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the potential of MPI policies in large-scale applicatiopsgsenting the following contributions: (i) a
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and (i) more importantly, new analytical conditions fodaxability — termed LP-indexability — that
leverage knowledge on the structure of optimal policiesartipular models, under which the MPI is
computed faster by the adaptive-greedy algorithm prelWaunsroduced by the author under the more
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1. Introduction

The multi-armed restless bandit probleiMARBP) furnishes a powerful modeling framework for a wide
variety of problems where a decision-maker must dynanyiqaiboritize the allocation of limited effort to
multiple projects. The latter are modeledrastless banditsi.e., binary-action (active/work; passive/rest)
semi-Markov decision processes (SMDPs) that can changgeestan while rested. For a range of applica-
tions to problems of admission control, routing and schadusee, e.g., Whittle (1988), Veatch and Wein
(1996), Nifio-Mora (2002, 2003, 2005, 2006b,c,d,e, 2d48)¢al), Raissi-Dehkordi and Baras (2002), Goyal
et al. (2006), and La Scala and Moran (2006).

While the MARBP is generally intractable, Whittle (1988jroduced an index for restless bandits that

extends the celebratdsiittins indexrule, which is optimal in the classic case where passive imremain



frozen. See Gittins (1979). Th&hittle indexhas been further extended in Nifio-Mora (2002, 2006b,d) in
the framework of the unifying and intuitive conceptrafirginal productivity indeXMPI). A growing body

of evidence (cf. the aforementioned papers) shows thaethdtmgpriority-index rulethat engages at each
time a project of largest index is nearly optimal for a variet applications. Further, the MPI characterizes
optimal policies for problems modeling the optimal dynarailocation of work to a project, which have
intrinsic interest.

The prime goal of this paper is to furnish the required atbonic and analytical tools that will allow
researchers to fully realize the potential of such indexcpes in large-scale applications. We will accom-
plish such a goal by drawing on classic parametric lineagmmming (cf. Gass and Saaty (1955); Saaty
and Gass (1954)), extending the approach that, first suggygsKallenberg (1986), was developed in Nifio-
Mora (2006a) to obtain a Gittins-index algorithm of imprdveomplexity, performing(2/3)n® + O(r?)
arithmetic operations for a classiestate bandit.

The required extension is, however, far from straightfodyas the MPI is only defined for the limited
range of so-calleéhdexablebandits, which motivates the quest for useful numerical amalytical meth-
ods to establish indexability. For such a purpose, we haddoted and developed in Nifio-Mora (2001,
2002, 2006d) a set of sufficient conditions for indexahilisrmedPCL-indexabilityas they are based on
satisfaction ofpartial conservation law$PCL), under which a bandit's MPI is computed by afaptive-
greedy algorithm Yet, though such work shows that several models of inteaestPCL-indexable, our
more recent work has revealed limitations to such an apprd@pecifically: (i) one condition was that the
index sequence produced by the aforementioned algorithnobdecreasing, which we have found to be
hard to verify analytically in models with a multi-dimensa state; and, (ii) more importantly, we have
encountered in Niflo-Mora (2007d) a relevant bandit mdui is indexable, yet not PCL-indexable.

This paper overcomes such limitations, presenting theviatg contributions: (i) a complete algorith-
mic characterization of indexability, for which two bloakplementations are given, t®mplete-Pivoting
Indexability (CP1) algorithm and thé&keduced-Pivoting IndexabilitfRPI) algorithm, which, after a com-
mon initialization stage involving the solution of a blodkdar equation system, perform®+O(n?) and
n®+0O(n?) arithmetic operations for amstate bandit, respectively; and (i) more importantlyramalytical
sufficient conditions for indexability — termddP-indexability— that leverage knowledge on the structure
of optimal policies in particular models, under which the IM&®computed faster by the adaptive-greedy
algorithm referred to above, for which a new fast-pivotingch implementation is given that performs —
after the initialization stage —2/3)n® 4 O(n?) operations; such conditions are also shown to be necessary,
in that an indexable bandit is alway®-indexablerelative to a certain family of policies; further, a more

analytically tractable reformulation of the PCL-indeX#biconditions is presented. For examples where



such an approach is successfully deployed, we refer ther¢ad\ifio-Mora (2006e, 2007a,d).

We must emphasize that the algorithms presented hereireaceiloed in a readily-implementalidock-
partitionedform, i.e., based on operations on submatridc#sckg of a base matrix. Such implementations
have been advocated in the scientific-computing literatongartly overcome the exponentially widening
gap between processor speed and memory-access times @amgamary computers, which often render
traditional complexity measures based on operation cqumds predictors of runtime performance. See
Dongarra and Eijkhout (2000) and Baker et al. (2006).

The latter phenomenon is illustrated herein by a computatistudy comparing the runtime perfor-
mance of the proposed algorithms, which reveals thafabepivoting adaptive-greedfFPAG) algorithm
is the fastest, consistently achieving a speedup factobofital3 over the CPI algorithm, which in turn
slightly outperforms the RPI algorithm. Such results reftee influence of differing memory-access pat-
terns in actual runtimes. Thus, the CPI algorithm manigslathole matrices, which results in efficient
handling of contiguous memory blocks, whereas the RPI arlG-&lgorithms reduce operation counts
at the expense of manipulating submatrices with completepe, which results in relatively inefficient
noncontiguous data movement.

Another computational study was conducted to assess thalenee of indexability and PCL-indexability
among randomly generated restless bandits — with dens&ttcemprobability matrices — in a large-scale
simulation study. The study reveals that such prevalermeesxdremely high, growing steeply as the number
of states increases.

The remainder of the paper is organized as follows. Sectimvidws the indexation theory for semi-
Markov restless bandits. Section 3 elucidates the paransinplex tableaux for the problem’s LP for-
mulation. Section 4 develops a simplex-based algorithinézacterization of indexability. Section 5 shows
how to exploit special structure by introducing the new laisL P-indexable bandits, to which the adaptive-
greedy index algorithm introduced in earlier work for PQldéxable bandits is shown to extend, and revises
the earlier definition of the PCL-indexability; further, ava fast-pivoting implementation is given of such
an algorithm. While previous sections focus on the discedimtiterion, Section 6 discusses the extension

to the average criterion. Section 7 reports on the comppumailtistudy’s results.

2. Indexation for Semi-Markov Restless Bandits

This section reviews several key concepts from indexafi@mony to be used throughout the paper, as it
applies to a finite-state semi-Markov restless bandit. Tdleviing discussion highlights the insightful

relation of indexation with bicriteria optimization, whiovas implicit in Niflo-Mora Nifio-Mora (2002,



2006d), focusing on the discounted case. As in the previeasos’'s model, we will find it useful to
partition the state spadeinto the seN{%1} of controllable stateswhere actions differ in some respect, and
the setN{® £ N\ N{®} of uncontrollable statesWe will adopt the convention that the passive action is
taken in the latter states, and denote the numbers of umtiable and controllable states by2 [N{%| >0

andn £ |N{0}| > 1, respectively.
2.1 Semi-Markov Restless Bandits and Discrete-Stage Refaulation

Consider the problem of operating optimally a single dyraamd stochastic project, modelled as a binary-
action (1/active/engage; O/passive/rest)ni-Markov decision proce¢SMDP), whosenatural state Xt)
evolves continually over time> 0 through the finite state spabk The controller observes tlembedded
state X = X(t) at an increasing sequencedsfcision epochstwith to = 0 and limcty  +o0, and takes an
actionay = a(t) € {0,1} that prevails during the ensuirsgagelty,txs1). ProcesseX(t) anda(t) are thus
piecewise constant, right-continuous with left limits.tidas are prescribed througtpalicy T, drawn from
the clasd1 of admissiblepolicies, which base decisions on the history of embeddatgstand actions up
to the present decision epoch, and on the state observed lattér. While the project occupies stai@nd
actiona prevails,rewardsaccrue andvork is expended at rate®®* and Q2 > 0, respectively, witfQ! > 0
andQ! > Q° > 0.

