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Abstract Nonlinear mixed-effects models are frequently

used for pharmacokinetic data analysis, and they ac-

count for inter-subject variability in pharmacokinetic

parameters by incorporating subject-specific random

effects into the model. The random effects are often

assumed to follow a (multivariate) normal distribution.

However, many articles have shown that misspecifying

the random-effects distribution can introduce bias in

the estimates of parameters and affect inferences about

the random effects themselves, such as estimation of the

inter-subject variability. Because random effects are un-

observable latent variables, it is difficult to assess their

distribution. In a recent paper we developed a diag-

nostic tool based on the so-called gradient function to

assess the random-effects distribution in mixed models.

There we evaluated the gradient function for general-
ized liner mixed models only and in the presence of a

single random effect. However, assessing the random-

effects distribution in nonlinear mixed-effects models is

more challenging, especially when multiple random ef-

fects are present, and therefore the results from linear

and generalized linear mixed models may not be valid

for such nonlinear models. In this paper, we further

investigate the gradient function and evaluate its per-

formance for such nonlinear mixed-effects models which

are common in pharmacokinetics and pharmacodynam-

ics. We use simulations as well as real data from an

intensive pharmacokinetic study to illustrate the pro-

posed diagnostic test.
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Introduction

Nonlinear mixed-effects models are being widely used

in pharmacokinetics to study the pharmacological pro-

cesses within the body after administration of a drug in

order to characterize drug disposition (absorption, dis-

tribution, metabolism, and excretion). The term “Mixed-

effects” refers to the presence of both fixed effects and

random effects in the model. Fixed effects are regres-

sion parameters associated with covariates, while ran-

dom effects are subject-specific random quantities in-

corporated to capture the inter-subject variability.

In pharmacokinetics, it is important to understand

the inter-subject variation in pharmacokinetic param-

eters and its association with subject characteristics,

which could provide useful information, for example,

in developing dosing guidelines. Nonlinear mixed-effects

models account for the inter-subject variability by adding

subject-specific random effects to the model. The ran-

dom effects are latent and hence unobservable variables

that follow a distribution, which is unknown. Note that

the random effects also capture the potential correlation

between repeated measurements on the same subject,

which must not be ignored in the analysis.

To fit a nonlinear mixed-effects model, one often

needs to assume a distribution for the random effects.

Inferences are then based on the marginal likelihood

function after integrating out the random effects over

their assumed distribution. It is common to assume that

the random effects follow a (multivariate) normal dis-

tribution. The normality assumption makes computa-
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tion of the marginal likelihood more feasible. However,

it is well understood that misspecifying the random-

effects distribution can introduce bias in the estimates

of fixed-effects parameters (see, for example, [11,1,16,

2,9]) and it also affects the operating characteristics of

hypothesis tests (see, for example, [10,15]). More im-

portantly, inferences about the random effects them-

selves, such as estimation of the inter-subject variabil-

ity, are more likely to be affected by misspecification of

the random-effects distribution. For instance, the nor-

mality assumption often forces the predictions of ran-

dom effects to reflect normality, even when the cor-

rect random-effects distribution is far from normal [23].

Therefore, to obtain reliable inference it is important

to check the appropriateness of the assumed random-

effects distribution.

In the literature, a number of diagnostic tools have

been suggested for assessing the random-effects distri-

bution in linear mixed models [14,13,5] and also in gen-

eralized linear mixed models [20,18,25,22,3,12]. How-

ever, to the best of our knowledge, there is only one di-

agnostic tool available for checking the random-effects

distribution in nonlinear mixed-effects models. We de-

veloped this diagnostic test recently [8], which is based

on the so-called gradient function introduced in [24].

In our paper [8] we showed, via simulations, that the

diagnostic test based on the gradient function performs

well in detecting misspecification of the random-effects

distribution. However, the performance of this test was

evaluated in the case of generalized linear mixed mod-

els only and in the presence of a single random ef-

fect. It is not known how the diagnostic test performs

in nonlinear mixed-effects models, especially with mul-

tiple random effects, which are common in pharma-

cokinetics and pharmacodynamics. Obviously, nonlin-

ear mixed-effects models are more complex than linear

and generalized linear mixed models, and moreover, the

presence of multiple random effects makes assessment

of the random-effects distribution much more difficult.

