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Abstract

The Whittle index [P. Whittle (1988). Restless bandits: Activity allocation in a changing world. J.
Appl. Probab. 25A, 287–298] yields a practical scheduling rule for the versatile yet intractable multi-
armed restless bandit problem, involving the optimal dynamic priority allocation to multiple stochas-
tic projects, modeled as restless bandits, i.e., binary-action (active/passive) (semi-) Markov decision
processes. A growing body of evidence shows that such a rule is nearly optimal in a wide variety of
applications, which raises the need to efficiently compute the Whittle index and more general marginal
productivity index (MPI) extensions in large-scale models. For such a purpose, this paper extends to rest-
less bandits the parametric linear programming (LP) approach deployed in [J. Niño-Mora. A(2/3)n3

fast-pivoting algorithm for the Gittins index and optimal stopping of a Markov chain, INFORMS J.
Comp., in press], which yielded a fast Gittins-index algorithm. Yet the extension is not straightforward,
as the MPI is only defined for the limited range of so-called indexable bandits, which motivates the quest
for methods to establish indexability. This paper furnishes algorithmic and analytical tools to realize
the potential of MPI policies in large-scale applications,presenting the following contributions: (i) a
complete algorithmic characterization of indexability, for which two block implementations are given;
and (ii) more importantly, new analytical conditions for indexability — termed LP-indexability — that
leverage knowledge on the structure of optimal policies in particular models, under which the MPI is
computed faster by the adaptive-greedy algorithm previously introduced by the author under the more
stringent PCL-indexability conditions, for which a new fast-pivoting block implementation is given. The
paper further reports on a computational study, measuring the runtime performance of the algorithms,
and assessing by a simulation study the high prevalence of indexability and PCL-indexability.
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1. Introduction

The multi-armed restless bandit problem(MARBP) furnishes a powerful modeling framework for a wide

variety of problems where a decision-maker must dynamically prioritize the allocation of limited effort to

multiple projects. The latter are modeled asrestless bandits, i.e., binary-action (active/work; passive/rest)

semi-Markov decision processes (SMDPs) that can change state even while rested. For a range of applica-

tions to problems of admission control, routing and scheduling see, e.g., Whittle (1988), Veatch and Wein

(1996), Niño-Mora (2002, 2003, 2005, 2006b,c,d,e, 2007a,b,c,d), Raissi-Dehkordi and Baras (2002), Goyal

et al. (2006), and La Scala and Moran (2006).

While the MARBP is generally intractable, Whittle (1988) introduced an index for restless bandits that

extends the celebratedGittins indexrule, which is optimal in the classic case where passive bandits remain
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frozen. See Gittins (1979). TheWhittle indexhas been further extended in Niño-Mora (2002, 2006b,d) in

the framework of the unifying and intuitive concept ofmarginal productivity index(MPI). A growing body

of evidence (cf. the aforementioned papers) shows that the resultingpriority-index rulethat engages at each

time a project of largest index is nearly optimal for a variety of applications. Further, the MPI characterizes

optimal policies for problems modeling the optimal dynamicallocation of work to a project, which have

intrinsic interest.

The prime goal of this paper is to furnish the required algorithmic and analytical tools that will allow

researchers to fully realize the potential of such index policies in large-scale applications. We will accom-

plish such a goal by drawing on classic parametric linear programming (cf. Gass and Saaty (1955); Saaty

and Gass (1954)), extending the approach that, first suggested in Kallenberg (1986), was developed in Niño-

Mora (2006a) to obtain a Gittins-index algorithm of improved complexity, performing(2/3)n3 + O(n2)

arithmetic operations for a classicn-state bandit.

The required extension is, however, far from straightforward, as the MPI is only defined for the limited

range of so-calledindexablebandits, which motivates the quest for useful numerical andanalytical meth-

ods to establish indexability. For such a purpose, we had introduced and developed in Niño-Mora (2001,

2002, 2006d) a set of sufficient conditions for indexability, termedPCL-indexabilityas they are based on

satisfaction ofpartial conservation laws(PCL), under which a bandit’s MPI is computed by anadaptive-

greedy algorithm. Yet, though such work shows that several models of interestare PCL-indexable, our

more recent work has revealed limitations to such an approach. Specifically: (i) one condition was that the

index sequence produced by the aforementioned algorithm benondecreasing, which we have found to be

hard to verify analytically in models with a multi-dimensional state; and, (ii) more importantly, we have

encountered in Niño-Mora (2007d) a relevant bandit model that is indexable, yet not PCL-indexable.

This paper overcomes such limitations, presenting the following contributions: (i) a complete algorith-

mic characterization of indexability, for which two block implementations are given, theComplete-Pivoting

Indexability (CPI) algorithm and theReduced-Pivoting Indexability(RPI) algorithm, which, after a com-

mon initialization stage involving the solution of a block linear equation system, perform 2n3 + O(n2) and

n3+O(n2) arithmetic operations for ann-state bandit, respectively; and (ii) more importantly, new analytical

sufficient conditions for indexability — termedLP-indexability— that leverage knowledge on the structure

of optimal policies in particular models, under which the MPI is computed faster by the adaptive-greedy

algorithm referred to above, for which a new fast-pivoting block implementation is given that performs —

after the initialization stage —(2/3)n3 +O(n2) operations; such conditions are also shown to be necessary,

in that an indexable bandit is alwaysLP-indexablerelative to a certain family of policies; further, a more

analytically tractable reformulation of the PCL-indexability conditions is presented. For examples where
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such an approach is successfully deployed, we refer the reader to Niño-Mora (2006e, 2007a,d).

We must emphasize that the algorithms presented herein are described in a readily-implementableblock-

partitioned form, i.e., based on operations on submatrices (blocks) of a base matrix. Such implementations

have been advocated in the scientific-computing literatureto partly overcome the exponentially widening

gap between processor speed and memory-access times in contemporary computers, which often render

traditional complexity measures based on operation countspoor predictors of runtime performance. See

Dongarra and Eijkhout (2000) and Baker et al. (2006).

The latter phenomenon is illustrated herein by a computational study comparing the runtime perfor-

mance of the proposed algorithms, which reveals that thefast-pivoting adaptive-greedy(FPAG) algorithm

is the fastest, consistently achieving a speedup factor of about 1.3 over the CPI algorithm, which in turn

slightly outperforms the RPI algorithm. Such results reflect the influence of differing memory-access pat-

terns in actual runtimes. Thus, the CPI algorithm manipulates whole matrices, which results in efficient

handling of contiguous memory blocks, whereas the RPI and FPAG algorithms reduce operation counts

at the expense of manipulating submatrices with complex patterns, which results in relatively inefficient

noncontiguous data movement.

Another computational study was conducted to assess the prevalence of indexability and PCL-indexability

among randomly generated restless bandits — with dense transition probability matrices — in a large-scale

simulation study. The study reveals that such prevalences are extremely high, growing steeply as the number

of states increases.

The remainder of the paper is organized as follows. Section 2reviews the indexation theory for semi-

Markov restless bandits. Section 3 elucidates the parametric simplex tableaux for the problem’s LP for-

mulation. Section 4 develops a simplex-based algorithmic characterization of indexability. Section 5 shows

how to exploit special structure by introducing the new class of LP-indexable bandits, to which the adaptive-

greedy index algorithm introduced in earlier work for PCL-indexable bandits is shown to extend, and revises

the earlier definition of the PCL-indexability; further, a new fast-pivoting implementation is given of such

an algorithm. While previous sections focus on the discounted criterion, Section 6 discusses the extension

to the average criterion. Section 7 reports on the computational study’s results.

2. Indexation for Semi-Markov Restless Bandits

This section reviews several key concepts from indexation theory to be used throughout the paper, as it

applies to a finite-state semi-Markov restless bandit. The following discussion highlights the insightful

relation of indexation with bicriteria optimization, which was implicit in Niño-Mora Niño-Mora (2002,
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2006d), focusing on the discounted case. As in the previous section’s model, we will find it useful to

partition the state spaceN into the setN{0,1} of controllable states, where actions differ in some respect, and

the setN{0} , N \N{0,1} of uncontrollable states. We will adopt the convention that the passive action is

taken in the latter states, and denote the numbers of uncontrollable and controllable states bym, |N{0}| ≥ 0

andn , |N{0,1}| ≥ 1, respectively.

2.1 Semi-Markov Restless Bandits and Discrete-Stage Reformulation

Consider the problem of operating optimally a single dynamic and stochastic project, modelled as a binary-

action (1/active/engage; 0/passive/rest)semi-Markov decision process(SMDP), whosenatural state X(t)

evolves continually over timet ≥ 0 through the finite state spaceN. The controller observes theembedded

state Xk , X(tk) at an increasing sequence ofdecision epochs tk, with t0 = 0 and limk tk ↗ +∞, and takes an

actionak , a(tk) ∈ {0,1} that prevails during the ensuingstage[tk, tk+1). ProcessesX(t) anda(t) are thus

piecewise constant, right-continuous with left limits. Actions are prescribed through apolicy π, drawn from

the classΠ of admissiblepolicies, which base decisions on the history of embedded states and actions up

to the present decision epoch, and on the state observed at the latter. While the project occupies statei and

actiona prevails,rewardsaccrue andwork is expended at ratesRa
i andQa

i ≥ 0, respectively, withQ1
i > 0

andQ1
i ≥ Q0

i ≥ 0.

We complete next the model’s description, by specifying itsdynamics, and discuss its discrete-stage

reformulation along the lines in (Puterman, 1994, Ch. 11)),which will be used in the subsequent analyses.

If at decision epochtk the project occupies stateXk = i and actionak = a is taken, the joint distribution of

the durationtk+1− tk of the ensuing(i,a)-stageand the next embedded stateXk+1 is given by the transition

distribution

Fa
i j (t) , P{tk+1− tk ≤ t,Xk+1 = j | Xk = i,ak = a} ,

having Laplace-Stieltjes transform (LST)

φa
i j (α) , E

[
1{Xk+1= j}e

−α(tk+1−tk) | Xk = i,ak = a
]

=

∫ ∞

0
e−αt dFa

i j (t),

for α > 0. The corresponding one-stage transition probabilities of the embedded process are

pa
i j , P{Xn+1 = j | Xk = i,ak = a} = lim

t→∞
Fa

i j (t) = lim
α↘0

φa
i j (α).