We complete next the model's description, by specifyingdigaamics, and discuss its discrete-stage
reformulation along the lines in (Puterman, 1994, Ch. Mpjich will be used in the subsequent analyses.
If at decision epochy the project occupies sta¥ = i and actionex = a is taken, the joint distribution of
the duratiorty, 1 — tx of the ensuingi,a)-stageand the next embedded stade ; is given by the transition
distribution

Fo(t) EP{t1—tk <t,Xy1=j | X=i,a=a},

having Laplace-Stieltjes transform (LST)
() =E |:1{Xk+1:j}e_a(tk+1—tk) | Xe =i,8 = a] = /o e‘“tdF,‘]-"(t),
for a > 0. The corresponding one-stage transition probabilitteh@embedded process are
Pl EP{Xns1= | X=i,ax=a} :tlim R{(t) = lim ¢ (a).
—00 a\o
FromF(t) we obtain the distribution of the duration of &na)-stage,

F(t) 2P {tis1—tk <t | Xk =i,a=a} = ZwFi?(t),
IG



having LST
@(a)2E [efa(turtk) | X =i, = a] = Zw qﬁ(a)j (1)
IE

and mean
M 2Kt —tk| Xc=i,a =3 :/0 tdRa(t).

In general, the natural-state proceé@) might change state between decision epochs. Its evolution

within an (i,a)-period is characterized by
B (s) 2 P{X(t+95) = j | Xc=i,a = a1 —tk > S},

the probability that statg is occupieds time units after a decision epoch, given that the next epashniot
yet occurred. We can thus represent the expected totaluwfisem work expended and the reward earned

during an(i,a)-stage, respectively, as

[t

FLE . Qe *Wdt | Xe=ia= a} = Zw Q2 /0 iR (s){1—F3(s)te “°ds ()
je

and

tht1 0
as —a(t—t) _ia Al — _ ~a _Fa —as
pee| [VRy e atxsiaca = 3 R [TROL-REle s @

t

In our studies of several applications, we have found thatdften important to partition the state space

N into the set ofuncontrollable states
N2 feN: g =g rP=r! andR)(t) =R}(t), j e N},

where both actions have identical consequences, and tramieg setN{®1 £ N\ N{% of controllable
states The notationN{% reflects the convention we adopt whereby the passive aetiorD is taken at
uncontrollable states. We will denote by2 |[N{%3}| andm £ |N{%| the numbers of controllable and of
uncontrollable states, respectively, and assumenrthatl. As we will see, the indices of concern in this
paper, which are functions of the project’s state, are oefinéd for controllable states.

In the sequel we will focus on the discounted criterion basetheasures (4)—(5), deferring to Section

6 discussion of the long-run average criterion.

2.2 Restless Bandit Indexation

We consider two measures to evaluate a paticyelative to an initial stateand a discount rate > 0: the

reward measure
00 t _
{7 L En [ /0 Rie “tdt} = E

5 fite“‘k] : (@)

k=0



giving the expected total discounted value of rewards efared thework measure

27| [ Qe | g

> qikke‘“tk] , (5)
k=0

giving the expected total discounted amount of work expeéndiotice that the right-hand side’s identities
in (4)—(5) draw on the discrete-stage reformulation disedsabove.
We will find it convenient to use the corresponding averagedsures obtained when the initial state

is drawn from an arbitrary distribution with positive prdtility massp; > 0 fori € N:
fr= ZV pfT and g7= ZW pig.
i€ i€
Introducing a wage rate at which work is paid for, we will address thwewage problem

ryeahxf T_vg", (6)

which is to find an admissible project-operating policy nmaizing the value of rewards earned minus labor
costs incurred, and whetrewill play the role of a parameter to be varied oer

The theory of finite-state and -action SMDPs ensures existehan optimal policy for (6) that is: (i)
deterministic stationary; and (ii) independent of thei@histate distribution. We represent each such a policy
by its active set 3= N{%1}| or subset of controllable states where the policy pressrib engage the project
at a decision epoch, and will refer to it as theactive policy

It appears reasonable to expect that, at least in some maogtimal active sets should expand mono-
tonically from 0 toN{%1} as the wages decreases from- to —., as a function of the state space’s size
Such an intuitive property was introduced by Whittle (198®&)o termed iindexability, for Markovian rest-
less bandits with state-independent work rafes: a. His original definition readily extends to the present
setting.

In dynamic programmingDP) terms, we may formulate the indexability property dfofes. Letting
3 (v) be the optimal value function startingidor SMDP (6), the Bellman equations are

95 (v) = aé‘?&i‘}r?_ vgi + j; @I (v), ieN, (7)

where we writegfi = ¢ (a). In words, the project is indexable if, for each controltabtate, it is optimal
to engage the project afor v small enough; namely, if there exists imdexv;*, fori € N{%} such that it

is optimal to engage the project in staié v < v; or, in formulas,

87 (v)=rt —vg' + van}ﬁj*(\/) = vy (8)
IE



Yet, in Nifio-Mora (2006d) we have formulated the indexi&piproperty in an alternative — though
equivalent — form yielding complementary insights, ase®ed next. Let;, ... ,in € N{®1 be an ordering

of then controllable states, such that thested active-set family

Fo2{%,S1,...,S} 9)
whereS = 0 andS = {iy, ..., ik} for 1 < k < n, satisfies the work-regularity condition
g1 <g% 1<k<n. (10)

Consider theéndex v, fori € N{®1}, defined by

‘A FS— fS

ik—W, 1§k§n (11)

Definition 2.1 (Indexability; MPI)  We say that the bandit indexableif there exists a nested active-set

family .%( as above such that:

(i) indexv; is nonincreasing ifk, i.e.,v; > v; for1<k<n;and

(i) for v-wage problem (6), the 0-active policy is optimal ¥ff< v;’, the N{%1}active policy is optimal

iff v > v, and theS-active policy is optimal fov-wage problem (6) ify € [v;;

[PEER)

v;;],forlg k<n.

We then say that the project.i8y-indexable and thatv* is its marginal productivity indeXMPI).

Note: as already noted in nm (give the reference), the optiadae function of an indexable bandit is
given by

S (v) = gaxfis— VoS = max f%_vg* ieN,veR
) <K<n

We introduced the term MPI in Nifio-Mora (2006d), as it wasweh there, and earlier in Nifio-Mora
(2002), that indew;" measures the marginal value, or productivity, of work ahestatei. The first paper
gave a characterization of indexability in terms of the dtite of theachievable work-reward performance
region

HE {(J"f"): men},

which is spanned by work-reward performance points undensgible policies. Such a region is tbenvex
polygongiven as theconvex hullof the finite set of pointgg®, fS), for all active setsSC N. Specifically,

considering theipper boundanof H, given by

OH 2 {(g,f) e H: "< f forany e M with g"= g},



it is shown in Nifio-Mora (2006d, Th. 3.1) that the projecindexable iff there is a nested active-set family
Zp as above that determines such an upper boundary.

Notice that the choice of/y need not be unique, and that the MPI does not depend on suadicz ch
Consider, e.g., a discrete-time nonrestless (i.e., pitie 1) project withg? = aandr? = 0, so thatf" = 0
for any policy . Then,eachof the n! orderingsiy,...,iy of then project states yields a nested famifg

relative to which the project is indexable — with M1 = 0.

2.3 Two lllustrative Examples

To help the reader unfamiliar with the above concepts topgtiasm, we discuss next two illustrave exam-
ples, corresponding to discrete-time Markovian bandith sfate spacBl = {1,2,3} and one-period work
expendituresf = a — henceN{®1} = N. For each instance, a plot is displayed of the achievablé-wor
reward performance regidii, where pointsg®, fS) are labelled by their active se®& We have taken the
initial-state distribution to be uniform ovéx.

Figure 1 displays the achievable work-reward performamggon for the instance with discrete-time

discount facto3 = 0.9, one-period active reward and one-period transition gindities

0.9016 0.2841 04827 02332 0.1810 04801 03389
rl = 0.10949 ,P'= |0.5131 00212 04657| ,P°= |0.2676 02646 04678|,
0.01055 0.4612 00081 05307 0.5304 02843 01853

and one-period passive rewarti= 0. The plot shows that this is an indexable instance, reldtivihe
nested active-set family%, = {0,{1},{1,2},{1,2,3}}, which determines the region’s upper boundary.
The Whittle index/MPI values of states 1, 2 and 3 are giverhleysuccessive trade-off vs. work rates/slopes

in such an upper boundary:

{1 _ f0 . 2l . fi2s {1y
1 = - —_— J—

gb g~ 2T g g 3T gizd gz
Figure 2 displays the achievable work-reward performarg@n for the instance witf = 0.9,

0.1903 01863 06234| ,P°= |0.5676 04191 00133|,

0.7796 00903 01301 0.1902 04156 03942
Pl=
0.2901 03901 03198 0.0191 01097 08712

and
r!=[0.9631 07963 01057 ",r%=[0.458 05308 06873 .

