1,751) 1,858 (607)

Stratus (st) 53 833 (485) 295 (276)
Stratocumulus Stratocumulus (sc) 49 1,358 (372) 275 (126)

Cumulus Cumulus (cu) 54 1,121 (513) 176 (32)
Nimbostratus Nimbostratus (ns) 42 702 (345) 448 (424)
Multicloud Multicloud (MC) 156

Note. In thefirst experiments, a total of eight classes (first column) was distinguished. In the second one, classes
increased to 11 (second column). In both cases, the category multicloud is included, indicating the presence of several
layers and/or different cloud types in the same image. The mean and standard deviation (in parenthesis at the right) of
the CBH and CPD (in meters) are displayed in the last two columns. Values correspond to the whole experimental
database.
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into the range [0, 1], from white, through the grays, to the most colorful hue. In this work, cloudy pixels are

detected based on a threshold valueT= 0.41 for the saturation value. Pixels (i,j) with a saturation greater

or equal than this threshold are detected as clear sky; otherwise, the pixels are classified as cloudy. The

percentage of sky covered is calculated using the formula labeled as (2) in Table 2 (row 12), wherecpand

tpare the amount of cloudy pixels and the total amount of pixels, respectively.

3.1.2. Features From the Ceilometer

The ceilometer offers height and thickness information about the cloud type (CBH and CPD) that can help

discern differences between similar-looking clouds, which would be impossible to recognize otherwise.

Layers in cloud formations are numbered in order of distance from the ground. Layer 1 is the closest to the

ground, then layers 2 and 3. Given this, we define six new features (CBH and CPD of each layer) plus an extra

feature indicating how many actual layers (out of three) have been detected (rows from 13 to 19 in Table 2).

We represent the information for each layer ashnμort
n
μ, to indicate the mean CBH or CPD of layern (n = 1,2,3),

Table 2

Table Listing All of the Features Used as Input to the Classifier

Feature Type Formula

1 μ
r
;Red average Image-spectral μc1¼

1

n2

Xn

j¼0

Xn

i¼0

Mc1i;j

2 μ
b
;Blue average Image-spectral Same as above

3 σ
b
;Blue deviation Image-spectral

σc3¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n2

Xn

j¼0

Xn

i¼0

Mc3i;j μc3
2

v
u
u
t

4 γ
b
;Blue skewness Image-spectral

γc3¼
1

n2

Xn

j¼0

Xn

i¼0

Mc3i;j μc3

σc

 !3

5 D
rg
;Red-green mean difference Image-spectral Dc2¼μc1 μc2

6 D
rb
;Red-blue difference Image-spectral Same as above

7 D
gb
;Green-blue mean difference Image-spectral Same as above

8 EN
b
;Blue Image-textural ENc3¼

Xg

j¼0

Xg

i¼0

pc3i;j

h i2

9 ENT
b
;Blue Image-textural ENTc3¼

Xg

j¼0

Xg

i¼0

pc3i;jlog2p
c3
i;j

10 CON
b
;Blue Image-textural CONc3¼

Xg

j¼0

Xg

i¼0

i jð Þ2pc3i;j

11 HOM
b
;Blue Image-textural HOMc3¼

Xg

j¼0

Xg

i¼0

pc3i;j
1þi jj j

12 C;% cloud coverage Image-coverage Sati,j>T;T= 0.41 (1)

C¼
cp
tp2ðÞ

13 h1μ; Mean height from layer 1 Ceilometer-height From CBH layer 1

14 h2μ; Mean height from layer 2 Ceilometer-height From CBH layer 2

15 h3μ; Mean height from layer 3 Ceilometer-height From CBH layer 3

16 t1μ; Mean thickness from layer 1 Ceilometer-thickness From CPD layer 1

17 t2μ; Mean thickness from layer 2 Ceilometer-thickness From CPD layer 2

18 t3μ; Mean thickness from layer 3 Ceilometer-thickness From CPD layer 3

19 l; Present layers Ceilometer-layers Number of detected layers

Note. The last column shows how the feature is obtained according to the description in section 3.1.ckindicates the color
channel, usingk= 1, 2, and 3 for red, green, and blue, respectively;nis the size of then×nimage, andgindicates the
gray value of the pixel (g= 256 levels).
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andlthe number of layers detected. In sum, a total of seven features was derived from the ceilometer to be

used in the automatic classification procedure.