FromFa
i j (t) we obtain the distribution of the duration of an(i,a)-stage,

Fa
i (t) , P{tk+1− tk ≤ t | Xk = i,ak = a} = ∑

j∈N

Fa
i j (t),
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having LST

φa
i (α) , E

[
e−α(tk+1−tk) | Xk = i,ak = a

]
= ∑

j∈N

φa
i j (α), (1)

and mean

ma
i , E [tk+1− tk | Xk = i,ak = a] =

∫ ∞

0
t dFa

i (t).

In general, the natural-state processX(t) might change state between decision epochs. Its evolution

within an(i,a)-period is characterized by

p̃a
i j (s) , P{X(tk +s) = j | Xk = i,ak = a, tk+1− tk > s} ,

the probability that statej is occupieds time units after a decision epoch, given that the next epoch has not

yet occurred. We can thus represent the expected total discounted work expended and the reward earned

during an(i,a)-stage, respectively, as

qa
i , E

[∫ tk+1

tk
Qan

X(t)e
−α(t−tk) dt | Xk = i,ak = a

]
= ∑

j∈N

Qa
j

∫ ∞

0
p̃a

i j (s){1−Fa
i (s)}e−αsds (2)

and

ra
i , E

[∫ tk+1

tk
Rak

X(t)e
−α(t−tk) dt | Xk = i,ak = a

]
= ∑

j∈N

Ra
j

∫ ∞

0
p̃a

i j (s){1−Fa
i (s)}e−αsds. (3)

In our studies of several applications, we have found that itis often important to partition the state space

N into the set ofuncontrollable states

N{0} ,
{

i ∈ N : q0
i = q1

i , r0
i = r1

i and F0
i j (t) ≡ F1

i j (t), j ∈ N
}

,

where both actions have identical consequences, and the remaining setN{0,1} , N \N{0} of controllable

states. The notationN{0} reflects the convention we adopt whereby the passive actiona = 0 is taken at

uncontrollable states. We will denote byn , |N{0,1}| andm , |N{0}| the numbers of controllable and of

uncontrollable states, respectively, and assume thatn ≥ 1. As we will see, the indices of concern in this

paper, which are functions of the project’s state, are only defined for controllable states.

In the sequel we will focus on the discounted criterion basedon measures (4)–(5), deferring to Section

6 discussion of the long-run average criterion.

2.2 Restless Bandit Indexation

We consider two measures to evaluate a policyπ, relative to an initial statei and a discount rateα > 0: the

reward measure

f π
i , E

π
i

[∫ ∞

0
Ra(t)

X(t)e
−αt dt

]
= E

π
i

[
∞

∑
k=0

rak
Xk

e−αtk

]
, (4)
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giving the expected total discounted value of rewards earned; and thework measure

gπ
i , E

π
i

[∫ ∞

0
Qa(t)

X(t)e
−αt dt

]
= E

π
i

[
∞

∑
k=0

qak
Xk

e−αtk

]
, (5)

giving the expected total discounted amount of work expended. Notice that the right-hand side’s identities

in (4)–(5) draw on the discrete-stage reformulation discussed above.

We will find it convenient to use the corresponding averaged measures obtained when the initial statei

is drawn from an arbitrary distribution with positive probability masspi > 0 for i ∈ N:

f π , ∑
i∈N

pi f π
i and gπ , ∑

i∈N

pig
π
i .

Introducing a wage rateν at which work is paid for, we will address theν-wage problem

max
π∈Π

f π −νgπ , (6)

which is to find an admissible project-operating policy maximizing the value of rewards earned minus labor

costs incurred, and whereν will play the role of a parameter to be varied overR.

The theory of finite-state and -action SMDPs ensures existence of an optimal policy for (6) that is: (i)

deterministic stationary; and (ii) independent of the initial-state distribution. We represent each such a policy

by itsactive set S⊆ N{0,1}, or subset of controllable states where the policy prescribes to engage the project

at a decision epoch, and will refer to it as theS-active policy.

It appears reasonable to expect that, at least in some models, optimal active sets should expand mono-

tonically from /0 toN{0,1} as the wageν decreases from+∞ to −∞., as a function of the state space’s size

Such an intuitive property was introduced by Whittle (1988), who termed itindexability, for Markovian rest-

less bandits with state-independent work ratesqa
i ≡ a. His original definition readily extends to the present

setting.

In dynamic programming(DP) terms, we may formulate the indexability property as follows. Letting

ϑ∗
i (ν) be the optimal value function starting ati for SMDP (6), the Bellman equations are

ϑ∗
i (ν) = max

a∈{0,1}
ra
i −νqa

i + ∑
j∈N

φa
i j ϑ∗

j (ν), i ∈ N, (7)

where we writeφa
i j = φa

i j (α). In words, the project is indexable if, for each controllable statei, it is optimal

to engage the project ati for ν small enough; namely, if there exists anindexν∗
i , for i ∈ N{0,1}, such that it

is optimal to engage the project in statei iff ν ≤ ν∗
i ; or, in formulas,

ϑ∗
i (ν) = r1

i −νq1
i + ∑

j∈N

φ1
i j ϑ∗

j (ν) ⇐⇒ ν ≤ ν∗
i (8)
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Yet, in Niño-Mora (2006d) we have formulated the indexability property in an alternative — though

equivalent — form yielding complementary insights, as reviewed next. Leti1, . . . , in ∈ N{0,1} be an ordering

of then controllable states, such that thenested active-set family

F0 , {S0,S1, . . . ,Sn}, (9)

whereS0 , /0 andSk , {i1, . . . , ik} for 1≤ k≤ n, satisfies the work-regularity condition

gSk−1 < gSk, 1≤ k≤ n. (10)

Consider theindexν∗
i , for i ∈ N{0,1}, defined by

ν∗
ik ,

f Sk − f Sk−1

gSk −gSk−1
, 1≤ k≤ n. (11)

Definition 2.1 (Indexability; MPI) We say that the bandit isindexableif there exists a nested active-set

family F0 as above such that:

(i) index ν∗
ik is nonincreasing ink, i.e.,ν∗

ik+1
≥ ν∗

ik for 1≤ k < n; and

(ii) for ν-wage problem (6), the /0-active policy is optimal iffν ≤ ν∗
i1, theN{0,1}-active policy is optimal

iff ν ≥ ν∗
in, and theSk-active policy is optimal forν-wage problem (6) iffν ∈ [ν∗

ik+1
,ν∗

ik ], for 1≤ k < n.

We then say that the project isF0-indexable, and thatν∗
i is its marginal productivity index(MPI).

Note: as already noted in nm (give the reference), the optimal value function of an indexable bandit is

given by

ϑ∗
i (ν) = max

S∈F0

f S
i −νgS

i = max
0≤k≤n

f Sk
i −νgSk

i , i ∈ N,ν ∈ R

We introduced the term MPI in Niño-Mora (2006d), as it was shown there, and earlier in Niño-Mora

(2002), that indexν∗
i measures the marginal value, or productivity, of work at each statei. The first paper

gave a characterization of indexability in terms of the structure of theachievable work-reward performance

region

H ,
{
(gπ , f π) : π ∈ Π

}
,

which is spanned by work-reward performance points under admissible policies. Such a region is theconvex

polygongiven as theconvex hullof the finite set of points(gS, f S), for all active setsS⊆ N. Specifically,

considering theupper boundaryof H, given by

∂̄H , {(g, f ) ∈ H : f π ≤ f for anyπ ∈ Π with gπ = g} ,
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it is shown in Niño-Mora (2006d, Th. 3.1) that the project isindexable iff there is a nested active-set family

F0 as above that determines such an upper boundary.

Notice that the choice ofF0 need not be unique, and that the MPI does not depend on such a choice.

Consider, e.g., a discrete-time nonrestless (i.e., withp0
ii ≡ 1) project withqa

i ≡ a andra
i ≡ 0, so thatf π ≡ 0

for any policyπ. Then,eachof then! orderingsi1, . . . , in of then project states yields a nested familyF0

relative to which the project is indexable — with MPIν∗
i ≡ 0.

2.3 Two Illustrative Examples

To help the reader unfamiliar with the above concepts to grasp them, we discuss next two illustrave exam-

ples, corresponding to discrete-time Markovian bandits with state spaceN = {1,2,3} and one-period work

expendituresqa
i = a — henceN{0,1} = N. For each instance, a plot is displayed of the achievable work-

reward performance regionH, where points(gS, f S) are labelled by their active setsS. We have taken the

initial-state distribution to be uniform overN.

Figure 1 displays the achievable work-reward performance region for the instance with discrete-time

discount factorβ = 0.9, one-period active reward and one-period transition probabilities

r1 =




0.9016
0.10949
0.01055


 ,P1 =




0.2841 0.4827 0.2332
0.5131 0.0212 0.4657
0.4612 0.0081 0.5307


 ,P0 =




0.1810 0.4801 0.3389
0.2676 0.2646 0.4678
0.5304 0.2843 0.1853


 ,

and one-period passive rewardr0 = 0. The plot shows that this is an indexable instance, relativeto the

nested active-set familyF0 =
{

/0,{1},{1,2},{1,2,3}
}

, which determines the region’s upper boundary.

The Whittle index/MPI values of states 1, 2 and 3 are given by the successive trade-off vs. work rates/slopes

in such an upper boundary:

ν∗
1 =

f {1}− f /0

g{1}−g/0
> ν∗

2 =
f {1,2}− f {1}

g{1,2}−g{1}
> ν∗

3 =
f {1,2,3}− f {1,2}

g{1,2,3}−g{1,2}
.