The plot shows that this is a honindexable instance, sirare ik no nested active-set family that determines

the region’s upper boundary.



1,2} (1,2,3}

Figure 1: Indexable Instance: Achievable Work-Reward &terince Region.

g7T

Figure 2: Nonindexable Instance: Achievable Work-Rewatfd®mance Region.



2.4 Marginal Work, Reward and Productivity Measures

The analyses and algorithms below will use tharginal measurediscussed next. For an actiare {0,1}
and an active se8 C N0, denote by(a,S) the policy that takes actioa in the initial stage, and adopts
the S-active policyhaving active se§) thereafter. Now, for a staieand an active se&, define themarginal
work measurdoy

ws 2 gi<1.s> _ 9i<0’s>> (12)
i.e., as the marginal increase in work expended that refolts taking initially the active instead of the
passive action at stategiven that theS-active policy is adopted thereafter.

Further, define thenarginal reward measurby

ds2 9 _ 09 (13)

| | )

i.e., as the corresponding marginal increase in value oéamgsvearned. Notice that marginal work and

reward measures vanish at uncontrollable states:
ww=d5=0, ieN, (14)
Finally, forwiS = 0, define theamarginal productivity measurey

S
Vo2 3—;3 (15)

2.5 Reduction to the No Uncontrollable States Case

While we have found the distinction between controllabld ancontrollable states to be relevant in some
applications of restless bandits, it would considerablgnplicate the notation in the analyses below. We
thus show next that it suffices to restrict attention to bisndith no uncontrollable states, as these can be
eliminated through suitable transformations.

Thus, consider a restless bandit as above, with contrellabtl uncontrollable state spad¢€!} and
N{%, respectively. For a given active set- N{®}, we can evaluate the work measgieby solving the

following linear equation system, which we decompose irckdoas

S 1 1 ~S 1 S 1 S
03 =0gs+ PsP3+ ¢3N{0‘1}\59N{o,1}\s+ cDSN{O} ENTO!
S 0 1 S 0 S 1 S
ONtons = Anons T q)N{o.l}\ssgS‘i‘ CDN{O‘l}\S’N{O,l}\SgN{O‘l}\S+ CDN{O,l}\SN{O} I (16)

S _ 40 0 S 0 S 0 S
Onior = ANty + q)N{O},sgS"" q)N{O},N{O,l}\sgN{OJ}\s"i_ (DN{O}N{O} Onitor s

10



writing, e.g.,d)éN{o‘l}\S: (@j)ics jenoins @ndge = (gP)ics. Now, solving in the last equation block above

for g3 ¢, and defining

~a A a a 0 -1 a
Onioy = Ay T Proyno (l N{OFN{O.L} — CDN{O}N{O}) Ao

17)
q)N{O,l}N{O,l} £ q)E{O,I}N{O,l} + q)a{o,l}N{O} (l N{O}N{O1} — q’a{O}N{o}) q)ﬂ{o}N{o.lp
wherel is the identity matrix, we can reformulate (16) as
S_ gl drSt o S
9s = Os+ PsPs+ PsnietnsOyoin s (18)
g _ =0 I @° Sy N S
nioths = Antoan s T P\ ss9S T Prioth snioth sOypean s
Similarly, we can evaluate the reward meastﬁ'eby solving the linear equation system
sS_ .1 1S, ml s 1 s
f§=rg+ Psds+ Pgo1n sfnioa s T Penior o
s 0 0 S| ol s 0 s
fRoa s = Mnoan s T Priosn g S+ Prton sioan sfnioan s T Prioa gior o (19)
s 0 0 S, @0 s 0 s
fRior = Iy + P sfS+ P nioan o s T P o o
Proceeding as above, and defining
0 -1
F%{0,1} £ r%{o,l} + q)%{o.l}N{O} (l N{O}N{O.1} — (DN{O}N{O}) r%{o,u (20)
we can reformulate (19) as
1S =T+ Ped S+ Pgiom oS
=I5+ Psds+ Pgpioins N(OINS 1)

~0 ~1
S =0 S S
fN{O’l}\S = I’N{O,l}\s—l— ¢N{0~1}\S.st+ (DN{O"]'}\S.N{O’l}\SfN{O,l}\S'

From the above discussion, it is readily seen how to elimrinaicontrollable states from the analyses:
it suffices to consider a modified discrete-stage banditrigaetate spac&{®1} and work, reward and
transition parameters defined by the transformations (Ad)20).

In the sequel we will assume that such transformations haea lcarried out, if required, focusing

attention on the normalized case where all states are diamim

3. Parametric LP Formulation and Simplex Tableau

We set out in this section to formulate thewage problem (6) as a parametric LP problem, and to elueidat

the structure of its simplex tableaux.

3.1 Bellman Equations and Parametric LP Formulation

While the LP formulation of concern is well-known in SMDP tig (see, e.g., Puterman (1994)), for ease

of reference we outline next its derivation, starting frdra Bellman equations for (6) in (7). The primal LP

11



formulation of such DP equations is

9*(v)=min 'y p;J;
J_; ivi
subject to

Xia:&i_z\‘(n?gjzria_vqﬁ (i7a)€NX{O71}7
jE

wherep = (p;)jen represents the initial-state probability vector. It is Mkelown that, ifp > 0 component-
wise, such an LP has a unique solution that solves the DPiegsat

Our analyses will be based instead on the dual standard{f&xm

' (v)=max 5  (rf-vaf)$

(j,@eNx{0,1}
subject to
9i: » - %m?ﬁ}z pj, JEN
ac{0,1} i€

x"j"z 0, (j,a)eNx{0,1}.
We will work with the latter using matrix notation, writing
9*(v) =max(r® —vg?)x® + (rt —vgh)x!
subject to

[0 -0t [

x%,x* >0,

(22)
s

wherex® = (x§) is a column vectorr® = (r¥) andg® = (qf) are row vectors, and is the transposition
operator .
Dual variablesc]?‘ correspond to the bandittiscounted state-action occupancy measuFes an admis-

sible policym, initial statei, actiona and statd, let

X" = Ef kzo Lat)=axw)=i}€ ™
be the expected total discounted numbe( jof)-stages under policyr, starting ati. Thus, under initial
state distributiorp, dual variabled corresponds to occupancy measité £ 5; pix;". Notice that reward

and work measures are linear functions of occupanciesingvi-™ = (x"),

T — Z I’?X?'n: rOXOJT_H,leJT
(j,@)€{0,1} xN
(23)
g = 5 AT =axTegh
(j,@€{0,1}xN

12



3.2 Basic Feasible Solutions and Reduced Costs

We set out next to analyze parametric LP (22), starting witlelaicidation of itshasic feasible solutions
(BFS). Clearly, these correspond to active &&N{%1} and hence we will refer to th8-active BFSFor

each such aB, we decompose the above vectors and matrices as

X3 ps} { PSs lss Oss
Xa = N ) = ) (D - oS ) | = )
L‘asj P L’SC &s q’scsc Oss Iss
where we writeS§ 2 N\ S, and introduce the matrices
S A ‘Dss q)sN\s; oS 2 Pds Plg
CD CD ’ CDécS Cbécsc ’
B2 (I —ch) , NS2(1-0%)", HS2(BS)™!, AS2HSNS

(24)

Notice thatdS is the transition transform matrix under tBective policy. FurtherBSis thebasis matrixn

LP (22) for theS-active BFS, whoseasic variablesare

1
ik
X

andNS is the matrix of non-basic columns in LP (22), whose assediabn-basic variablesre

0
[X]-S} .
Xg

We thus rearrange the constraints in LP (22), decomposim thto basic and non-basic parts, as

ool el e

We next draw on the above to evaluate performance measudes thme S-active policy/BFS. The
notationxj-"‘S below refers to occupancy measué" under theS-active policy, i.e., form =S Further,

0° = (6 jen, F5 = (f2)jen, WS = (WD) ey @anddS = (dF) jen are taken to beow vectors.

Lemma 3.1
OS XLS
SC s

(b) = [0} a]HS
() 5=[rf r&]Hs
(d) w§ -wg]=[ag a&]AS-[dd agl.

(€) [0S —d§] =[rs r§]AS-[r§ rg].