Machine learning algorithms require afixed number of inputs/features. Therefore, in case the ceilometer

returns just information of one or two layers, wefill the missing layers (up to 3) by replicating the information

from the closest layer we have information of. In case there are no layers, values are set to an arbitrarily large

number, indicating that clouds could not be detected.

3.2. Random Forests

For cloud classification, we use the random forest (RF) algorithm presented in Breiman (2001). RF has been

reported to be one of the best algorithms for classification (Caruana & Niculescu-Mizil, 2006) and needs no

adaptation to work in a multiclass context. This algorithm calculatesNsubmodels (single classification trees)

to form an ensemble of models that can predict the class of the given input. Every submodel is an individual

decision tree. A simple example tree is shown in Figure 5. To classify an instance, the tree is navigated from

the root node to a leaf node. Every nonleaf node contains a decision based on an input feature, which will

determine the next node to be visited. The tree continues to be navigated through the nodes taking the path

that decision nodes determine. Leaf nodes contain labels and, if a leaf node is reached, then the class is deter-

mined as the label of the given node.

The RF algorithm constructs multiple different trees from the same

training data by means of a double randomization process. First, in

order to build each tree, a new data set with the same size as the

training data is obtained by sampling with replacement. Second,

instead of considering the whole set of features, each decision

node of each tree uses only a random subset of them (mtryis the

parameter name for the size of this random subset, typically much

smaller than the whole set of features). The set of decision trees in

the RF ensemble classify new data by majority voting. A diagram of

the whole process is represented in Figure 6.

Before building thefinal model, the parametermtryhas to be tuned

for optimal classification accuracy. This parameter must be within

the range (1, (F-1)), whereFis the total number of features. The opti-

malFvalue is obtained by training and testing models with differ-

ent values and selecting the best performing one. It is important

to remark the tuning process uses the training partition only (the

test partition is never used for training, parameter tuning being part

of that training process). In this article, the RF implementation forR

Figure 5.Example of decision tree with two input features and four possible classes. It has a maximum depth of 2, 2
decision nodes, and 4 leaf nodes.

Figure 6.Image depicting the construction of a random forest ensemble by

random resampling and training of several decision trees. Classification is carried
out by majority voting among ensemble members.
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has been used (Liaw & Wiener, 2002). RF has been used together with packagecaret, which is able to deal

automatically with parameter tuning (Kuhn, 2008).

3.3. Evaluation Procedure and Metrics

In order to evaluate the performance of the RF classifier for automatic cloud classification, a cross-validation

procedure is carried out. Standard cross validation divides the available data inPequally sized folds or sub-

sets. Then, for every foldn, a model is trained using all folds butn, and tested with foldn(i.e., a performance

measure, such as accuracy, is computed for the trained model on foldn). Thefinal cross-validation estimate is

the average of the 10 accuracy values. The standard deviation can also be computed. In this work, we follow

the common cross-validation practice and setP= 10.

However, applying standard cross validation to cloud image data sets can be potentially problematic if the

data set contains sequences of images (cloud images, in this work) taken within short time periods, because

some of the images in the sequence might be very similar. This phenomenon is called twinning, and it can

lead to optimistically biased cross-validation estimates if very similar images fall into both the training and

test partitions. To mitigate this problem, before splitting the data into folds, cloud images are sorted chron-

ologically. Consequently, cloud images that are close in time will most likely fall together either into the train-

ing partition or the test partition. This evaluation process avoids the optimistic bias, and it will be more

representative of a real situation, because it evaluates de classifier with data belonging to a time period dif-

ferent to that of the training data. However, this stricter validation should be expected to report worse metric

values than other state-of-the-art works that use other evaluation methodologies.

The metrics used for measuring the effectiveness of the models are accuracy and macroaverage accuracy.

Accuracy is the standard classification success rate:

Accuracy:AccAbs¼
I

S
;

whereIis the number of correctly classified instances andSis the total number of instances.

The problem with (standard) accuracy is that classes with more instances have more weight in the success

rate. For instance, in an extreme case, if class A contains 95 images and class B contains just 5 images, accu-

racy is basically informing about class A. In order to measure the behavior of the model independently of the

number of images in each class, macroaverage accuracy can be used. Macroaverage accuracy is defined as

the average of the individual class accuracies.