Figure 2 displays the achievable work-reward performance region for the instance withβ = 0.9,

P1 =




0.7796 0.0903 0.1301
0.1903 0.1863 0.6234
0.2901 0.3901 0.3198


 , P0 =




0.1902 0.4156 0.3942
0.5676 0.4191 0.0133
0.0191 0.1097 0.8712


 ,

and

r1 =
[
0.9631 0.7963 0.1057

]
T

, r0 =
[
0.458 0.5308 0.6873

]
T

.

The plot shows that this is a nonindexable instance, since there is no nested active-set family that determines

the region’s upper boundary.

8



/0

{1}

{2} {3}

{1,2}

{1,3}

{2,3}

{1,2,3}

gπ

fπ

Figure 1: Indexable Instance: Achievable Work-Reward Performance Region.

/0

{1}

{2}

{3}

{1,2} {1,3}

{2,3}

{1,2,3}

gπ

fπ

Figure 2: Nonindexable Instance: Achievable Work-Reward Performance Region.
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2.4 Marginal Work, Reward and Productivity Measures

The analyses and algorithms below will use themarginal measuresdiscussed next. For an actiona∈ {0,1}

and an active setS⊆ N{0,1}, denote by〈a,S〉 the policy that takes actiona in the initial stage, and adopts

theS-active policy(having active setS) thereafter. Now, for a statei and an active setS, define themarginal

work measureby

wS
i , g〈1,S〉

i −g〈0,S〉
i , (12)

i.e., as the marginal increase in work expended that resultsfrom taking initially the active instead of the

passive action at statei, given that theS-active policy is adopted thereafter.

Further, define themarginal reward measureby

dS
i , f 〈1,S〉

i − f 〈0,S〉
i , (13)

i.e., as the corresponding marginal increase in value of rewards earned. Notice that marginal work and

reward measures vanish at uncontrollable states:

wS
i = dS

i = 0, i ∈ N{0}. (14)

Finally, for wS
i 6= 0, define themarginal productivity measureby

νS
i ,

dS
i

wS
i

. (15)

2.5 Reduction to the No Uncontrollable States Case

While we have found the distinction between controllable and uncontrollable states to be relevant in some

applications of restless bandits, it would considerably complicate the notation in the analyses below. We

thus show next that it suffices to restrict attention to bandits with no uncontrollable states, as these can be

eliminated through suitable transformations.

Thus, consider a restless bandit as above, with controllable and uncontrollable state spacesN{0,1} and

N{0}, respectively. For a given active setS⊆ N{0,1}, we can evaluate the work measuregS
i by solving the

following linear equation system, which we decompose in blocks as

gS
S = q1

S+ Φ1
SSg

S
S+ Φ1

S,N{0,1}\SgS
N{0,1}\S+ Φ1

S,N{0}gS
N{0}

gS
N{0,1}\S = q0

N{0,1}\S+ Φ1
N{0,1}\S,SgS

S+ Φ0
N{0,1}\S,N{0,1}\SgS

N{0,1}\S+ Φ1
N{0,1}\S,N{0}gS

N{0}

gS
N{0} = q0

N{0} + Φ0
N{0},SgS

S+ Φ0
N{0},N{0,1}\SgS

N{0,1}\S+ Φ0
N{0}N{0}g

S
N{0} ,

(16)
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writing, e.g.,Φ1
S,N{0,1}\S = (φi j )i∈S, j∈N{0,1}\S andgS

S = (gS
i )i∈S. Now, solving in the last equation block above

for gS
N{0} , and defining

q̃a
N{0,1} , qa

N{0,1} + Φa
N{0,1}N{0}

(
IN{0}N{0,1} −Φ0

N{0}N{0}

)−1qa
N{0}

Φ̃
a
N{0,1}N{0,1} , Φa

N{0,1}N{0,1} + Φa
N{0,1}N{0}

(
IN{0}N{0,1} −Φ0

N{0}N{0}

)−1Φ0
N{0}N{0,1} ,

(17)

whereI is the identity matrix, we can reformulate (16) as

gS
S = q̃1

S+ Φ̃
1
SSg

S
S+ Φ̃

1
S,N{0,1}\SgS

N{0,1}\S

gS
N{0,1}\S = q̃0

N{0,1}\S+ Φ̃
0
N{0,1}\S,SgS

S+ Φ̃
1
N{0,1}\S,N{0,1}\SgS

N{0,1}\S.
(18)

Similarly, we can evaluate the reward measuref S
i by solving the linear equation system

fS
S = r1

S+ Φ1
SSf

S
S+ Φ1

S,N{0,1}\SfS
N{0,1}\S+ Φ1

S,N{0} fS
N{0}

fS
N{0,1}\S = r0

N{0,1}\S+ Φ0
N{0,1}\S,SfS

S+ Φ1
N{0,1}\S,N{0,1}\SfS

N{0,1}\S+ Φ0
N{0,1}\S,N{0} f

S
N{0}

fS
N{0} = r0

N{0} + Φ0
N{0},SfS

S+ Φ0
N{0},N{0,1}\SfS

N{0,1}\S+ Φ0
N{0},N{0} f

S
N{0} .

(19)

Proceeding as above, and defining

r̃a
N{0,1} , ra

N{0,1} + Φa
N{0,1}N{0}

(
IN{0}N{0,1} −Φ0

N{0}N{0}

)−1ra
N{0} , (20)

we can reformulate (19) as

fS
S = r̃1

S+ Φ̃
1
SSf

S
S+ Φ̃

1
S,N{0,1}\SfS

N{0,1}\S

fS
N{0,1}\S = r̃0

N{0,1}\S+ Φ̃
0
N{0,1}\S,SfS

S+ Φ̃
1
N{0,1}\S,N{0,1}\SfS

N{0,1}\S.
(21)

From the above discussion, it is readily seen how to eliminate uncontrollable states from the analyses:

it suffices to consider a modified discrete-stage bandit having state spaceN{0,1} and work, reward and

transition parameters defined by the transformations (17) and (20).

In the sequel we will assume that such transformations have been carried out, if required, focusing

attention on the normalized case where all states are controllable.

3. Parametric LP Formulation and Simplex Tableau

We set out in this section to formulate theν-wage problem (6) as a parametric LP problem, and to elucidate

the structure of its simplex tableaux.

3.1 Bellman Equations and Parametric LP Formulation

While the LP formulation of concern is well-known in SMDP theory (see, e.g., Puterman (1994)), for ease

of reference we outline next its derivation, starting from the Bellman equations for (6) in (7). The primal LP

11



formulation of such DP equations is

ϑ∗(ν) =min ∑
j∈N

p jϑ j

subject to

xa
i : ϑi − ∑

j∈N

φa
i j ϑ j ≥ ra

i −νqa
i , (i,a) ∈ N×{0,1},

wherep = (p j) j∈N represents the initial-state probability vector. It is well known that, ifp > 0 component-

wise, such an LP has a unique solution that solves the DP equations.

Our analyses will be based instead on the dual standard-formLP,

ϑ∗(ν) =max ∑
( j,a)∈N×{0,1}

(
ra

j −νqa
j

)
xa

j

subject to

ϑ j : ∑
a∈{0,1}

{
xa

j − ∑
j∈N

φa
i j x

a
i

}
= p j , j ∈ N

xa
j ≥ 0, ( j,a) ∈ N×{0,1}.

We will work with the latter using matrix notation, writing

ϑ∗(ν) =max(r0−νq0)x0 +(r1−νq1)x1

subject to
[(

I −Φ0
)

T
(
I −Φ1

)
T

][
x0

x1

]
= p

x0,x1 ≥ 0,

(22)

wherexa = (xa
j ) is a column vector,ra = (ra

j ) and qa = (qa
j ) are row vectors, andT is the transposition

operator .

Dual variablesxa
j correspond to the bandit’sdiscounted state-action occupancy measures. For an admis-

sible policyπ, initial statei, actiona and statej, let

xa,π
i j , E

π
i

[
∞

∑
k=0

1{a(tk)=a,X(tk)= j}e
−αtk

]

be the expected total discounted number of( j,a)-stages under policyπ, starting ati. Thus, under initial

state distributionp, dual variablexa
j corresponds to occupancy measurexa,π

j , ∑i pix
a,π
i j . Notice that reward

and work measures are linear functions of occupancies: writing xa,π = (xa,π
j ),

f π = ∑
( j,a)∈{0,1}×N

ra
j x

a,π
j = r0x0,π + r1x1,π

gπ = ∑
( j,a)∈{0,1}×N

qa
j x

a,π
j = q0x0,π +q1x1,π .

(23)
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3.2 Basic Feasible Solutions and Reduced Costs

We set out next to analyze parametric LP (22), starting with an elucidation of itsbasic feasible solutions

(BFS). Clearly, these correspond to active setsS⊆ N{0,1}, and hence we will refer to theS-active BFS. For

each such anS, we decompose the above vectors and matrices as

xa =

[
xa

S
xa

Sc

]
, p =

[
pS

pSc

]
, Φa =

[
Φa

SS Φa
SSc

Φa
ScS Φa

ScSc

]
, I =

[
ISS 0SSc

0ScS IScSc

]
,

where we writeSc , N\S, and introduce the matrices

ΦS ,

[
Φ1

SS Φ1
S,N\S

Φ0
ScS Φ0

ScSc

]
, ΦSc

,

[
Φ0

SS Φ0
SSc

Φ1
ScS Φ1

ScSc

]
,

BS ,
(
I −ΦS)T

, NS ,
(
I −ΦSc)T

, HS ,
(
BS)−1

, AS , HSNS.

(24)

Notice thatΦS is the transition transform matrix under theS-active policy. Further,BS is thebasis matrixin

LP (22) for theS-active BFS, whosebasic variablesare
[

x1
S

x0
Sc

]
;

andNS is the matrix of non-basic columns in LP (22), whose associatednon-basic variablesare
[

x0
S

x1
Sc

]
.

We thus rearrange the constraints in LP (22), decomposing them into basic and non-basic parts, as

BS
[

x1
S

x0
Sc

]
+NS

[
x0

S
x1

Sc

]
= p.