13



Proof. (a) Set to zero non-basic variable@:S =0 andxé@s = 0. Calculate basic variables from

xi x5S
o] o [] -
s

(b) Use part (a) taking = e; (the unit coordinate vector having the one in the positiostafe j) to

represent work measures as

1S
X )
gy = [as 93] [Xcis] = [0 a&|H% = g¢°=[a ag|H"
(c) Proceed as in part (b) to represent reward measures as

LS
f5=[ry r%] lxas =[r§ r&H% == [r§ r&]H"
g

(d) Represent marginal work measures (cf. (12)) as
wg=g3-ad-g3(®y)’ and w§=qs+03(Pky) -GS (25)
Reformulate now the identities in (25), using part (b), as
w8 —w§]=g°N°—[a3 5] =[a5 a$]HN°—[0§ o] =[0s d]A°-[a3 ag].
(e) This part follows along the lines of part (d). O

The next result characterizes the marginal work and rewagdsnres in (12)—(13) asduced costs
of LP problems. It further gives the reduced costs of pardmeP (22), and uses such results to obtain

corresponding representations of the LPs objectives mgef such reduced costs.

Lemma 3.2

(a) The reduced costs for non-basic variables in the S-activé BF LP

0]
maX{q°x0+q1x1: (=097 (1-oY)] m:p, xo,xlzo}

are given in the left-hand side of LemiBd.(d) The LP’s objective can thus be expressed as

P =g— S w+ T wixk. (26)
i J; 17 J.e; 17

(j,@)eNx{0,1}

(b) The reduced costs for non-basic variables in the S-activé BF LP

0
max{r°x°+r1x1: [(l —o9)" (I _¢1)T} Kl] —=p, xo,xlzo}

are given in the left-hand side of LemiBd.(e) The LP’s objective can thus be expressed as

e =f5— 5 dX+ § dx (27)
(La)eNzx{o.l} Y J; Y jg& Y

14



(c) The reduced costs for non-basic variables in the S-active BF LP(22) are given by
[d3—vwg —dS+vwg]. (28)
Therefore, the LP’s objective can be represented as

(rd—ved)d = fS—vgs— Zs(djs_ vw)x) -+ -Esc(djs_ VW)X]. (29)
IE i€

(j,a)eNx{0,1}

Proof. The results follow directly from the standard represéotadf reduced costs in LP theory, as given
by Lemma 3.1(d,e), along with the standard representafitmed_P’s objective in terms of the current BFS’

value and reduced costs. We have further used (14). O

The next result, which follows directly from Lemma 3.2, givepresentations of measugs ™" and
objective f"— vg™ relative to theS-active policy. We first derived suatlecompositionidentities in Nifio-

Mora (2001, 2002) through ad hoc algebraic arguments.
Lemma 3.3 Under any policyrt € IT:
@ g"=g°— T WX+ 5w
J; 7 J_; %
(b) fT=fS— 5 ddO"+ § dix"
J; I7 jgsc 7
(c) fT—vg"= fS—vg°— Zﬁ(djs— vwo)XT 4 _;(djs— vw)x;
J€ J€

The following result, first established in Niflo-Mora (20Q02larifies the relation between work and

reward measures and their marginal counterparts. We velltuater to prove Lemma 4.1.
Lemma 3.4

(a) For j e &, g>1i} :gs+szx}&{i} and 10} — fs+djslem{j}_

(b) Forje S, P\l = gs_wj%(}’s\{i} and S\ = S_ djsx}&“}.

Proof. To obtain (a) (resp. (b)) use= SU{j} (resp.t= S\ {j}) in Lemma 3.3(a, b). O
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Table 1: Parametric Simplex Tableau ®Active BFS, Ready for Pivoting OﬂJSJ

T T
S
Xs | ASs AS Adey)

S
X Afs aj] Ajs\(i}
0 S S
Xg\() | As (iLs As\iri As (LS\)
s M WS\

Table 2: Tableau foBU { ] }-Active BFS, Obtained by Pivoting cmfJ

oO\T 1 T
(x2) X (Xs {Jg) .
S AS S
o as. AsAls _AS; as__BSAe
s SST T 8 as SS\{i} a>
1) 1) ])
S S
v Als 1 ATs\(i
! aij ajSj as
S S S S S
0 as Bl A s Asvnifisw
F\() | AS\Lirs a a5 F\(}1.5\ ) a
S i AS j S i AS
WS+ —5Ajs = “Wa\ (1 T s AT\ ()
‘dig ?# q
S i AS j S i AS
ds+a—jsjAJs ) —dSC\{j}Jfa—jsjAj,SC\{j}

3.3 Parametric Simplex Tableau and Pivoting

We can now formulate the parametric simplex tableau undeB#ctive BFS, as shown in Table 1. The
tableau is indexed by basic variabldsandxZ; in rows, and by nonbasic variablggandx; in columns, and
includes two rows of reduced costs for non-basic variallescludes neither the conventional right-hand
side nor the objective value, as they are not needed for apopas.

Notice that the tableau is shown in a form that highlightssitsicture as it is ready fquivoting on
elementay;, with j € S°. Namely, for taking variablez? out of the basis, and puttin)tg;l into the basis, which
corresponds to moving from th&active to theSU {] }-active BFS. After such a pivot step is carried out,

one obtains the updated tableau shown in Table 2.
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3.4 Computing the Initial Tableau

We discuss next how to compute the initial tableau, cormedimg to the 0-active BFS, in a numerically-
stable form that applies both to the discounted criterionasfcern heretofore, and to the long-run average
criterion to be addressed in Section 6 below. The time-geetableaux arise as limits of the discounted
tableaux as the discount ratevanishes.

Notice that (cf. (24))

B = (1-9%", N°=(1—oY, H®=(B%)', A°—HONC. (30)
Hence, the direct approach to compaewould be to solve the linear equation system
(AT (1-0%) = (1 - o). (31)
Yet, this has a major drawback: as the discount tateanishes, matrices— ®? become increasingly ill-
conditioned, being singular far = 0 — as they converge tio— P, whereP? £ (P5)-
To avoid such a difficulty, we will use the identity — ®*)1 = 1 — ¢?, which follows from (1). From
this and (30) we obtain
(A9 (1-¢") =1-¢"
The latter identity has the advantage that it yields a cpmeding identity in the limitr \, 0. Thus, denoting

by &2 the duration of arfi, a)-stage (cf. Section 2.1), and using the McLaurin expansion
@ =E {e‘“fia} =1—am?+0(a?), asa \,0,

we obtain the limiting identity
(A9 "m?=m?,
wheren? is the mean duration of &fi, a)-stage anan = (mf)icn.
We are thus led to the following numerically-stable apphotccompute the initial tableau, far > 0
— where the casa = 0 corresponds to the limiting tableau obtainedragnishes. Letting
e {(l—c,qa)/or fa>0
m? if a =0,
andm? = (Mf)ien, choose an arbitrary stafé € N, and solve theblock linear systenfcf. Baker et al.
(2006))

— T ~ T
[' NNV PR ) mo} A? = [' NNV Py MY (32)
to obtainA®. Then, compute the initial reduced costs from (30) and Lerrhé, e):
Wﬂ) — ql _ qOAO
(33)

d®=r1_rOA°
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4. Simplex-Based Characterization of Indexability

This section draws on the above results, and on the classimgéric-objective LP theory in Gass and Saaty
(1955); Saaty and Gass (1954), adapted to the presenigsettidevelop a simplex-based characterization

of indexability. In what follows SC N denotes an arbitrary active set.

4.1 Optimality Conditions for a BFS

We start by addressing the following question: For whictgeaaf values of the wage is theS-active BFS
optimal for parametric LP (22)? Or, equivalently: For whielmge of values of the wageis the S-active
policy optimal forv-wage problem (6)? Though the answer is well-known in gdriesen parametric LP
theory to be given by the so-calletiaracteristic intervabf such a BFS, we next elucidate it in the present
context.

Since the signs of marginal work and reward measures will @leey role in the answer, we next clarify

the meaning of such signs in terms of work and reward measures

Lemma 4.1

(@) Forjes:
vvjs>0<:>gj${”’>gjS and o§5>0<:>ff““}>fj5
st<0<:>ngJ{j}<g? and 0F<O<:>fjs“{j}<fjs
W?:O@g?{”:gjs and qG:0<:>ijJ{j}:ij.