Therefore, the results from linear and generalized lin-

ear mixed models may not be valid for such nonlinear

models. In this paper, we aim to investigate and evalu-

ate the performance of the diagnostic test based on the

gradient function in such nonlinear mixed-effects mod-

els. We use simulations and real data from an intensive

pharmacokinetic study.

Methods

Nonlinear mixed-effects models

In this subsection, we briefly explain the general form

of nonlinear mixed-effects models for pharmacokinetic

data analysis. Consider a pharmacokinetic study in which

N subjects are followed over time after administration

of a drug. Let Yi1, . . . , Yini
be ni repeated measure-

ments on the ith subject, where Yij is the outcome for

subject i measured at time tij . For example, Yij could

be the blood sample drawn after administration of the

anti-asthmatic agent theophylline. Also, let Ui denote a

vector of covariates representing conditions under which

measurements on subject i are observed. For example,

when each subject receives a single oral dose, say di,

then Ui = di. Finally, assume that Ai is a vector of

characteristics of subject i that do not change during

the study. For example, Ai could include age, gender,

height, ethnicity, and smoking status. Now, the nonlin-

ear mixed-effects model can be expressed as a two-stage

hierarchy as follows: (See [7])

Stage 1: Individual-Level Model

Yij = m(tij , Ui, θi) + εij , j = 1, . . . , ni,

Stage 2: Population Model

θi = d(Ai, β, bi), i = 1, . . . , N.

(1)

In Stage 1, m is a “known” nonlinear function of time

which also depends on the subject conditions Ui and an

r × 1 vector of pharmacokinetic parameters θi, specific

to subject i. For example,m could be a one-compartment

model as in (5), where θi = (kai, kei, Cli)
′ and Ui = di.

Also, εij ’s are independent measurements errors, each

of which has a normal distribution with mean 0 and

variance σ2. In Stage 2, d is an r-dimensional function

that describes the relationship between the elements

of θi and between-subject covariates Ai in terms of a

p× 1 fixed parameter β whose elements are referred to
as fixed effects, and a q × 1 vector bi of random effects

representing the inter-subject variability. For instance,

d could be the three-dimensional function in (6). Note

that because the pharmacokinetic parameters can vary

from subject to subject, the random effects bi are in-

corporated into the model to capture the inter-subject

variability through a hierarchical analysis. The random

effects bi, which are unobservable variables with an un-

known distribution, are assumed to have a zero mean

and a covariance matrix D whose elements are known

as variance components.

Let γ = (β, σ2, D)′ represent all unknown param-

eters in model (1). The estimates of parameters can

then be obtained using the maximum likelihood esti-

mation method. The maximum likelihood approach re-

quires some assumption on the distribution of random

effects. For this, assume that the random effects bi fol-

low a specific distribution, which is denoted by G. A

typical choice for G is the multivariate normal distri-

bution, i.e., bi ∼ N(0, D). The log-normal distribution
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is also used in pharmacokinetics. Denoting the condi-

tional distribution of the outcome Yij given the random

effects bi by fi(yij |bi), one can write the marginal log-

likelihood function for model (1) as follows

l(γ) = ln

N∏
i=1

∫
Rq

[ ni∏
j=1

fi(yij |bi)
]
dG(bi). (2)

The integral in marginal log-likelihood (2) may not be

solved analytically, and it requires numerical approx-

imation. We use Gauss-Hermite quadrature (see, e.g.,

[19]), which can provide reliable approximations. The

integral approximation and the maximisation of the

log-likelihood function (2) with respect to γ can be

done simultaneously in a standard software package like

NONMEM, SAS or R. In this paper, we use PROC

NLMIXED in SAS to obtain the maximum likelihood

estimates of parameters.