We next draw on the above to evaluate performance measures under theS-active policy/BFS. The

notationxa,S
j below refers to occupancy measurexa,π

j under theS-active policy, i.e., forπ = S. Further,

gS = (gS
j ) j∈N, fS = ( f S

j ) j∈N, wS = (wS
j ) j∈N anddS = (dS

j ) j∈N are taken to berow vectors.

Lemma 3.1

(a)

[
x0,S

S

x1,S
Sc

]
= 0 and

[
x1,S

S

x0,S
Sc

]
= HSp.

(b) gS =
[
q1

S q0
Sc

]
HS.

(c) fS =
[
r1

S r0
Sc

]
HS.

(d)
[
wS

S −wS
Sc

]
=

[
q1

S q0
Sc

]
AS−

[
q0

S q1
Sc

]
.

(e)
[
dS

S −dS
Sc

]
=

[
r1

S r0
Sc

]
AS−

[
r0

S r1
Sc

]
.
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Proof. (a) Set to zero non-basic variables:x0,S
S = 0 andx1,S

Sc = 0. Calculate basic variables from

BS
[

x1
S

x0
Sc

]
= p =⇒

[
x1,S

S

x0,S
Sc

]
= HSp.

(b) Use part (a) takingp = ej (the unit coordinate vector having the one in the position ofstate j) to

represent work measures as

gS
j =

[
q1

S q0
Sc

]
[

x1,S
S

x0,S
Sc

]
=

[
q1

S q0
Sc

]
HSej =⇒ gS =

[
q1

S q0
Sc

]
HS.

(c) Proceed as in part (b) to represent reward measures as

f S
j =

[
r1

S r0
Sc

]
[

x1,S
S

x0,S
Sc

]
=

[
r1

S r0
Sc

]
HSej =⇒ fS =

[
r1

S r0
Sc

]
HS.

(d) Represent marginal work measures (cf. (12)) as

wS
S = gS

S−q0
S−gS(Φ0

SN

)T

and wS
Sc = q1

Sc +gS(Φ1
ScN

)T

−gS
Sc. (25)

Reformulate now the identities in (25), using part (b), as

[
wS

S −wS
Sc

]
= gSNS−

[
q0

S q1
Sc

]
=

[
q1

S q0
Sc

]
HSNS−

[
q0

S q1
Sc

]
=

[
q1

S q0
Sc

]
AS−

[
q0

S q1
Sc

]
.

(e) This part follows along the lines of part (d).
�

The next result characterizes the marginal work and reward measures in (12)–(13) asreduced costs

of LP problems. It further gives the reduced costs of parametric LP (22), and uses such results to obtain

corresponding representations of the LPs objectives in terms of such reduced costs.

Lemma 3.2

(a) The reduced costs for non-basic variables in the S-active BFS for LP

max

{
q0x0 +q1x1 :

[(
I −Φ0

)
T

(
I −Φ1

)
T

][
x0

x1

]
= p, x0,x1 ≥ 0

}

are given in the left-hand side of Lemma3.1(d). The LP’s objective can thus be expressed as

∑
( j,a)∈N×{0,1}

qa
j x

a
j = gS− ∑

j∈S

wS
j x

0
j + ∑

j∈Sc

wS
j x

1
j . (26)

(b) The reduced costs for non-basic variables in the S-active BFS for LP

max

{
r0x0 + r1x1 :

[(
I −Φ0

)
T

(
I −Φ1

)
T

][
x0

x1

]
= p, x0,x1 ≥ 0

}

are given in the left-hand side of Lemma3.1(e). The LP’s objective can thus be expressed as

∑
( j,a)∈N×{0,1}

ra
j x

a
j = f S−∑

j∈S

dS
j x

0
j + ∑

j∈Sc

dS
j x

1
j . (27)
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(c) The reduced costs for non-basic variables in the S-active BFS for LP(22) are given by

[
dS

S−νwS
S −dS

Sc + νwS
Sc

]
. (28)

Therefore, the LP’s objective can be represented as

∑
( j,a)∈N×{0,1}

(ra
j −νqa

j )x
a
j = f S−νgS− ∑

j∈S

(dS
j −νwS

j )x
0
j + ∑

j∈Sc

(dS
j −νwS

j )x
1
j . (29)

Proof. The results follow directly from the standard representation of reduced costs in LP theory, as given

by Lemma 3.1(d,e), along with the standard representation of the LP’s objective in terms of the current BFS’

value and reduced costs. We have further used (14).
�

The next result, which follows directly from Lemma 3.2, gives representations of measuresgπ , f π and

objective f π − νgπ relative to theS-active policy. We first derived suchdecompositionidentities in Niño-

Mora (2001, 2002) through ad hoc algebraic arguments.

Lemma 3.3 Under any policyπ ∈ Π:

(a) gπ = gS−∑
j∈S

wS
j x

0,π
j + ∑

j∈Sc

wS
j x

1,π
j .

(b) f π = f S− ∑
j∈S

dS
j x

0,π
j + ∑

j∈Sc

dS
j x

1,π
j .

(c) f π −νgπ = f S−νgS−∑
j∈S

(dS
j −νwS

j )x
0,π
j + ∑

j∈Sc

(dS
j −νwS

j )x
1,π
j .

The following result, first established in Niño-Mora (2002), clarifies the relation between work and

reward measures and their marginal counterparts. We will use it later to prove Lemma 4.1.

Lemma 3.4

(a) For j ∈ Sc, gS∪{ j} = gS+wS
j x

1,S∪{ j}
j and fS∪{ j} = f S+dS

j x
1,S∪{ j}
j .

(b) For j ∈ S, gS\{ j} = gS−wS
j x

1,S\{ j}
j and fS\{ j} = f S−dS

j x
1,S\{ j}
j .

Proof. To obtain (a) (resp. (b)) useπ = S∪{ j} (resp.π = S\{ j}) in Lemma 3.3(a, b).
�
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Table 1: Parametric Simplex Tableau forS-Active BFS, Ready for Pivoting onaS
j j .

(
x0

S

)
T

x1
j

(
x1

Sc\{ j}

)
T

x1
S AS

SS AS
S j AS

S,Sc\{ j}

x0
j AS

jS aS
j j A j,Sc\{ j}

x0
Sc\{ j} AS

Sc\{ j},S AS
Sc\{ j}, j AS

Sc\{ j},Sc\{ j}

wS
S −wS

j −wS
Sc\{ j}

dS
S −dS

j −rS
Sc\{ j}

Table 2: Tableau forS∪{ j}-Active BFS, Obtained by Pivoting onaS
j j .

(
x0

S

)
T

x0
j

(
x1

Sc\{ j}

)
T

x1
S AS

SS−
AS

S jA
S
jS

aS
j j

−
AS

S j

aS
j j

AS
S,Sc\{ j}−

AS
S jA

S
j,Sc\{ j}

aS
j j

x1
j

AS
jS

aS
j j

1

aS
j j

AS
j,Sc\{ j}

aS
j j

x0
Sc\{ j} AS

Sc\{ j},S−
AS

Sc\{ j}, j A
S
jS

aS
j j

−
AS

Sc\{ j}, j

aS
j j

AS
Sc\{ j},Sc\{ j}−

AS
Sc\{ j}, j A

S
j,Sc\{ j}

aS
j j

wS
S+

wS
j

aS
j j

AS
jS

wS
j

aS
j j

−wS
Sc\{ j} +

wS
j

aS
j j

AS
j,Sc\{ j}

dS
S+

dS
j

aS
j j

AS
jS

dS
j

aS
j j

−dS
Sc\{ j} +

dS
j

aS
j j

AS
j,Sc\{ j}

3.3 Parametric Simplex Tableau and Pivoting

We can now formulate the parametric simplex tableau under the S-active BFS, as shown in Table 1. The

tableau is indexed by basic variablesx1
S andx0

Sc in rows, and by nonbasic variablesx0
S andx1

Sc in columns, and

includes two rows of reduced costs for non-basic variables.It includes neither the conventional right-hand

side nor the objective value, as they are not needed for our purposes.

Notice that the tableau is shown in a form that highlights itsstructure as it is ready forpivoting on

elementaS
j j , with j ∈ Sc. Namely, for taking variablex0

j out of the basis, and puttingx1
j into the basis, which

corresponds to moving from theS-active to theS∪{ j}-active BFS. After such a pivot step is carried out,

one obtains the updated tableau shown in Table 2.
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3.4 Computing the Initial Tableau

We discuss next how to compute the initial tableau, corresponding to the /0-active BFS, in a numerically-

stable form that applies both to the discounted criterion ofconcern heretofore, and to the long-run average

criterion to be addressed in Section 6 below. The time-average tableaux arise as limits of the discounted

tableaux as the discount rateα vanishes.

Notice that (cf. (24))

B /0 =
(
I −Φ0)T

, N /0 =
(
I −Φ1)T

, H /0 =
(
B /0)−1

, A /0 = H /0N /0. (30)

Hence, the direct approach to computeA /0 would be to solve the linear equation system

(
A /0)T(

I −Φ0) =
(
I −Φ1). (31)

Yet, this has a major drawback: as the discount rateα vanishes, matricesI −Φa become increasingly ill-

conditioned, being singular forα = 0 — as they converge toI −Pa, wherePa , (pa
i j ).

To avoid such a difficulty, we will use the identity(I −Φa)1 = 1− φ a, which follows from (1). From

this and (30) we obtain
(
A /0)T(

1−φ0) = 1−φ1.

The latter identity has the advantage that it yields a corresponding identity in the limitα ↘ 0. Thus, denoting

by ξ a
i the duration of an(i,a)-stage (cf. Section 2.1), and using the McLaurin expansion

φa
i = E

[
e−αξ a

i

]
= 1−αma

i +O(α2), asα ↘ 0,

we obtain the limiting identity
(
A /0)T

m0 = m1,

wherema
i is the mean duration of an(i,a)-stage andm = (ma

i )i∈N.