Macroaverage accuracy:AccRel¼
1

t

X t

k¼0

Ik
Sk
;

whereIkis the number of well-classified instances for classk,Skis the number of instances for classk, andtis

the total number of classes.

All experiments carried out in this work follow the sameflow. First, the data set is ordered chronologically and

split into 10 different folds. Then, model evaluation is carried out with a tenfold cross validation. In every

cross-validation iteration, the training folds are used to select the bestmtry parameter value (see

section 3.2) and then build the RF model with that value. Then the model is tested with the test fold.

Given that RF is a stochastic algorithm, tenfold cross validation has been repeated 10 times, each time with

a different random seed (in other words, 10 tenfold cross validations have been carried out). The results

obtained are the average of these 10 different runs.

4. Results

In this section, results of the different experiments are presented and discussed. One of the aims of this work

is to determine the relative contribution of the camera and ceilometer information for cloud classification.

Therefore, baseline results were computed by training RF and testing the models using only image features

from the camera (spectral, texture, and coverage features). Then, RF models were trained and tested with

both camera and ceilometer information. To sum up, eight different experiments were conducted by (1)
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using up to 7 or up to 10 classes, as described in section 2.3; (2) including/excluding the multicloud category;

and (3) including/excluding the ceilometer information. Results of experiments have been organized in two

blocks, with 7 and 10 classes (both with and without multicloud), respectively.

4.1. Seven Cloud Categories Plus Multicloud

Results of the classification procedure when considering seven cloud categories (Table 1), with or without

multicloud, are given in Figure 7 and Table 3. Results are displayed for two cases: using just the camera infor-

mation (Ca) and using the camera together with the ceilometer information (Ca + Ce). For the sake of com-

parison, results excluding and including the multicloud category are displayed separately.

Results clearly show,first, that the use of ceilometer information (Ca + Ce) improves the performance of the

classifier for both cases, without multicloud (seven classes) and with multicloud (eight classes). In the former

case, the use of the ceilometer improves accuracy and macroaverage accuracy by 12.91% and 15.72%,

respectively (Table 3). The improvement is even larger for the multicloud case (15.97% and 17.46%, respec-

tively). Second, and as expected, including the multicloud class,

results in a loss of approximately 5% accuracy when using all the

features Ca + Ce, and about 8% when using only the camera (Ca).

Interestingly, the ceilometer information allows the classifier to deal

better with the extra (and noisy) multicloud class, compared to

using only the camera information.

For the nonmulticloud experiments and breaking down results by

cloud type, it can be observed (Figure 7) that the ceilometer infor-

mation increases the accuracy for all cloud types except for stratus

and altostratus (in this case, it gets slightly worse by 9.1%). The best

improvements are observed for cirrocumulus-altocumulus (32.7%),

cumulus (30.5%), and stratocumulus (31.6%). In the rest of the

classes, accuracy is also improved to a lesser degree (around 8%).

When the multicloud class is included, results are similar regarding

the role of the ceilometer. Particularly, the use of ceilometer helps

Figure 7.Relative frequencies (in percent) of correctly classified cloud classes for the seven cloud types (plus multicloud).
Results are displayed separately for the four experiments: Using just the camera information (Ca) and both the camera and
the ceilometer information (Ca + Ce) but not including the multicloud class, using just the camera information and

including the multicloud class (Ca with MC) and using both the camera and the ceilometer information and including the
multicloud class (Ca + Ce with MC).

Table 3

Overall Results for the Seven Class Experiments (Plus Multicloud)

Seven classes

Features used

Metric Ca Ca + Ce

No Multicloud Accuracy 64.4% (0.6) 77.3% (0.6)
Macroaverage 62.3% (0.6) 78.0% (0.6)

Multicloud Accuracy 55.7% (0.6) 71.7% (0.6)

Macroaverage 55.1% (0.6) 72.6% (0.6)

Note. The accuracy, macroaverage accuracy (in percent), and standard
deviation (within brackets) are displayed separately for experiments with
camera only (Ca) and with camera and ceilometer (Ca + Ce). In addition, results
are presented separately for experiments excluding (seven classes) and includ-
ing (eight classes) the multicloud category.
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to improve the accuracy of all classes except (again) for the stratus-altostratus class (in this case, accuracy is

reduced by just 1.1%). This seems logical, as this class may contain clouds at very different altitudes. Similarly

to the no multicloud case, observed improvements are for cirrocumulus-altocumulus (21.6%), for cumulus

(27.6%), for stratocumulus (44%), and for multiple cloud type (24.9%). For clear-sky, cirrus-cirrostratus, and

nimbostratus the improvement is smaller (around 5% and 8%). Finally, the accuracy of the multicloud class

prediction is remarkable (around 73%) when using the ceilometer; otherwise, it is just about 48%.