(b) Forj €S

wf‘>0<:>gf’\{j}<gjs and o§5>0<:>fjs\{j}<fjs
W?<0<:>gjs\{j}>g? and cf<0<:>fjs\{j}>fj5

\/vjs:0<:>gjs\{j} =g° and F=0<«= fjs\{j} = f7.

Proof. Part (a) follows from Lemma 3.4(a) takimg= j and noting thakjlj‘:SJ{j}

Part (b) follows from Lemma 3.4(b) takirig= j and noting thas®;>'/} > 0. O

> 0.

Thus, e.g., the conditiowjs > 0 for somej € S means that expanding the active set fréo SU {j}
increases the work expended startingjatSimilarly, the conditionw]s > 0 for somej € S means that

shrinking the active set frofSto S\ {j} decreases the work expended.
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We next use the characterization of reduced costs in Lemg{a)3o give a necessary and sufficient
optimality test for theSactive BFS in parametric LP (22), and hence for 8active policy inv-wage
problem (6).

In the following result we assume that> 0 in LP (22). Note that its part (a) gives the characteristic or

optimality interval for theS-active BFS, having lower and upper breakpoints

Sa max v min vS (34)

1%
o jeS wWP>0 or jeSWP<0 jeSw>0 or jeS wP<0 I

respectively, while part (b) refers to concepts discussdidesend of Section 2.2. We further write

ds2 d> and d°2 min d?. (35)

max
jeswy=0
Here and below we adopt the convention that the maximum .(respimum) over an empty set has the

value —co (resp.+).
Lemma4.2
(a) The S-active BFS is optimal for L[R22) iff
vS<v <VS, (36)

and

dS<o<d”. (37)

Further, it is the unique optimal solution iff the inequadg in(36)+37) hold strictly.

(b) The deterministic stationary policies determining the erpboundarya_H of the achievable work-

reward performance regioHl are those with active setsGSN satisfying(37) and

vS < VS, (38)

Proof. (a) The “if” part follows from the LP sufficient optimalityondition given by nonnegativity of
reduced costs for non-basic variables. The inequalitig86) follow by reformulating such a condition,
using Lemma 3.2(c) and (14), in terms of the marginal prdulin;clmeasuresvjS in (15).

The “only if” part follows by considering LP (22). From thedter's MDP interpretation and the assump-
tion p > O it immediately follows that such an LP indegeneratei.e., for any BFS, basic variables take
positive values, and hence the LP optimality condition s®alecessary.

The uniqueness result follows by invoking the result thatafnondegenerate LP, an optimal BFS is the

unique optimal solution iff the reduced costs of its nonibaariables are positive.
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(b) The stationary deterministic policies determining tipper boundary?H are those that are optimal
for the v-wage problem, hence for LP (22), for some wage vailgeR. Therefore, by part (a), such sets are

precisely those satisfying (37)—(38). O
4.2 Indexability Characterization and the CPI Algorithm

We next proceed to put together the above elements to giveplete characterization of indexability, both
in combinatorial and algorithmic terms. We will refer to tBemplete-Pivoting IndexabilityCP1) algorithm
described in Table 3. To avoid an unwieldy notation, we haseduthere a more algorithm-like notation,
replacing superscript sets by numeric superscripts, w@rging ai(jk) instead ofaﬁ‘. The algorithm seeks to
construct a state orderirig, . .., i, relative to which the bandit is indexable (cf. Definition R.Wwith MPI
valuesy; and active set§; as in Section 2.2, in which case the Boolean variable INDEXEBeturns the
valuetrue. It adapts to the present setting th@rametric-objective simplex algorithof Gass and Saaty
(1955), letting the wage decrease fromroo to —co, and draws on Lemma 4.2 to test for the structure of
successive optimal bases that ensures indexability. Feingmdrom one basis to the next, the algorithm
updates the tableau performing a complete simplex pivpt(ste Table 2), hence its name.

The following result gives a complete, combinatorial cltegzation of indexability in terms of prop-

erties of active setS.

Theorem 4.3 The bandit is indexable ifft< 0 < a and, for any active set S N satisfying(37)«38), it

holds that

N 0

V' =—0, V =+Ho
s S :
V>= max VP> -o, IifS#N
o jeS: w>0 ! 7 (39)
V= min vP<+4w, fS#£0.
jes: w>0

Proof. Consider the “if” part. Under the corresponding assunmstidhe reader can easily verify that, by
construction, the CPI algorithm will terminate msteps with Boolean variable INDEXABLE returning
the valuetrue. The algorithm hence constructs a state ordering ., i relative to which the bandit is
indexable, as it satisfies the requirements in Definition 2.1

Consider now the “only if” part. Suppose thus that the baisditdexable, and let @ Sc N be an active
set satisfying (37)—(38). Hence, by Lemma 4.2, $wctive policy is optimal fov-wage problem (6) iffv
lies in the intervalv®, VS]. If we let the wagev drop at or below the lower breakpoin®, by indexability it
must be possible to pivot to a nepandedctive set of the fornsu {j}, for somej € &, which is optimal
for an adjacent interval of values. Using Lemma 3.2(c), such a requirement is readiinditated as the

second line in (39).
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Table 3: The Complete-Pivoting Indexability (CPI) Algdwit.

T

— T
solve ['N,N\{J’*}_q’a,r\l\{j*} mﬂ} A = [INvN\{j*}_qJJI\-I.N\{j*} m?

(0) 1 0
[W }:: [‘H —[‘M A©:; S:=0; k:=1; INDEXABLE := true

if maxw( 0 <O0or mlnw( ) <0or max d( 0 > 0, INDEXABLE := false
jeN jeN jeN: w<°) -0

while INDEXABLE and k < ndo

vj( V. _d /W Jfor jeS_,w wh 1)>OandjeSk_l,ng_l)<0

pick ix e argmax vj(kfl); Vi = vi(kkfl); S =S Uik}
je$717w§k’1)>0

if max vj(kfl)

jeSK,17w§k’1)<0

> v, INDEXABLE := false

I?

elseif k<n
. —)a k=1, (k—1) . k-1

plk-1) —1/a1k|k - y(k=1) .= plk 1)A'(\“k ), 2(k-1) ':AI(kN )
(k) (k) (k=1) (k=1) (k—1)

w —W w —W wy!
S . S

d% —d(k] ~ {d(kll) d(§K 1>] +p [ {A|kN +€‘|Tk}
S e Sc1 S1 ik

AK = A=) _ yk=1)7(k-1)
K - k 1) 7 (k- k -
Al = —y* D Al = plk )((k )>’ 31(k> ply e
A - AD) k— {AN,k K HAG Ve e Al Y a6}

if maxw( K <0, INDEXABLE := false

IS
end{if }
ki=k+1
end { while }
if k=n+1and {rjneawagn) <O0or rjréiﬂwgm < 0}, INDEXABLE := false
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Similarly, if we let the wagev rise at or above the upper breakpoirt, by indexability it must be
possible to pivot to a newhrinkedactive set of the forns\ {j}, for somej € S which would be optimal
for an adjacent interval of values. Using Lemma 3.2(c), such a requirement is formdilasethe third line
in (39).

The relations for the cas&= 0 andS= N follow along similar lines, as indexability implies thateth

D-active (respN-active) BFS must be optimal far large (resp. small) enough. O

Theorem 4.3 immediately yields the following algorithmitagacterization of indexability.

Proposition 4.4 The bandit is indexable iff algorithm CPI terminates in mst&vithiINDEXABLE = true.
Then, the computed index is the bandit's MPI, and the following relations hold

max v =y = v, (40)
JEN: W >0
Vi = vif” = min ij”, (42)
JEN: Wf“>0

and, for2<k<n,

S1 S x xSl ; S
max Vi =y T =y Sy == mlréH Vi (42)

ISR W?‘*1>0 j€Sc1:w >0
We next assess the computational complexity of the CPI itgos (while) loop, i.e., excluding the
initialization stage. We use the term “arithmetic openagioto include both additions/subtractions and

multiplications/divisions.

Proposition 4.5 The CPI algorithm’s loop performs at ma&t® + O(n?) arithmetic operations.