We are thus led to the following numerically-stable approach to compute the initial tableau, forα ≥ 0

— where the caseα = 0 corresponds to the limiting tableau obtained asα vanishes. Letting

m̃a
i ,

{
(1−φa

i )/α if α > 0

ma
i if α = 0,

and m̃a = (m̃a
i )i∈N, choose an arbitrary statej∗ ∈ N, and solve theblock linear system(cf. Baker et al.

(2006)) [
IN,N\{ j∗}−Φ0

N,N\{ j∗} m̃0
]

T

A /0 =
[
IN,N\{ j∗}−Φ1

N,N\{ j∗} m̃1
]

T

(32)

to obtainA /0. Then, compute the initial reduced costs from (30) and Lemma3.1(d, e):

w /0 = q1−q0A /0

d /0 = r1− r0A /0.
(33)
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4. Simplex-Based Characterization of Indexability

This section draws on the above results, and on the classic parametric-objective LP theory in Gass and Saaty

(1955); Saaty and Gass (1954), adapted to the present setting, to develop a simplex-based characterization

of indexability. In what follows,S⊆ N denotes an arbitrary active set.

4.1 Optimality Conditions for a BFS

We start by addressing the following question: For which range of values of the wageν is theS-active BFS

optimal for parametric LP (22)? Or, equivalently: For whichrange of values of the wageν is theS-active

policy optimal forν-wage problem (6)? Though the answer is well-known in general from parametric LP

theory to be given by the so-calledcharacteristic intervalof such a BFS, we next elucidate it in the present

context.

Since the signs of marginal work and reward measures will play a key role in the answer, we next clarify

the meaning of such signs in terms of work and reward measures.

Lemma 4.1

(a) For j ∈ Sc:

wS
j > 0⇐⇒ gS∪{ j}

j > gS
j and dS

j > 0⇐⇒ f S∪{ j}
j > f S

j

wS
j < 0⇐⇒ gS∪{ j}

j < gS
j and dS

j < 0⇐⇒ f S∪{ j}
j < f S

j

wS
j = 0⇐⇒ gS∪{ j}

j = gS
j and dS

j = 0⇐⇒ f S∪{ j}
j = f S

j .

(b) For j ∈ S:

wS
j > 0⇐⇒ gS\{ j}

j < gS
j and dS

j > 0⇐⇒ f S\{ j}
j < f S

j

wS
j < 0⇐⇒ gS\{ j}

j > gS
j and dS

j < 0⇐⇒ f S\{ j}
j > f S

j

wS
j = 0⇐⇒ gS\{ j}

j = gS
j and dS

j = 0⇐⇒ f S\{ j}
j = f S

j .

Proof. Part (a) follows from Lemma 3.4(a) takingi = j and noting thatx1,S∪{ j}
j j > 0.

Part (b) follows from Lemma 3.4(b) takingi = j and noting thatx0,S\{ j}
j j > 0.

�

Thus, e.g., the conditionwS
j > 0 for somej ∈ Sc means that expanding the active set fromS to S∪{ j}

increases the work expended starting atj. Similarly, the conditionwS
j > 0 for some j ∈ S means that

shrinking the active set fromS to S\{ j} decreases the work expended.
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We next use the characterization of reduced costs in Lemma 3.2(c) to give a necessary and sufficient

optimality test for theS-active BFS in parametric LP (22), and hence for theS-active policy inν-wage

problem (6).

In the following result we assume thatp > 0 in LP (22). Note that its part (a) gives the characteristic or

optimality interval for theS-active BFS, having lower and upper breakpoints

νS , max
j∈Sc,wS

j >0 or j∈S,wS
j <0

νS
j and νS , min

j∈S,wS
j >0 or j∈Sc,wS

j <0
νS

j , (34)

respectively, while part (b) refers to concepts discussed at the end of Section 2.2. We further write

dS , max
j∈Sc,wS

j =0
dS

j and d
S
, min

j∈S,wS
j =0

dS
j . (35)

Here and below we adopt the convention that the maximum (resp. minimum) over an empty set has the

value−∞ (resp.+∞).

Lemma 4.2

(a) The S-active BFS is optimal for LP(22) iff

νS≤ ν ≤ νS, (36)

and

dS≤ 0≤ d
S
. (37)

Further, it is the unique optimal solution iff the inequalities in(36)–(37) hold strictly.

(b) The deterministic stationary policies determining the upper boundary∂̄H of the achievable work-

reward performance regionH are those with active sets S⊆ N satisfying(37) and

νS≤ νS. (38)

Proof. (a) The “if” part follows from the LP sufficient optimality condition given by nonnegativity of

reduced costs for non-basic variables. The inequalities in(36) follow by reformulating such a condition,

using Lemma 3.2(c) and (14), in terms of the marginal productivity measuresνS
j in (15).

The “only if” part follows by considering LP (22). From the latter’s MDP interpretation and the assump-

tion p > 0 it immediately follows that such an LP isnondegenerate, i.e., for any BFS, basic variables take

positive values, and hence the LP optimality condition is also necessary.

The uniqueness result follows by invoking the result that, for a nondegenerate LP, an optimal BFS is the

unique optimal solution iff the reduced costs of its non-basic variables are positive.
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(b) The stationary deterministic policies determining theupper boundarȳ∂H are those that are optimal

for theν-wage problem, hence for LP (22), for some wage valueν ∈ R. Therefore, by part (a), such sets are

precisely those satisfying (37)–(38).
�

4.2 Indexability Characterization and the CPI Algorithm

We next proceed to put together the above elements to give a complete characterization of indexability, both

in combinatorial and algorithmic terms. We will refer to theComplete-Pivoting Indexability(CPI) algorithm

described in Table 3. To avoid an unwieldy notation, we have used there a more algorithm-like notation,

replacing superscript sets by numeric superscripts, e.g.,writing a(k)
i j instead ofaSk

i j . The algorithm seeks to

construct a state orderingi1, . . . , in relative to which the bandit is indexable (cf. Definition 2.1), with MPI

valuesν∗
ik and active setsSk as in Section 2.2, in which case the Boolean variable INDEXABLE returns the

valuetrue. It adapts to the present setting theparametric-objective simplex algorithmof Gass and Saaty

(1955), letting the wageν decrease from+∞ to −∞, and draws on Lemma 4.2 to test for the structure of

successive optimal bases that ensures indexability. For moving from one basis to the next, the algorithm

updates the tableau performing a complete simplex pivot step (cf. Table 2), hence its name.

The following result gives a complete, combinatorial characterization of indexability in terms of prop-

erties of active setsS.

Theorem 4.3 The bandit is indexable iff d/0 ≤ 0≤ d
N

and, for any active set S⊆ N satisfying(37)–(38), it

holds that

νN = −∞, ν /0 = +∞

νS = max
j∈Sc : wS

j >0
νS

j > −∞, if S 6= N

νS = min
j∈S: wS

j >0
νS

j < +∞, if S 6= /0.

(39)

Proof. Consider the “if” part. Under the corresponding assumptions, the reader can easily verify that, by

construction, the CPI algorithm will terminate inn steps with Boolean variable INDEXABLE returning

the valuetrue. The algorithm hence constructs a state orderingi1, . . . , in relative to which the bandit is

indexable, as it satisfies the requirements in Definition 2.1.

Consider now the “only if” part. Suppose thus that the banditis indexable, and let /0⊂S⊂N be an active

set satisfying (37)–(38). Hence, by Lemma 4.2, theS-active policy is optimal forν-wage problem (6) iffν

lies in the interval[νS,νS]. If we let the wageν drop at or below the lower breakpointνS, by indexability it

must be possible to pivot to a newexpandedactive set of the formS∪{ j}, for somej ∈ Sc, which is optimal

for an adjacent interval ofν values. Using Lemma 3.2(c), such a requirement is readily formulated as the

second line in (39).
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Table 3: The Complete-Pivoting Indexability (CPI) Algorithm.

solve
[
IN,N\{ j∗}−Φ0

N,N\{ j∗} m̃0
N

]
T

A(0) =
[
IN,N\{ j∗}−Φ1

N,N\{ j∗} m̃1
]

T

[
w(0)

d(0)

]
:=

[
q1

r1

]
−

[
q0

r0

]
A(0); S0 := /0; k := 1; INDEXABLE := true

if max
j∈N

w(0)
j ≤ 0 or min

j∈N
w(0)

j < 0 or max
j∈N : w(0)

j =0
d(0)

j > 0, INDEXABLE := false

while INDEXABLE and k≤ n do
ν(k−1)

j := d(k−1)
j /w(k−1)

j , for j ∈ Sc
k−1,w

(k−1)
j > 0 and j ∈ Sk−1,w

(k−1)
j < 0

pick ik ∈ argmax
j∈Sc

k−1,w
(k−1)
j >0

ν(k−1)
j ; ν∗

ik := ν(k−1)
ik

; Sk := Sk−1∪{ik}

if max
j∈Sk−1,w

(k−1)
j <0

ν(k−1)
j > ν∗

ik, INDEXABLE := false

else if k < n

p(k−1) = 1/a(k−1)
ikik

; y(k−1) := p(k−1)A(k−1)
Nik

; z(k−1) := A(k−1)
ikN

[
w(k)

Sk
−w(k)

Sc
k

d(k)
Sk

−d(k)
Sc

k

]
:=


w(k−1)

Sk−1
−w(k−1)

Sc
k−1

d(k−1)
Sk−1

−d(k−1)
Sc

k−1


+ p(k−1)

[
w(k−1)

ik

d(k−1)
ik

]
{

A(k−1)
ikN +eT

ik

}

A(k) := A(k−1) −y(k−1)z(k−1)

A(k)
Nik

:= −y(k−1); A(k)
ikN := p(k−1)z(k−1); a(k)

ikik
:= p(k−1)

A(k) := A(k−1) − p(k−1)
{

A(k−1)
Nik

A(k−1)
ikN +A(k−1)

Nik
eT

ik −eikA
(k−1)
ikN −eike

T

ik

}

if max
j∈Sc

k

w(k)
j ≤ 0, INDEXABLE := false

end{ if }
k := k+1

end{ while }

if k = n+1 and {max
j∈N

w(n)
j ≤ 0 or min

j∈N
w(n)

j < 0}, INDEXABLE := false
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Similarly, if we let the wageν rise at or above the upper breakpointνS, by indexability it must be

possible to pivot to a newshrinkedactive set of the formS\{ j}, for some j ∈ S, which would be optimal

for an adjacent interval ofν values. Using Lemma 3.2(c), such a requirement is formulated as the third line

in (39).