The comparison of the results excluding and including the multicloud class reveals some interesting features.

First, when using the ceilometer information, the inclusion of multicloud reduces the accuracy of the classi-

fication of just some specific cloud types, namely, cirrocumulus-altocumulus and stratus-altostratus. For the

rest of the classes, scores are similar. This result makes sense, since the multicloud category somehow

includes the cirrocumulus-altocumulus and the stratus-altostratus classes, which are also composed of sev-

eral cloud types and cloud layers that can be located at very different altitudes. Therefore, the multicloud type

may be confused by these two cloud types. This is what is observed in Table 4 (the classification contingency

matrix). Even though the ceilometer helps enormously in the classification, multicloud is missclassified in

about 10% of the cases as cirrocumulus-altocumulus and as stratus-altostratus. Cirrocumulus-altocumulus

is classified as multicloud in 28% of the cases. Previous works have also shown that the class cirrocumulus-

altocumulus is the most difficult to classify correctly (Kazantzidis et al., 2012; Wacker et al., 2015). The case

of the cirrus-cirrostratus class is different, given that these clouds present a quite similar morphology and,

more importantly, are usually located at a very similar elevation. As a consequence, multicloud is misclassified

as cirrus-cirrostratus just about 4% of the cases.

Regarding the multicloud category, Wacker et al. (2015) reported that the inclusion of this kind of cloud class

may reduce the classification rate up to a 50%. Li et al. (2016) reported this sky category to be the most

difficult to classify, nevertheless obtaining an accuracy of 79:5%. This results is similar to the here presented

when using the ceilometer (73%). Nevertheless, comparison is difficult given the different sky categories used

in Li et al. (2016).

To sum up, the performance of the proposed procedure is

highly dependent on the ceilometer information. This depen-

dence is particularly relevant for all the“cumuliform”clouds,

whose classification accuracy reduces considerably when only

the camera information is used. On the other hand, the method

showed to be robust against the inclusion of the multicloud class

when ceilometer information is used (only the classification accu-

racy for the cirrocumulus-altocumulus and the stratus-altostratus

is reduced).

4.2. Ten Cloud Categories Plus Multicloud

Table 5 shows the results when considering the 10 cloud types dis-

played in Table 1. First, it is observed that the accuracy scores

Table 5
As in Table 3 but for the 10 Classes (Plus Multicloud) Experiments

10 classes

Features used

Metric Ca Ca + Ce

No Multicloud Accuracy 58.8% (0.5) 74.8% (0.7)
Macroaverage 51.4% (0.5) 66.4% (0.7)

Multicloud Accuracy 50.6% (0.4) 71.1% (0.6)
Macroaverage 44.8% (0.6) 63.5% (0.7)

Table 4

Contingency Matrix Results for the Seven Classes (Plus Multicloud) Experiment That Uses the Ceilometer Information

True class

Classified as Mean success rate

CLS ci + cs cc + ac as + st sc cu ns MC Accuracy Macroaverage

CLS 82.2% 2.3% 0% 0% 0% 9.1% 0% 0%

ci + cs 13.9% 79.0% 12.5% 17.6% 0% 3.1% 0% 4.2%
cc + ac 0.8% 2.7% 46.2% 1.1% 4% 4% 0% 10.6%

as + st 0% 13.5% 3.5% 64.2% 2.2% 0% 8.4% 10.1%
sc 0% 0% 8.9% 0.9% 81% 2.2% 6.5% 1.5%
cu 2.6% 2.0% 1.1% 0.9% 2.2% 81.7% 2.3% 0.1%

ns 0% 0% 0.1% 2.9% 2.8% 0% 72.8% 0.2%
MC 0.4% 0.3% 27.8% 12.4% 7.8% 0% 10% 73.4% 71.7% 72.6%

Note. Rows contain the true class, and columns contain RF predictions. Bold entries represent the percentage of well-classified clouds for each cloud type.
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decrease compared to the seven classes results described in section 4.1. This makes sense, given that the

difficulty of classification problems tends to increase with the number of classes. Similarly to the seven

class evaluation, a significant increment of the accuracy is obtained when using both camera and

ceilometer (Ca + Ce). Overall, these increments are higher than in the seven class case (Table 3),

indicating that ceilometer information is even more relevant when the number of classes is increased.