Proof. Observation of Table 3 shows that the more expensive aperat each stef is the matrix update
AR = A1) _ plk-Dy(k-1)7z(k-1) "which takes 8 arithmetic operations. Carrying ontsteps yields the

stated count. O

4.3 Reduced Tableaux and the RPI Algorithm

We seek next to eliminate unnecessary operations from th@lg®ithm. The key observation is that the
tableau’s rows corresponding to basic variabieare not used to update reduced costs in the CPI algorithm.
Hence, it suffices to store and update omguced tableauxsuch as that shown in Table 4, which is set up
for pivoting on elemenajsj , for j € S. Observation of Table 2 shows that a reduced tableau candzag
without using the deleted rows. Simplifying the CPI aldumit accordingly yields th&®educed-Pivoting
Indexability (RP1) algorithm in Table 5.

As shown next, the RPI improves the operation count of theafirithm by a factor of two.
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Table 4: Reduced Tableau f6fActive BFS, Ready for Pivoting OHS

T T

(x%) xi (x% {j})

OX? As & Al
XS\ (j) ASC\{J}S As\jni As (LA}
ws W W\ (jy

d3 —d® ~d3 )

Table 5: The Reduced-Pivoting Indexability (RPI1) Algonth

T

0 - T
solve [IN’N\{J-*}—GJNM{J-*} mf\ﬂ A0 — [INaN\{j*}_qJJI\.LN\{j*} ml

0 1 0
m/(o)} = [?1} - [?O} A©); $:=0; k:=1; INDEXABLE :=true

if maxwg 0 <O0or mlnwf ) <0or max dJ(O) > 0, INDEXABLE := false
IEN JeN jeN: w) =0

while INDEXABLE andk < ndo

vj(k_l) = dj(k_l)/wgk_”, for j € ﬁfl,wgk_l) >0and j€ Sk,l,wﬁk_l) <0

pick ix € argmax vj(k_l); v* ._v ; Soi= S Uik}

Ik
je$7l7w§k’1)>0

it max  v“Y> v, INDEXABLE :=false
je&,l,wﬁk’lko
elseif k<n
_ k—1). k—1 1. k—1
1) :1/ai(kik )’ (k=1) .= plk-DA (SEk ), 2(k=1) ':Ai(kN )
(k) (k) (k=1) (k= 1) (k—1)
W —-W w —-W W
S . & k—
S s S(—l Sﬁ |l<

K . k-1 - —1). K . -
A(SE)N = A%N ) _y(k=D)7(k-1). A(x?k — _ylD)

if maxw( kK < 0, INDEXABLE := false

jex
end{if }
ki=k+1
end { while }
if k=n+1and {rjneawagn) <O0or rjréiﬂwgm < 0}, INDEXABLE := false
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Proposition 4.6 The RPI algorithm’s loop performs at most-a O(n?) arithmetic operations.

Proof. The loop’s operation count is dominated by the matrix upekg%\, = Aggl) —yk=Dz(k-1) shown
in Table 5, which takes (2 — k)n arithmetic operations. Adding up such counts dver1l,...,nyields the

result. O

5. Exploiting Special Structure

We proceed to discuss how one can leverage structural kdgelen a particular bandit model to obtain
substantially simpler indexability conditions and a fastelex algorithm. While we had addressed such an
issue in Nifio-Mora (2001, 2002, 2006d), by introducing degloying the class of PCL-indexable bandits,
the approach and results herein are both new, as they drdvwe above simplex-based analyses, and of wider
applicability. In fact, we were motivated to develop themthg difficulties encountered when trying to
deploy the PCL-indexability approach in the analysis okesavcomplex bandit models. The new approach
below was successful in such cases, yielding sound indéyadialyses and new index algorithms in Nifio-

Mora (2006e, 2007a,d).

5.1 LP(.%)-Indexable Bandits and the FPAG(#) Index Algorithm

When investigating a particular restless bandit model,isoencerned with identifying analytically a range
of model parameters for which the model is indexable. Sityilas in the earlier work mentioned, our
approach to establish a priori indexability of a bandit mMasl®ased on identifying the structure of optimal
active sets fow-wage problem (6), in the form of aactive-set family# C 2N that containsan optimal
active setSe .7 for every wage valu® € R. Note that such ar¥ need not be a nested family, but should
contain the nested familie%, discussed in Section 2.2 that can arise as the model’s pteesrae varied
over the range of concern.

Hence,(N,.%#) is aset systenon ground set Nhaving.# as its family offeasible sets Algorithmic
considerations lead us to impose strong structural pregeon(N,.% ), which refer to theouterandinner

boundariesof an active seS < .7, defined respectively by
0¥Ss2 ljes:su{jle #} and RS2 {jes: S\{j}c7}. (43)
We will further say that two active se®&andSuU {j}, with j € §°, areadjacent
Definition 5.1 We say thatN,.7#) is amonotonically connected set systém
(i) O,N e .7;
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Table 6: Minimal Tableau foB-Active BFS.

S
Xg | Ags

(ii) for every SS € .7 with SC S there existj € d%"'Sand j’ € 9""S such thatSc SU{j} C S and
SCS\{j}cS;and

(i) forany S S € .7 with S# S, it holds thatSUS € .Z.

While various types of set system have been previously figasd, e.g. matroids or greedoids, to the
best of our knowledge the concept of monotonically conriesét system in Definition 5.1 is first introduced
herein. The term “monotonically connected” is motivatedthy fact that, in such a set system, one can
always connect two feasible sefs— S by a monotone increasing sequerf§eC --- C S, of adjacent
sets in.%, with § = S S, = S. Further, one can also connect two distinct feasible SetsS through
two successive monotone sequences of adjacent sefs the first of which is monotone increasing and

connectsSto SU S, while the second is monotone decreasing and coni®c&to S.
Assumption 5.2 (N,.#) is a monotonically connected set system

We will further refer to theFast-Pivoting Adaptive-Greedyndex algorithm FPAG%) described in
Table 8. This is a simplex-based implementation of the agaygtreedy index algorithm for PCL-indexable
bandits introduced in Nifilo-Mora (2001, 2002), whose saspextend herein to the present broader setting.
The FPAG.%) algorithm is obtained by simplifying the CPI and RPI algomiis above by (i) storing and
updating onlyminimal tableauxas shown in Table 6; and (ii) eliminating the indexabilitgttat each step.
Note that the minimal tableau for tt8J { j }-active BFS is readily computed from that for tBactive BFS
in Table 6, as shown in Table 7.

The results in Section 4 motivate us to introduce the follm\lass of bandits, which we terfP (.7 )-

indexableas their are based on LP analyses.

Definition 5.3 (LP(.#)-indexability) We say that a bandit isP(.%)-indexableif:
(i) W2, wN >0forieN,andd®<0<d";

(ii) for each active sebe .7, w® > 0 fori € 91SUIM'S, and
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Table 7: Minimal Tableau foBU { j }-Active BFS, Obtained by Pivoting cmf]

(x5 {L})T
Ag\ (A

0 S
Xs\(jy | As\rey a5

5
1\{}

S i AS
W\ (jy — a—?Asc\{j},j

S i aS
dg\(j) ~ 5 ASi i
1]

Table 8: The Fast-Pivoting Adaptive-Greedy Index AlgantkPAG(%).

0 = 1 m
solve A9 [IN,N\{j*} = PN} mo] = {'NN\{]*} = PN () ml]
wOl _fat] [ p0. .
jao] = [1] - [B] wr &=0

for k:=1 to ndo

v =g Y e OMS 1

pick ix € arg max{vi(k_1>: i €0%'Sc 1} Vil = vi(kk_l); Sc:=Sc1U{ik}

if kK< nthen
K . pA=1), (k=1). A(K) . A(k-1) (K) A (k=1)
end {if }
(k) .y (k=1) k=D Ak . k) . qk-1)  4(k=-1) 5 (K
Wg i=We ~ —W, A%, dsg -—d$ —d, Aiik
end{ for }
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(i) for every wagev € R there exists an optimal active se€ .% for (6).

We note that conditions (i, ii) are meant to be establisheslijh an ad howork-reward analysigor the
model at hand, while condition (iii) will be typically estigghed by DP arguments. See Nifio-Mora (2006e,
2007a,d) for specific examples.

We are now ready to present what we consider the main restiitsopaper. While its part (a) says that
LP(.%)-indexability is a sufficient condition for indexability, ith the MPI being computed by algorithm
FPAG(%), its part (b) says that such a condition is also necessaryjat an indexable bandit is always

LP-indexable, relative to some nested active-set family.

Theorem 5.4 The following holds

(a) An LP(.#)-indexable bandit is indexable, and its MPI is computed indexreasing order by algo-
rithm FPAG .%).