The relations for the casesS= /0 andS= N follow along similar lines, as indexability implies that the

/0-active (resp.N-active) BFS must be optimal forν large (resp. small) enough.
�

Theorem 4.3 immediately yields the following algorithmic characterization of indexability.

Proposition 4.4 The bandit is indexable iff algorithm CPI terminates in n steps withINDEXABLE = true.

Then, the computed indexν∗
j is the bandit’s MPI, and the following relations hold:

max
j∈N : w

S0
j >0

νS0
j = νS0

i1
= ν∗

i1, (40)

ν∗
in = νSn

in = min
j∈N : wSn

j >0
νSn

j , (41)

and, for2≤ k≤ n,

max
j∈Sc

k−1 : w
Sk−1
j >0

νSk−1
j = νSk−1

ik
= ν∗

ik ≤ ν∗
ik−1

= νSk−1
ik−1

= min
j∈Sk−1 : w

Sk−1
j >0

νSk−1
j . (42)

We next assess the computational complexity of the CPI algorithm’s (while) loop, i.e., excluding the

initialization stage. We use the term “arithmetic operations” to include both additions/subtractions and

multiplications/divisions.

Proposition 4.5 The CPI algorithm’s loop performs at most2n3 +O(n2) arithmetic operations.

Proof. Observation of Table 3 shows that the more expensive operation at each stepk is the matrix update

A(k) := A(k−1) − p(k−1)y(k−1)z(k−1), which takes 2n2 arithmetic operations. Carrying outn steps yields the

stated count.
�

4.3 Reduced Tableaux and the RPI Algorithm

We seek next to eliminate unnecessary operations from the CPI algorithm. The key observation is that the

tableau’s rows corresponding to basic variablesx1
S are not used to update reduced costs in the CPI algorithm.

Hence, it suffices to store and update onlyreduced tableaux, such as that shown in Table 4, which is set up

for pivoting on elementaS
j j , for j ∈ Sc. Observation of Table 2 shows that a reduced tableau can be updated

without using the deleted rows. Simplifying the CPI algorithm accordingly yields theReduced-Pivoting

Indexability(RPI) algorithm in Table 5.

As shown next, the RPI improves the operation count of the CPIalgorithm by a factor of two.

22



Table 4: Reduced Tableau forS-Active BFS, Ready for Pivoting onaS
j j .

(
x0

S

)
T

x1
j

(
x1

Sc\{ j}

)
T

x0
j AS

jS aS
j j AS

j,Sc\{ j}

x0
Sc\{ j} AS

Sc\{ j},S AS
Sc\{ j}, j AS

Sc\{ j},Sc\{ j}

wS
S −wS

j −wS
Sc\{ j}

dS
S −dS

j −dS
Sc\{ j}

Table 5: The Reduced-Pivoting Indexability (RPI) Algorithm.

solve
[
IN,N\{ j∗}−Φ0

N,N\{ j∗} m̃0
N

]
T

A(0) =
[
IN,N\{ j∗}−Φ1

N,N\{ j∗} m̃1
]

T

[
w(0)

d(0)

]
:=

[
q1

r1

]
−

[
q0

r0

]
A(0); S0 := /0; k := 1; INDEXABLE := true

if max
j∈N

w(0)
j ≤ 0 or min

j∈N
w(0)

j < 0 or max
j∈N : w(0)

j =0
d(0)

j > 0, INDEXABLE := false

while INDEXABLE and k≤ n do
ν(k−1)

j := d(k−1)
j /w(k−1)

j , for j ∈ Sc
k−1,w

(k−1)
j > 0 and j ∈ Sk−1,w

(k−1)
j < 0

pick ik ∈ argmax
j∈Sc

k−1,w
(k−1)
j >0

ν(k−1)
j ; ν∗

ik := ν(k−1)
ik

; Sk := Sk−1∪{ik}

if max
j∈Sk−1,w

(k−1)
j <0

ν(k−1)
j > ν∗

ik, INDEXABLE := false

else if k < n

p(k−1) = 1/a(k−1)
ikik

; y(k−1) := p(k−1)A(k−1)
Sc

kik
; z(k−1) := A(k−1)

ikN

[
w(k)

Sk
−w(k)

Sc
k

d(k)
Sk

−d(k)
Sc

k

]
:=


w(k−1)

Sk−1
−w(k−1)

Sc
k−1

d(k−1)
Sk−1

−d(k−1)
Sc

k−1


+ p(k−1)

[
w(k−1)

ik

d(k−1)
ik

]
{

A(k−1)
ikN +eT

ik

}

A(k)
Sc

kN := A(k−1)
Sc

kN −y(k−1)z(k−1); A(k)
Sc

kik
:= −y(k−1)

if max
j∈Sc

k

w(k)
j ≤ 0, INDEXABLE := false

end{ if }
k := k+1

end{ while }

if k = n+1 and {max
j∈N

w(n)
j ≤ 0 or min

j∈N
w(n)

j < 0}, INDEXABLE := false
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Proposition 4.6 The RPI algorithm’s loop performs at most n3 +O(n2) arithmetic operations.

Proof. The loop’s operation count is dominated by the matrix update A(k)
Sc

kN := A(k−1)
Sc

kN − y(k−1)z(k−1) shown

in Table 5, which takes 2(n−k)n arithmetic operations. Adding up such counts overk = 1, . . . ,n yields the

result.
�

5. Exploiting Special Structure

We proceed to discuss how one can leverage structural knowledge on a particular bandit model to obtain

substantially simpler indexability conditions and a faster index algorithm. While we had addressed such an

issue in Niño-Mora (2001, 2002, 2006d), by introducing anddeploying the class of PCL-indexable bandits,

the approach and results herein are both new, as they draw on the above simplex-based analyses, and of wider

applicability. In fact, we were motivated to develop them bythe difficulties encountered when trying to

deploy the PCL-indexability approach in the analysis of several complex bandit models. The new approach

below was successful in such cases, yielding sound indexability analyses and new index algorithms in Niño-

Mora (2006e, 2007a,d).

5.1 LP(F )-Indexable Bandits and the FPAG(F ) Index Algorithm

When investigating a particular restless bandit model, oneis concerned with identifying analytically a range

of model parameters for which the model is indexable. Similarly as in the earlier work mentioned, our

approach to establish a priori indexability of a bandit model is based on identifying the structure of optimal

active sets forν-wage problem (6), in the form of anactive-set familyF ⊆ 2N that containsan optimal

active setS∈ F for every wage valueν ∈ R. Note that such anF need not be a nested family, but should

contain the nested familiesF0 discussed in Section 2.2 that can arise as the model’s parameters are varied

over the range of concern.

Hence,(N,F ) is a set systemon ground set NhavingF as its family offeasible sets. Algorithmic

considerations lead us to impose strong structural properties on(N,F ), which refer to theouter andinner

boundariesof an active setS∈ F , defined respectively by

∂ out
F S,

{
j ∈ Sc : S∪{ j} ∈ F

}
and ∂ in

F S,
{

j ∈ S: S\{ j} ∈ F
}
. (43)

We will further say that two active setsSandS∪{ j}, with j ∈ Sc, areadjacent.

Definition 5.1 We say that(N,F ) is amonotonically connected set systemif:

(i) /0,N ∈ F ;
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Table 6: Minimal Tableau forS-Active BFS.
(
x1

Sc

)
T

x0
Sc AS

ScSc

wS
Sc

dS
Sc

(ii) for every S,S′ ∈ F with S⊂ S′ there existj ∈ ∂ out
F

S and j ′ ∈ ∂ in
F

S′ such thatS⊂ S∪{ j} ⊆ S′ and

S⊆ S′ \{ j ′} ⊂ S′; and

(iii) for any S,S′ ∈ F with S 6= S′, it holds thatS∪S′ ∈ F .

While various types of set system have been previously investigated, e.g. matroids or greedoids, to the

best of our knowledge the concept of monotonically connected set system in Definition 5.1 is first introduced

herein. The term “monotonically connected” is motivated bythe fact that, in such a set system, one can

always connect two feasible setsS⊂ S′ by a monotone increasing sequenceS1 ⊂ ·· · ⊂ Sm of adjacent

sets inF , with S1 = S, Sm = S′. Further, one can also connect two distinct feasible setsS 6= S′ through

two successive monotone sequences of adjacent sets inF , the first of which is monotone increasing and

connectsS to S∪S′, while the second is monotone decreasing and connectsS∪S′ to S′.

Assumption 5.2 (N,F ) is a monotonically connected set system.

We will further refer to theFast-Pivoting Adaptive-Greedyindex algorithm FPAG(F ) described in

Table 8. This is a simplex-based implementation of the adaptive-greedy index algorithm for PCL-indexable

bandits introduced in Niño-Mora (2001, 2002), whose scopewe extend herein to the present broader setting.

The FPAG(F ) algorithm is obtained by simplifying the CPI and RPI algorithms above by (i) storing and

updating onlyminimal tableauxas shown in Table 6; and (ii) eliminating the indexability test at each step.

Note that the minimal tableau for theS∪{ j}-active BFS is readily computed from that for theS-active BFS

in Table 6, as shown in Table 7.

The results in Section 4 motivate us to introduce the following class of bandits, which we termLP(F )-

indexableas their are based on LP analyses.