Particularly, the accuracy and macroaverage accuracy increase by 20.5% and 18.8%, respectively, in the

multicloud case.

When the multicloud class is included, accuracy and macroaverage are reduced by a 3%, approximately, if the

ceilometer information is used (if only the camera is used, the reduction is larger). This result is similar to the

seven class experiment. Therefore, the multicloud type does not seem to be an issue in this case. The reduc-

tion in the overall performance of the procedure seems to be related with the other categories.

Figure 8 and Table 6 break down results per class. Poor scores can be noticed for the cirrocumulus and cirros-

tratus classes, which show accuracies of near 0 and 20% respectively, regardless of the use of the ceilometer

(Figure 8). Nevertheless, when using the ceilometer information, for some classes (clear-sky) the accuracy

Figure 8.As in Figure 7 but for the 10 cloud categories (plus multicloud).

Table 6
As in Table 4 but for the 10 Classes (Plus Multicloud) Experiments

True class

Classified as Mean success rate

CLS ci cs cc ac as st sc cu ns MC Accuracy Macroaverage

CLS 84.3% 2.9% 0% 0% 0% 0% 0% 0% 9.6% 0% 0%
ci 11.8% 86.4% 22.5% 35.7% 11.4% 9.5% 0% 0% 2.7% 0% 1.9%

cs 0% 3.1% 21.5% 0% 0% 14% 0% 0% 0% 0% 2.2%
cc 0% 0.6% 0% 0% 0.5% 0% 0% 0% 0% 0% 0.9%
ac 0.6% 1.2% 0% 22.1% 54.1% 2% 0% 4% 2.2% 0% 9.0%

as 0% 0.8% 50% 0% 2.9% 64.8% 0% 0% 0% 0% 5.3%
st 0% 0% 0% 0% 0% 0% 78.9% 2% 0% 9.5% 4.5%

sc 0% 0% 0% 0% 10.4% 0% 1.7% 80.8% 2% 7.7% 1.7%
cu 3.3% 2.8% 0% 7.1% 0% 0% 1.8% 2% 81.8% 2.3% 0.2%
ns 0% 0% 0% 0% 0% 0% 3.9% 3.8% 0% 72.3% 0.2%

MC 0% 2.1% 6% 35% 20.6% 9.8% 13.7% 7.4% 1.6% 8.1% 74.1% 71.1% 63.5%

Note. Bold entries represent the percentage of well-classified clouds for each cloud type.
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increases with respect to the seven class experiment or remain substantially the same (cumulus, stratocumu-

lus, nimbostratus, and multicloud). Regarding the results for the formerly combined classes (cirrocumulus-

altocumulus, cirrus-cirrostratus, and stratus-altostratus), now separated, some relevant outcomes were found.

For instance, when using the ceilometer and including the multicloud class (Table 6), the stratus and altostra-

tus classes show a high accuracy, 78.9% and 64.8%, respectively, higher than the combined stratus-

altostratus class in Table 4 (62.2%). Note in Figure 8 the very relevant information provided by the ceilometer

for these two classes. Both kinds of clouds present similar morphological features. The main difference is the

location: while stratus are low-level clouds with the CBH below 2 km, the altostratus CBH are typically well

above this elevation (Houze, 1993; Kokhanovsky, 2006). In our case, Table 1 data confirm these values, since

the mean CBH of the stratus clouds is 833 m and the corresponding value for the altostratus is 6,701 m.

Therefore, it seems that the combined information derived from the camera and especially the ceilometer

is able to properly discriminate between these two classes of clouds, even when the multicloud class

is included.

The separation of the class cirrus-cirrostratus is not so successful. The cirrus category is reliably classified,

reaching 86.4% accuracy (Table 6). Note that the information provided by the ceilometer is not highly rele-

vant in this case (Figure 8). Nevertheless, as commented above, cirrostratus results are poor (21.5%). They

are classified as altostratus in 50% of the cases and as cirrus in 22.5% of the cases (Table 6). These results

can be explained based on of the similar characteristics of the altostratus and cirrostratus clouds.