(b) Anindexable bandit is LE#)-indexable relative to some nested active-set farily

Proof. (a) Since the core of the following proof is geometric, tdphthe reader visualize and grasp the
following arguments we will refer to Figure 3 for illustrati, which represents the achievable work-reward
performance regiofil of a bandit (cf. Section 2.2).

Suppose the bandit is I(B7)-indexable. We first note that conditions (i, ii) in Definitic.3 imply,
by Lemma 4.2(a), that the 0-active (redy-active) BFS is optimal for parametric LP problem (22) iff
v> 2> —oo (resp. iffv < VN < ). Imagine now that the parametric-objective simplex athor of
Gass and Saaty (1955) is run on such an LP, by decreasing tie paaametey from +oo to —co. Since
the LP is bounded, this will yield a finite decreasing seqesasfalistinct breakpoints in the axis, which is
nonempty since it contains the finite valuegsandvN. Note also that multiple successive iterations of the
algorithm might correspond to the same breakpoint. Theessmpiof adjacent closed intervals determined
by such breakpoints have the property that there is a uniptiimal BFS for values ob lying strictly within
each interval.

We may visualize the progress of the Gass-Saaty algorithmigare 3. The key observation is that,
geometrically,as the wage is decreased frors-c to —eo the algorithm traverses the upper boundaﬁi[
of regionH from left to right, pivoting through a sequence of BFS of(RR) whose successive values in the
g (work) axis are increasingSuch a sequence of BFS will yield work-reward points thattaim all vertices
of H liying in its upper boundary, which are marked by black @gcin Figure 3; yet, other BFS produced

in the algorithm might yield points that are not verticedHgfsuch as those marked by small black squares.
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Notice that, in the figure, the interval ofvalues for which a BFS yielding a point in the upper boundary i
optimal is visualized as the interval between the left agttrslopes in the upper boundary meeting at such
a point.

Consider the case that there is just one breakpoint,Asago thatA; = !‘D =vN. Forv = A1, the

interpretation of LP (22) in terms of (6) ensures that the DBa¢ions (7) satisfy
(A1) =rt — v + quq}aj*(/\l) =10 — v + qu?sf(/\l), i€N,
€ i€

and hence every active sBt_ N yields an optimal basis. Therefore, Definition 5.1(i, iisares that there
exists a monotone increasing sequefge --- C S, of adjacent active sets i, with S =0 andS, = N,
which, by Definition 5.3(ii) and Lemma 4.1, satisfies the iisgments of Definition 2.1, ensuring that the
bandit is indexable. Further, such an active-set sequarcbeconstructed by running algorithm FPAG)
which corresponds to takingpivot steps in the Gass and Saaty algorithm at the only boeadk, .

Consider now the case that there are- 2 distinct breakpoints, which we denote Ay > --- > AL.
Then, the 0-active BFS and tieactive BFS will be the only optimal solutions for> A; and forv < A,
respectively. Further, for 2 | <L, the LP will have a unique optimal BFS in the intervak (A_1,A)),
whose active set we denote By Such active sets satisfy!' < g'+ and, by Definition 5.3(iii),T € .Z.
Further, forv = A, the interpretation of LP (22) in terms gfwage problem (6) ensures that the latter's DP

equations (7) must satisfy
8 (M) =ri —vai + quq%ﬁ,-*(/\l) =1l —ve’+ Zvcn?ﬁf‘(/h)’ e (Tea\ T UM\ Tiy),
€ i€

and therefore every active setvith T C SC TjU T, 1 or Tj;1 € SC Ty U T, 1 Yields an optimal solution for
the A-wage problem, and hence an optimal BFS for the LP.

We now argue by contradiction that such an active-set seguetust be monotone increasing, i.e.,
Ty C Tj.1 for all I. For suppose such is not the case, so ThatT.1 D Tj1 for somel. Then, Definition
--- D Sy, of adjacent sets i¥ connectingS; = Ty U T, 1 to Sy, = Tj,1. By the argument at the end of the
previous paragraph, it follows that each such activeSsehust be optimal fov = Aj, and hence satisfy
g" < g% < g"+1, asillustrated in Figure 3. Yet, construction of #8¢s, Definition 5.3(ii) and Lemma 4.1
imply thatg™ > --- > g5, and hencg"T+ > gi+1, which contradicts the inequality’“T+: < g+1 argued
before.

Therefore, set sequendgeis monotone increasing and hence, by Definition 5.1(ii);¢hexists a mono-
tone increasing sequen&g C --- C Sy, of adjacent active sets i&F connectingS; = Tj to Sy, =T, 1. By

the above DP argument, each of tBés yields an optimal BFS fov = A, and, further, Definition 5.3(ii)
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Figure 3: Geometry of the Gass-Saaty / FP&GAlgorithm for an LP(%)-Indexable Bandit.

and Lemma 4.1 imply thag™ < --- < g™. Further, such a sequence &fs can be actually contructed
using algorithm FPAG#), since this is just a form of the Gass and Saaty algorithindhly considers BFS
having active sets ir¥.

The above shows that algorithm FPAS) will construct an increasing sequence of adjacent acét® s
in .# connecting 0 tdN, which satisfies the requirements of Definition 2.1, impdythat the bandit is
indexable.

(b) This part follows by noticing that a bandit that has beemwan to be indexable via Proposition 4.4, is
LP(%)-indexable relative to the nested active-set fanilyconstructed by algorithm CPI. This completes

the proof. O

The following result assesses the computational complefitalgorithm FPAG.7), showing that it
improves significantly upon that of algorithm RPI. In pauntar, the complexity of its “for” loop matches

that of solving am x n linear equation system by Gaussian elimination.
Proposition 5.5 The FPAG.#) algorithm’s loop performg2/3)n® + O(n?) operations.

Proof. The loop’s operation count is dominated by the update ofimﬂt%()sﬁ at each stefl, which takes

2(n—k)? arithmetic operations, yielding the stated total aritfimeperation count. O

In the special case of nonrestless semi-Markov banditsgusgorithm FPAG.Z) with .7 = 2N yields
a (2/3)n® + O(n?) method to compute the Gittins index, as the initializatioepsbecomes trivial, thus

matching the complexity result in Niflo-Mora (2006a) foassic Markov bandits.
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5.2 PCL(%#)-Indexable Bandits Revisited

We next revisit the concept of PCE )-indexability, introduced and developed in Nifio-Mora 202002,
2006d), in light of the above developments.

Definition 5.6 (PCL(.Z)-indexability) We say that a bandit BCL(.%)-indexableif:
(i) for each active sebc .#, w> > 0 fori € N; and
(i) for every wagev € R there exists an optimal active se€ .# for (6); or

(i) algorithm FPAG(.7) produces a nonincreasing index sequenge> v;; > --- > v;'.

Thus, a PCL%)-indexable bandit is an L[7)-indexable bandit having positive marginal work for
active setsSe .#. Note that Definition 5.6 differs slightly from those giventhe earlier work mentioned,
which only required satisfaction of conditions (i, ii’"), dmposed less stringent requirements on set system
(N,.Z). Our motivation for introducing the above alternate formafgplied: we have found that, in the
analysis of bandit models with complex state spaces, dondiii’) can be much more difficult to establish

than condition (ii). See, e.g., Nifio-Mora (2007a).
Proposition 5.7 In Definition 5.6, conditions(i, ii) and(i, ii’) are equivalent.

Proof. Suppose that conditions (i, ii) hold. Then, the bandit i§.ZP-indexable and, by Theorem 5.4(a),
it is indexable, with algorithm FPAGZ) computing its MPIv;* in nondecreasing order. Hence, condition
(ii") holds.

Suppose now that conditions (i, ii’) hold. Then, it is showrNifio-Mora (2001, Cor. 2) and in Nifo-
Mora (2002, Th. 6.3) (in increasingly general settings},thar a finite-state Markovian bandit, such con-
ditions imply its indexability, from which (ii) follows. Té extension of such a result to the present semi-

Markov setting is straightforward. O

6. Extension to the Average Criterion

In applications of restless bandit indexation to problemdeu the (long-run) average criterion, one must

address the version ofwage problem (6) based on reward and work measures

T2 'f—E"/ R dt| = liminf ZE7 | $ r 44
R [o X(1) mintRET | 2,5 - (44)
and
g™ £ limsup= E"[/ QX ‘“tdt} _IlmsuplIEJ’T Zq e‘“tk]. (45)
T/‘oo K/‘oo
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As in Nifio-Mora (2002, Sec. 6.5), we must now assume thathigedded proces§, is communicating
i.e., every state can be reached from every other state wodes stationary policy. This ensures that the
above measures do not depend on the initial stateder a stationary deterministic policy, and hence one
can write fS andg® for active set$SC N. Hence, the correspondingwage problem (6) can be solved by a
stationary deterministic policy independenti pfvhich allows one to readily extend the indexability theory
above to the average criterion.