Definition 5.3 (LP(F )-indexability) We say that a bandit isLP(F )-indexableif:

(i) w/0
i ,w

N
i ≥ 0 for i ∈ N, andd /0 ≤ 0≤ d

N
;

(ii) for each active setS∈ F , wS
i > 0 for i ∈ ∂ in

F
S∪∂ out

F
S; and
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Table 7: Minimal Tableau forS∪{ j}-Active BFS, Obtained by Pivoting onaS
j j .

(
x1

Sc\{ j}

)
T

x0
Sc\{ j} AS

Sc\{ j},Sc\{ j}−
AS

Sc\{ j}, jA
S
j,Sc\{ j}

aS
j j

wS
Sc\{ j}−

wS
j

aS
j j

AS
Sc\{ j}, j

dS
Sc\{ j}−

dS
j

aS
j j

AS
Sc\{ j}, j

Table 8: The Fast-Pivoting Adaptive-Greedy Index Algorithm FPAG(F ).

solve A(0)
[
IN,N\{ j∗}−Φ0

N,N\{ j∗} m̃0
]

=
[
IN,N\{ j∗}−Φ1

N,N\{ j∗} m̃1
]

[
w(0)

d(0)

]
:=

[
q1

r1

]
−

[
q0

r0

]
A(0); S0 := /0

for k := 1 to n do
ν(k−1)

i := d(k−1)
i /w(k−1)

i , i ∈ ∂ out
F

Sk−1

pick ik ∈ argmax
{

ν(k−1)
i : i ∈ ∂ out

F Sk−1
}

; ν∗
ik := ν(k−1)

ik
; Sk := Sk−1∪{ik}

if k < n then

A(k)
Sc

kik
:= A(k−1)

Sc
kik

/a(k−1)
ikik

; A(k)
Sc

kSc
k

:= A(k−1)
Sc

kSc
k

−A(k)
Sc

kik
A(k−1)

ikSc
k

end { if }

w(k)
Sc

k
:= w(k−1)

Sc
k

−w(k−1)
ik

A(k)
Sc

kik
; d(k)

Sc
k

:= d(k−1)
Sc

k
−d(k−1)

ik
A(k)

Sc
kik

end{ for }
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(iii) for every wageν ∈ R there exists an optimal active setS∈ F for (6).

We note that conditions (i, ii) are meant to be established through an ad hocwork-reward analysisfor the

model at hand, while condition (iii) will be typically established by DP arguments. See Niño-Mora (2006e,

2007a,d) for specific examples.

We are now ready to present what we consider the main result ofthis paper. While its part (a) says that

LP(F )-indexability is a sufficient condition for indexability, with the MPI being computed by algorithm

FPAG(F ), its part (b) says that such a condition is also necessary, in that an indexable bandit is always

LP-indexable, relative to some nested active-set family.

Theorem 5.4 The following holds:

(a) An LP(F )-indexable bandit is indexable, and its MPI is computed in nondecreasing order by algo-

rithm FPAG(F ).

(b) An indexable bandit is LP(F )-indexable relative to some nested active-set familyF .

Proof. (a) Since the core of the following proof is geometric, to help the reader visualize and grasp the

following arguments we will refer to Figure 3 for illustration, which represents the achievable work-reward

performance regionH of a bandit (cf. Section 2.2).

Suppose the bandit is LP(F )-indexable. We first note that conditions (i, ii) in Definition 5.3 imply,

by Lemma 4.2(a), that the /0-active (resp.N-active) BFS is optimal for parametric LP problem (22) iff

ν ≥ ν /0 > −∞ (resp. iff ν ≤ νN < +∞). Imagine now that the parametric-objective simplex algorithm of

Gass and Saaty (1955) is run on such an LP, by decreasing the wage parameterν from +∞ to −∞. Since

the LP is bounded, this will yield a finite decreasing sequence of distinct breakpoints in theν axis, which is

nonempty since it contains the finite valuesν /0 andνN. Note also that multiple successive iterations of the

algorithm might correspond to the same breakpoint. The sequence of adjacent closed intervals determined

by such breakpoints have the property that there is a unique optimal BFS for values ofν lying strictly within

each interval.

We may visualize the progress of the Gass-Saaty algorithm inFigure 3. The key observation is that,

geometrically,as the wageν is decreased from+∞ to −∞ the algorithm traverses the upper boundary∂̄H

of regionH from left to right, pivoting through a sequence of BFS of LP(22)whose successive values in the

g (work) axis are increasing. Such a sequence of BFS will yield work-reward points that contain all vertices

of H liying in its upper boundary, which are marked by black circles in Figure 3; yet, other BFS produced

in the algorithm might yield points that are not vertices ofH, such as those marked by small black squares.
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Notice that, in the figure, the interval ofν values for which a BFS yielding a point in the upper boundary is

optimal is visualized as the interval between the left and right slopes in the upper boundary meeting at such

a point.

Consider the case that there is just one breakpoint, sayλ1, so thatλ1 = ν /0 = νN. For ν = λ1, the

interpretation of LP (22) in terms of (6) ensures that the DP equations (7) satisfy

ϑ∗
i (λ1) = r1

i −νq1
i + ∑

j∈N

φ1
i j ϑ∗

j (λ1) = r0
i −νq0

i + ∑
j∈N

φ0
i j ϑ∗

j (λ1), i ∈ N,

and hence every active setS⊆ N yields an optimal basis. Therefore, Definition 5.1(i, ii) ensures that there

exists a monotone increasing sequenceS0 ⊂ ·· · ⊂ Sn of adjacent active sets inF , with S0 = /0 andSn = N,

which, by Definition 5.3(ii) and Lemma 4.1, satisfies the requirements of Definition 2.1, ensuring that the

bandit is indexable. Further, such an active-set sequence can be constructed by running algorithm FPAG(F ),

which corresponds to takingn pivot steps in the Gass and Saaty algorithm at the only breakpoint λ1.

Consider now the case that there areL ≥ 2 distinct breakpoints, which we denote byλ1 > · · · > λL.

Then, the /0-active BFS and theN-active BFS will be the only optimal solutions forν > λ1 and forν < λL,

respectively. Further, for 2≤ l ≤ L, the LP will have a unique optimal BFS in the intervalν ∈ (λl−1,λl ),

whose active set we denote byTl . Such active sets satisfygTl < gTl+1 and, by Definition 5.3(iii),Tl ∈ F .

Further, forν = λl , the interpretation of LP (22) in terms ofν-wage problem (6) ensures that the latter’s DP

equations (7) must satisfy

ϑ∗
i (λl ) = r1

i −νq1
i + ∑

j∈N
φ1

i j ϑ∗
j (λl ) = r0

i −νq0
i + ∑

j∈N
φ0

i j ϑ∗
j (λl ), i ∈ (Tl+1\Tl )∪ (Tl \Tl+1),

and therefore every active setSwith Tl ⊆ S⊆ Tl ∪Tl+1 or Tl+1 ⊆ S⊆ Tl ∪Tl+1 yields an optimal solution for

theλl -wage problem, and hence an optimal BFS for the LP.

We now argue by contradiction that such an active-set sequence must be monotone increasing, i.e.,

Tl ⊂ Tl+1 for all l . For suppose such is not the case, so thatTl ∪Tl+1 ⊃ Tl+1 for somel . Then, Definition

5.1(ii, iii) ensures both thatTl ∪ Tl+1 ∈ F , and that there exists a monotone decreasing sequenceS1 ⊃

·· · ⊃ Sm of adjacent sets inF connectingS1 = Tl ∪Tl+1 to Sm = Tl+1. By the argument at the end of the

previous paragraph, it follows that each such active setSk must be optimal forν = λl , and hence satisfy

gTl ≤ gSk ≤ gTl+1, as illustrated in Figure 3. Yet, construction of theSk’s, Definition 5.3(ii) and Lemma 4.1

imply thatgS1 > · · ·> gSm, and hencegTl∪Tl+1 > gTl+1, which contradicts the inequalitygTl∪Tl+1 ≤ gTl+1 argued

before.

Therefore, set sequenceTl is monotone increasing and hence, by Definition 5.1(ii), there exists a mono-

tone increasing sequenceS1 ⊂ ·· · ⊂ Sm of adjacent active sets inF connectingS1 = Tl to Sm = Tl+1. By

the above DP argument, each of theSk’s yields an optimal BFS forν = λl and, further, Definition 5.3(ii)
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Figure 3: Geometry of the Gass-Saaty / FPAG(F ) Algorithm for an LP(F )-Indexable Bandit.

and Lemma 4.1 imply thatgS1 < · · · < gSm. Further, such a sequence ofSk’s can be actually contructed

using algorithm FPAG(F ), since this is just a form of the Gass and Saaty algorithm that only considers BFS

having active sets inF .

The above shows that algorithm FPAG(F ) will construct an increasing sequence of adjacent active sets

in F connecting /0 toN, which satisfies the requirements of Definition 2.1, implying that the bandit is

indexable.

(b) This part follows by noticing that a bandit that has been shown to be indexable via Proposition 4.4, is

LP(F )-indexable relative to the nested active-set familyF constructed by algorithm CPI. This completes

the proof.
�

The following result assesses the computational complexity of algorithm FPAG(F ), showing that it

improves significantly upon that of algorithm RPI. In particular, the complexity of its “for” loop matches

that of solving ann×n linear equation system by Gaussian elimination.

Proposition 5.5 The FPAG(F ) algorithm’s loop performs(2/3)n3 +O(n2) operations.

Proof. The loop’s operation count is dominated by the update of matrix A(k)
Sc

kSc
k

at each stepk, which takes

2(n−k)2 arithmetic operations, yielding the stated total arithmetic operation count.
�

In the special case of nonrestless semi-Markov bandits, using algorithm FPAG(F ) with F = 2N yields

a (2/3)n3 + O(n2) method to compute the Gittins index, as the initialization step becomes trivial, thus

matching the complexity result in Niño-Mora (2006a) for classic Markov bandits.
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5.2 PCL(F )-Indexable Bandits Revisited

We next revisit the concept of PCL(F )-indexability, introduced and developed in Niño-Mora (2001, 2002,

2006d), in light of the above developments.