Particularly, the altostratus clouds present a mean CBH of 6701 m, with 1,701 m standard deviation value

(Table 1). The corresponding values of the cirrostratus clouds are 7684 m and 676 m. These experimental

values are confirmed in the bibliography, which states that the range of elevation in middle latitudes is 2–

7 km for the altostratus and 5–13 km for cirrostratus (Houze, 1993; Kokhanovsky, 2006). The CPD for both

types of clouds is also similar: 1,858 m and 1,829 m for the altostratus and cirrostratus, respectively

(Table 1). Therefore, these clouds cannot be discriminated just based on the CBH and the CPD. The main dif-

ference between these two kinds of clouds is the usual presence of the halo feature in the cirrostratus clouds

but not in the altostratus. This particular feature seems to be not resolved by the image characteristics

used here.

Finally, the poorest results are obtained for the cirrocumulus-altocumulus discrimination. Particularly, cirrocu-

mulus clouds are systematically misclassified as altocumulus, cirrus, cumulus, or multicloud (Table 6). These

poor results can be explained based on several reasons:first, because the mean and the standard deviation

CBHs values (Table 1) of the cirrocumulus (6,833 m and 2,023 m), altocumulus (4,494 m and 2,257 m), and

cirrus (9,086 m and 1,515 m) do not allow the use of the CBH to discriminate the cirrocumulus from the other

two cloud types. Reference values of the CBHs in middle latitudes are 5–13 km for cirrocumulus and 7–10 km

for cirrus 2–6 for altocumulus (Houze, 1993; Kokhanovsky, 2006), therefore confirming our results. Similar

inferences can be derived for the role of the CPDs, which show mean and standard deviation values

(Table 1) that makes the CPD inadequate to discriminate between these tree cloud types. Again, reference

values in the bibliography confirm thesefindings; particularly, Houze (1993) and Kokhanovsky (2006) report

the geometrical thickness of the cirrocumulus to be in the range 0.2–0.4 km, which overlaps the thickness of

the altocumulus (0.2–0.7 km) and cirrus (0.1–3 km). Therefore, ceilometer information seems not to be rele-

vant to distinguish the cirrocumulus clouds from many other classes. Regarding the sky camera information,

from the morphological point of view, cirrocumulus and altocumulus are similar. In addition, cirrocumulus

clouds often occur in small sheets located very high in the atmosphere (even 9 km values can be found in

the experimental data set here used). As a consequence, and probably also because of the low resolution

of the TSI images, the camera is not able to provide distinctive statistics values for this particular cloud class.

Altocumulus results are more encouraging (accuracy 54%), although they are misclassified as multicloud in

20.6% of the cases.

5. Summary and Conclusions

We have presented and evaluated a methodology for automatic cloud-type classification based on the syner-

gistic use of a sky camera and a ceilometer. The hypothesis is that given the distinctive vertical location of the

different cloud types, the use of the ceilometer may improve the classification accuracy derived just from the

camera images.
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The methodology here evaluated aims to be fully operational, reporting an automatic classification of the

cloud/sky conditions every 5 min. Because of that, among the evaluated cloud types, we have included

the multicloud category, which accounts for skies covered by several cloud types and/or cloud layers. The

automatic classification was conducted by random forests, a state-of-the-art machine learning classification

algorithm, which used as input 19 features (12 computed from the sky camera and 7 from the ceilometer).

The procedure was trained and evaluated on a set of 717 images, and up to 11 different types of

clouds/skies were considered. The study is performed using a 130°field of view in the sky cameras.

A total of eight experiments were conducted by (1) excluding/including the ceilometer information in the

random forest automatic classification algorithm, (2) including/excluding the multicloud category, and (3)

using 7 or 10 different cloud/sky types, in addition to the multicloud category. The comparison of results

allowed to evaluate the role of the ceilometer, to analyze the effect of the multicloud type in the classification

accuracy and,finally, to evaluate the performance of the model when using an increased number of

cloud/sky types (7 versus 10).