Regarding the above algorithms, they apply without modificato the average criterion, as the results
in Section 3.4 show that the required tableaux emerge assliafitheir discounted counterparts as the
discount rate vanishes, and also shows how to compute tiie tlableau. To extend the results in Section
5 one must further assume that the active-set farfilpf concern has the property that, for ev&y¢ &,
the S-active policy isunichain i.e., it induces on the embedded proc&gs single recurrent class plus a

(possibly empty) set of transient states.

7. Computational Experiments

This section reports the results of several computatioxgéements, based on the author's MATLAB im-

plementations of the algorithms discussed in this paper.

7.1 Assessing the Prevalence of Indexability and PCL-Indebility

We start by assessing experimentally the prevalence ohtlexability and PCL-indexability properties, in
two different classes of randomly generated restless barstiances.

In the first class, we considered discrete-time bandits. delacted a simulation study based on gen-
erating a random i.i.d. sample of A1Bandit instances with? = a and dense transition probability matrices
— obtained by appropriately scaling a matrix with Unifdéyi] entries — for each of the state-space sizes
n=3,...,7. For each instance, we used the above algorithms to testdexability and PCL-indexability
(relative to any#), as the discount factg® varies. Note that the valygé = 1 refers to the average criterion
discussed in Section 6.

Table 9 reports the results. They show that the prevalenc@mihdexable bandits fastly decreases as
the discount factor gets smaller, and as the state spacéaggss The highest prevalence of nonindexable
projects (1 out of 12225) was found for projects with 3 stateder the average criterion. Indexability thus
appears to be a highly prevalent property over this clasasthinces, and the more so the larger the state
space and the smaller the discount factor. The table fughews the same pattern with the number of

instances found to be indexable yet not PCL-indexable. Tdigelst prevalence of such bandits was found
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Table 9: Counts on Random i.i.d. Samples of Bandit Instances.

Nonindexable Indexable non-PCL
number of states number of states
B 3 45 6 7 3 4 5 6 7
0.1 O 0 0 0 O 0 0 0O 0 O
0.2 O 0 0 0O O 0 0 0O 0 O
0.3 O 0 0 O O 0 0 0O 0 O
0.4 O 0 0 0O O 0 0 0O 0 O
0.5 O 0 0 O O 0 0 0O 0 O
0.6 O 0 0 0O O 0 0 0O 0 O
0.7 O 0 0 O O 30 0 0O 0O
08| 16 1 0 0 O 574 32 1 0 O
09135 7 0 O 0| 4460 509 36 5 O
10|818 66 4 0 0| 18631 3640 425 50 3

in the case of 3 states under the average criterion, beimgahenly about 1 non-PCL instance out of 537
indexable instances.
In the second class of instances, we considered contirtimesandits with exponential transition rates

)\i? for states # |, having the following structure:
Aj = A0, i # (46)

for some nonnegativg;’s. The relations in (46) model a situation where the barsdsibject to two differ-
ent types of events: “regular events” and “extra eventsguRa events are driven by transition probabilities
)\i‘j’ and are not subject to control. Extra events, which coexiitt kegular event, can be turned on and off.
When activated, they are driven by transition rgigs

For such a system, two definitions for tQ&'s spring to mind. One is the conventional definitiQf= a.

The other is to set

Qs 5w, P=0 (47)
jeN\{i}
so thatQ! is the rate at which extra events occur in statehen they are turned on. In the first definition
of the Qf's, the wage parameterin (6) is the charge incurred per unit time that the extranevstream is
turned on. In the second, it is the cost incurred per extrateyenerated.

Table 10 reports the results of the corresponding simuiagtady for such a class of instances — re-
formulated into discrete-time via uniformization. Thengahown give the counts under both definitions of
the Q¥'s, starting with (47). Thus, e.g., the pdit9,45) for B = 0 means that, out of ZOnstances with
3 states, 19 of them were nondexable using@Relefinition in (47), and 45 were nonindexable using the

conventional definitiorQ? = a.
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Table 10: Counts on Random Samples of Bandit Instances for Two Definitions 2.

Nonindexable Indexable non-PCL
number of states number of states
B 3 4 5 6 7 3 4 5 6 7
0.1 0 0 0 0 O 0 0 0 0 0
0.2 0 0 0 0 O 0 0 0 0 0
0.3 0 0 0 0 O 0 0 0 0 0
0.4 0 0 0 0 O 0 0 0 0 0
0.5 0 0 0 0 O 0 0 0 0 0
0.6 0 0 0 0 O 0 0 0 0 0
0.7 0 0 0 0 O 0 0 0 0 0
0.8 0 1 0 0 O 0 0 0 0 0
0.9 0 7 0 0 O (0,7) 0 0 0 0
1.0 (1945 (0,3) (1,00 O O] (317924 (6258 (52) (1,00 O

O Non-indexable

)

Indexable )

PCL-indexable

GCL-indexable

Figure 4: Classification of Restless Bandits.

The table shows that, in this class of instances, both irityaand PCL-indexability are even more
highly prevalent properties than in the previous class.ulthier shows that, fon = 3 states, both the
prevalences of instances that are indexable and of ingahaeare PCL-indexable are significantly higher
under definition (47).

Such experimental evidence supports the claim that, atfledsandits with dense transition probability
matrices, both indexability and PCL-indexability are Highrevalent properties. Figure 4 shows a modified
version of the classification of restless bandits introduiceNifio-Mora (2001), updated to better reflect
relative class sizes. Note that the figure refers to the da$a3CL-indexablebandits, named after their

satisfaction ofyeneralized conservation laW&CL), which are PCL-indexable relative 18 = 2N.
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7.2 Runtime Comparison of Index Algorithms

In contemporary computers, the actual runtime performafea algorithm depends both on its arithmetic
operation count and on its memory-access patterns, withatter being often the dominant factor. To
compare the performance of the algorithms discussed ip#pmer, we have thus conducted a computational
study, using MATLAB implementations developed by the auththe experiments were performed on an
HP xw9300 254 (2.8 GHz) Opteron workstation running MATLABOBb under Windows XP x64. For
each of the state space sizes- 1000 150Q...,6000, a random discrete-time bandit instance with dense
transition probability matrices was generated. Transititatrices were obtained by scaling matrices with
Uniform[0, 1] entries, dividing each row by its sum. Active rewards wesa@enerated with Unifor{@, 1]
entries, while passive rewards were set to zero. The déstime discount factor used ws= 0.8.

For each instance, the CPI algorithm was used to test bothdexability and for PCL-indexability (by
checking the signs of marginal work measures for the geseratsted active-active set family). Since such
tests turned out positive in each case, the MPI values werguted using the CPI, RPI and FPA®)
algorithms, which was run taking = 2\,

Figure 5 displays the recorded runtimes for each algoritivhere where the lines shown are obtained
by cubic least-squares fits. The results show that the FP@@itiim, having an operation count &/3)n3,
is indeed the fastest of the three, consistently achievpegdup factors of about3 over the CPI and
RPI algorithms, which exhibit similar runtimes, though tRe1 algorithm was the slowest. Recall that
the operation counts ar@2andn? for the CPI and the RPI algorithms, respectively. Such djsancies
between theoretical and actual speedup factors are aecbiontby noticing the algorithms memory-access
patterns. Thus, algorithm CPI, being based on completdipgysteps, has efficient memory-access patterns,
as the coefficient matriA is always updated as a contiguous memory block. In contrat, the RPI and
the FPAG algorithms reduce the operation count at the erpehsasing and updating submatricesAof
which results in costly noncontiguous memory-access peaitteret, in the case of the FPAG algorithm, the

large reduction in arithmetic operations compensates isigdficiencies, rendering it the fastest algorithm.
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Figure 5: Runtimes with Cubic Least-Squares Fit: FPAG Bo({CPI (dotted) and RPI (dashed).
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