Definition 5.6 (PCL(F )-indexability) We say that a bandit isPCL(F )-indexableif:

(i) for each active setS∈ F , wS
i > 0 for i ∈ N; and

(ii) for every wageν ∈ R there exists an optimal active setS∈ F for (6); or

(ii’) algorithm FPAG(F ) produces a nonincreasing index sequence:ν∗
i1 ≥ ν∗

i2 ≥ ·· · ≥ ν∗
in.

Thus, a PCL(F )-indexable bandit is an LP(F )-indexable bandit having positive marginal work for

active setsS∈ F . Note that Definition 5.6 differs slightly from those given in the earlier work mentioned,

which only required satisfaction of conditions (i, ii’), and imposed less stringent requirements on set system

(N,F ). Our motivation for introducing the above alternate form isapplied: we have found that, in the

analysis of bandit models with complex state spaces, condition (ii’) can be much more difficult to establish

than condition (ii). See, e.g., Niño-Mora (2007a).

Proposition 5.7 In Definition5.6, conditions(i, ii) and (i, ii’) are equivalent.

Proof. Suppose that conditions (i, ii) hold. Then, the bandit is LP(F )-indexable and, by Theorem 5.4(a),

it is indexable, with algorithm FPAG(F ) computing its MPIν∗
i in nondecreasing order. Hence, condition

(ii’) holds.

Suppose now that conditions (i, ii’) hold. Then, it is shown in Niño-Mora (2001, Cor. 2) and in Niño-

Mora (2002, Th. 6.3) (in increasingly general settings) that, for a finite-state Markovian bandit, such con-

ditions imply its indexability, from which (ii) follows. The extension of such a result to the present semi-

Markov setting is straightforward.
�

6. Extension to the Average Criterion

In applications of restless bandit indexation to problems under the (long-run) average criterion, one must

address the version ofν-wage problem (6) based on reward and work measures

f π
i , lim inf

T↗∞

1
T

E
π
i

[∫ T

0
Ra(t)

X(t) dt

]
= lim inf

K↗∞

1
K

E
π
i

[
K

∑
k=0

rak
Xk

]
, (44)

and

gπ
i , limsup

T↗∞

1
T

E
π
i

[∫ T

0
Qa(t)

X(t)e
−αt dt

]
= limsup

K↗∞

1
K

E
π
i

[
K

∑
k=0

qak
Xk

e−αtk

]
. (45)
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As in Niño-Mora (2002, Sec. 6.5), we must now assume that theembedded processXn is communicating,

i.e., every state can be reached from every other state undersome stationary policy. This ensures that the

above measures do not depend on the initial statei under a stationary deterministic policy, and hence one

can write f S andgS for active setsS⊆ N. Hence, the correspondingν-wage problem (6) can be solved by a

stationary deterministic policy independent ofi, which allows one to readily extend the indexability theory

above to the average criterion.

Regarding the above algorithms, they apply without modification to the average criterion, as the results

in Section 3.4 show that the required tableaux emerge as limits of their discounted counterparts as the

discount rate vanishes, and also shows how to compute the initial tableau. To extend the results in Section

5 one must further assume that the active-set familyF of concern has the property that, for everyS∈ F ,

the S-active policy isunichain, i.e., it induces on the embedded processXn a single recurrent class plus a

(possibly empty) set of transient states.

7. Computational Experiments

This section reports the results of several computational experiments, based on the author’s MATLAB im-

plementations of the algorithms discussed in this paper.

7.1 Assessing the Prevalence of Indexability and PCL-Indexability

We start by assessing experimentally the prevalence of the indexability and PCL-indexability properties, in

two different classes of randomly generated restless bandit instances.

In the first class, we considered discrete-time bandits. We conducted a simulation study based on gen-

erating a random i.i.d. sample of 107 bandit instances withqa
i = a and dense transition probability matrices

— obtained by appropriately scaling a matrix with Uniform[0,1] entries — for each of the state-space sizes

n = 3, . . . ,7. For each instance, we used the above algorithms to test forindexability and PCL-indexability

(relative to anyF ), as the discount factorβ varies. Note that the valueβ = 1 refers to the average criterion

discussed in Section 6.

Table 9 reports the results. They show that the prevalence ofnonindexable bandits fastly decreases as

the discount factor gets smaller, and as the state space getslarger. The highest prevalence of nonindexable

projects (1 out of 12225) was found for projects with 3 statesunder the average criterion. Indexability thus

appears to be a highly prevalent property over this class of instances, and the more so the larger the state

space and the smaller the discount factor. The table furthershows the same pattern with the number of

instances found to be indexable yet not PCL-indexable. The highest prevalence of such bandits was found
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Table 9: Counts on Random i.i.d. Samples of 107 Bandit Instances.

Nonindexable Indexable non-PCL
number of states number of states

β 3 4 5 6 7 3 4 5 6 7
0.1 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0 0 0
0.7 0 0 0 0 0 30 0 0 0 0
0.8 16 1 0 0 0 574 32 1 0 0
0.9 135 7 0 0 0 4460 509 36 5 0
1.0 818 66 4 0 0 18631 3640 425 50 3

in the case of 3 states under the average criterion, being then of only about 1 non-PCL instance out of 537

indexable instances.

In the second class of instances, we considered continuous-time bandits with exponential transition rates

λ a
i j for statesi 6= j, having the following structure:

λ 1
i j = λ 0

i j + µi j , i 6= j, (46)

for some nonnegativeµi j ’s. The relations in (46) model a situation where the bandit is subject to two differ-

ent types of events: “regular events” and “extra events.” Regular events are driven by transition probabilities

λ 0
i j and are not subject to control. Extra events, which coexist with regular event, can be turned on and off.

When activated, they are driven by transition ratesµi j .

For such a system, two definitions for theQa
i ’s spring to mind. One is the conventional definitionQa

i , a.

The other is to set

Q1
i , ∑

j∈N\{i}

µi j , Q0
i ≡ 0, (47)

so thatQ1
i is the rate at which extra events occur in statei when they are turned on. In the first definition

of theQa
i ’s, the wage parameterν in (6) is the charge incurred per unit time that the extra-events stream is

turned on. In the second, it is the cost incurred per extra event generated.

Table 10 reports the results of the corresponding simulation study for such a class of instances — re-

formulated into discrete-time via uniformization. The pairs shown give the counts under both definitions of

the Qa
i ’s, starting with (47). Thus, e.g., the pair(19,45) for β = 0 means that, out of 107 instances with

3 states, 19 of them were nondexable using theQa
i definition in (47), and 45 were nonindexable using the

conventional definitionQa
i ≡ a.

32



Table 10: Counts on Random Samples of 107 Bandit Instances for Two Definitions ofQa
i .

Nonindexable Indexable non-PCL
number of states number of states

β 3 4 5 6 7 3 4 5 6 7
0.1 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0
0.8 0 1 0 0 0 0 0 0 0 0
0.9 0 7 0 0 0 (0,7) 0 0 0 0
1.0 (19,45) (0,3) (1,0) 0 0 (317,924) (62,58) (5,2) (1,0) 0

Non-indexable

Indexable

PCL-indexable

GCL-indexable

Figure 4: Classification of Restless Bandits.

The table shows that, in this class of instances, both indexability and PCL-indexability are even more

highly prevalent properties than in the previous class. It further shows that, forn = 3 states, both the

prevalences of instances that are indexable and of instances that are PCL-indexable are significantly higher

under definition (47).

Such experimental evidence supports the claim that, at least for bandits with dense transition probability

matrices, both indexability and PCL-indexability are highly prevalent properties. Figure 4 shows a modified

version of the classification of restless bandits introduced in Niño-Mora (2001), updated to better reflect

relative class sizes. Note that the figure refers to the classof GCL-indexablebandits, named after their

satisfaction ofgeneralized conservation laws(GCL), which are PCL-indexable relative toF = 2N.
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7.2 Runtime Comparison of Index Algorithms

In contemporary computers, the actual runtime performanceof an algorithm depends both on its arithmetic

operation count and on its memory-access patterns, with thelatter being often the dominant factor. To

compare the performance of the algorithms discussed in thispaper, we have thus conducted a computational

study, using MATLAB implementations developed by the author. The experiments were performed on an

HP xw9300 254 (2.8 GHz) Opteron workstation running MATLAB 2006b under Windows XP x64. For

each of the state space sizesn = 1000,1500, . . . ,6000, a random discrete-time bandit instance with dense

transition probability matrices was generated. Transition matrices were obtained by scaling matrices with

Uniform[0,1] entries, dividing each row by its sum. Active rewards were also generated with Uniform[0,1]

entries, while passive rewards were set to zero. The discrete-time discount factor used wasβ = 0.8.

For each instance, the CPI algorithm was used to test both forindexability and for PCL-indexability (by

checking the signs of marginal work measures for the generated nested active-active set family). Since such

tests turned out positive in each case, the MPI values were computed using the CPI, RPI and FPAG(F )

algorithms, which was run takingF = 2N.

Figure 5 displays the recorded runtimes for each algorithm,where where the lines shown are obtained

by cubic least-squares fits. The results show that the FPAG algorithm, having an operation count of(2/3)n3,

is indeed the fastest of the three, consistently achieving speedup factors of about 1.3 over the CPI and

RPI algorithms, which exhibit similar runtimes, though theRPI algorithm was the slowest. Recall that

the operation counts are 2n3 andn3 for the CPI and the RPI algorithms, respectively. Such discrepancies

between theoretical and actual speedup factors are accounted for by noticing the algorithms memory-access

patterns. Thus, algorithm CPI, being based on complete pivoting steps, has efficient memory-access patterns,

as the coefficient matrixA is always updated as a contiguous memory block. In contrast,both the RPI and

the FPAG algorithms reduce the operation count at the expense of using and updating submatrices ofA,

which results in costly noncontiguous memory-access patterns. Yet, in the case of the FPAG algorithm, the

large reduction in arithmetic operations compensates suchinefficiencies, rendering it the fastest algorithm.
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