For the seven cloud/sky classes experiments plus multicloud (six cloud types + clear sky + multicloud) results

showed an overall accuracy of the method of about 72% when using the ceilometer and about 55% when

using just the camera information. Therefore, the ceilometer information showed to be crucial. The use of

the ceilometer is particularly valuable for classifying cumuliform clouds, with an increment of the accuracy

of about 30% compared to the use of only the camera information and, particularly, for the multicloud cate-

gory, which is correctly estimated in about 73% (about 48% when just the camera is used). In addition, as may

be expected, the inclusion of the multicloud class results in a loss of approximately 5% accuracy when using

ceilometer and camera information and about 8% when using only the camera information. The 5% reduc-

tion was accounted for just some specific cloud types (cirrocumulus-altocumulus and stratus-altostratus). For

the rest of the classes, scores were similar. To sum up, the ceilometer information allowed the classifier to deal

better with the extra (and noisy) multicloud class, compared to using only the camera.

Results for the augmented 10 cloud/sky classes plus multicloud experiments (nine cloud types + clear

sky + multicloud) showed lower accuracy scores. This makes sense, given that the difficulty of classification

problems tends to increase with the number of classes. Particularly, for the experiment using the ceilometer

information and including the multicloud class, mean macroaverage reduces from about 73% (7 cloud/sky

classes plus multicloud) to about 63% (10 cloud/sky classes plus multicloud). The use of the ceilometer infor-

mation resulted to be even more critical for the 11 categories than for the 8. From the analysis by categories

of the experiments with 10 cloud/sky classes plus multicloud, some additional conclusions were obtained.

Thefirst one is that the reduction in the accuracy was not related with inclusion of the multicloud category

but with other cloud types. Notably, the classification accuracy for cirrostratus, altocumulus, and, particularly,

cirrocumulus showed to be low. Several reasons were found for this low accuracy. First, the fact that these

clouds, from the morphological point of view, are similar to other cloud types: cirrostratus and cirrus, altocu-

mulus and cirrocumulus/multicloud, and cirrocumulus and cirrus. As a consequence, the camera features

were not able to distinguish between these kinds of clouds. Second, many of these clouds present similar

cloud base height and geometrical thickness, making the ceilometer information not so relevant. This is

the case of the cirrostratus and altostratus, and the altocumulus and cirrocumulus.

Other cloud types, as the stratus and altostratus, showed encouraging classification accuracy. Although

these clouds present similar morphological characteristics, they are located at different elevation. As a con-

sequence, ceilometer information allowed to reach better accuracy for these cloud types, even with the

presence of the multicloud class.

Several applications may benefit from the here proposed automatic and operational cloud recognition sys-

tem. For instance, in thefield of solar energy, the here proposed method can be used to enhance the relia-

bility of sky camera-based solar radiation estimating and forecasting procedures. Also for the characterization

of the solar radiation spatial and temporal variability, that is an important issue for the solar energy grid inte-

gration. In addition, this methodology may reduce the uncertainty in the energy balance of the Earth surface,

which is mainly related to the clouds. Finally, aviation weather services, which used the cloud type as a proxy

of the present and for coming weather conditions, can benefit from the here proposed methodology.

Results here presented seem encouraging regarding the development of an automatic, fully operational, and

highly tailored cloud classification procedure. Nevertheless, some limitations were found, and some
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challenges should be addressed. First, ceilometer information was found to be highly valuable to accurately

classify certain types of cloud (especially altocumulus, cumulus, stratocumulus, stratus, and altostratus) and

makes the procedure robust against the inclusion of the multicloud. Camera information alone was found

to be not suitable to deal with multicloud situations. Nevertheless, even the use of the ceilometer informa-

tion showed some limitations. Problems are related with cloud types, which present similar morphological

characteristics and, at the same time, similar elevation and geometrical thickness. In these cases, the only

way to increase the classification accuracy is to develop specific features, either spectral or textural ones,

able to account for the differences between cloud types. An example is the“halo”phenomena, which is

present in cirrostratus but not in altostratus, and that the features used were not able to account for.

Regarding this, the use of advanced sky cameras, with enhanced resolution and/or spectral responses,

seems a promising tool. This will be explored in future works, as well as the role of the time window in

classification accuracy.

In future works we aim to apply the here proposed methodology for different areas or patches in the image.

This will allow, eventually, the classification of some of the here considered multicloud images in some spe-

cific cloud-type categories. In addition, alternative approaches to the use of the ceilometer information will

be also explored, for instance, the use of stereographic methods to derived CBH (Kassianov et al., 2005;

Peng et al., 2015) or the use of the cloud speed as proxy for the CBH (Peng et al., 2016; Quesada-Ruiz

et al., 2014).
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