Obviously, the random-effects distribution G is cru-

cial in the calculation of the log-likelihood function (2)

and, as discussed in the introduction, a misspecified

random-effects distribution can lead to biased parame-

ter estimates and invalid inferences. It is therefore im-

portant to check whether or not the assumed random-

effects distribution is correctly specified. It should be

pointed out that since random effects are unobservable

variables, assessing their distribution is difficult.

A diagnostic tool for the random-effects distribution

As discussed in the previous subsection, to obtain the

maximum likelihood estimates of parameters in the non-

linear mixed-effects model (1), one needs to assume a

distribution for the random effects bi. In this subsection,

we describe a diagnostic tool to verify whether or not

an assumed random-effects distribution G is correctly

specified.

Let Yi = (Yi1, . . . , Yini
)′ be the vector of repeated

measurements on subject i, i = 1, . . . , N . To check the

adequacy of an assumed random-effects distribution G,

[24] suggested to use the so-called gradient function

given by

∆ (G, b) =
1

N

N∑
i=1

fi (yi|b)
fi (yi|G)

, b ∈ Rq, (3)

where fi(yi|b) and fi(yi|G) are, respectively, the condi-

tional (given random-effect point b) and marginal dis-

tributions of Yi. The gradient can be interpreted as an

average of likelihood ratios, each ratio measuring how

much more likely Yi is to be observed for subject i

if the corresponding random effect bi equals b rather

than being sampled from the distribution G. Note that

calculation of the gradient function is easy because it

only requires the calculation of the marginal and condi-

tional distributions of all N subjects. [24] showed that

if the random-effects distribution G is correctly spec-

ified, then ∆ (G, b) ≤ 1 for all b ∈ Rq, and moreover

∆ (G, b) = 1 for all b in the support of G. Hence, de-

viations of the gradient function from 1 in the support

points ofG indicate inadequacy ofG and that the model

can be improved by replacing G by some other random-

effects distribution. They suggested to plot the gradi-

ent function versus points b in the support of G, and

if the gradient plot is close to 1 then the adequacy of

G is confirmed. Despite the simplicity of this graphical

approach, it is not clear how misspecification can be

distinguished from random variability by such a plot,

especially when bi is not a scalar which requires eval-

uating a three or higher dimensional plot of gradient

function.

Based on the gradient function (3), we recently de-

veloped a formal diagnostic test for the random-effects

distribution (see [8]). Let the null hypothesis H0 says

the random-effects distribution G is correctly specified

and the alternative hypothesis Ha says otherwise. Hav-

ing considered all deviations of the gradient function

from 1, we constructed a test statistic for testing H0

versus Ha as follows

T =

∫
Rq

(
∆̂(Ĝ, b)− 1

)2
dĜ(b), (4)

where Ĝ is the estimated random-effects distribution

obtained by replacing the covariance matrix D by its

maximum likelihood estimate, and ∆̂ denotes the esti-

mated gradient function based on Ĝ obtained simply

by replacing the unknown parameters in fi (yi|b) and

fi(yi|Ĝ) by their maximum likelihood estimates. If T

deviates much from 0, one can reject H0 indicating that

the assumed random-effects distribution G is not ade-

quate for random effects. The test statistic (4) consid-

ers a weight for each deviation of the gradient function

from 1 for each random-effect point b. The weight is the

estimated probability mass in point b. Note that T can

be calculated using Monte Carlo integration.

The asymptotic distribution of T is given in Theo-

rem 1 of [8], which is actually the distribution of weighted

sum of independent chi-squared random variables each

with one degree of freedom. The weights are eigenvalues

of the square matrix A′QA (specified in Theorem 1 of

[8]), which can be calculated using a software package.

The asymptotic distribution of T should be used

when the sample size N is sufficiently large. For small-

sample situations, we propose a parametric bootstrap

procedure to obtain the finite-sample distribution of the

test statistic T in (4). The key step in our bootstrap
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procedure, in order to obtain a bootstrap sample, is to

first generate random effects bsi , i = 1, . . . , N , from Ĝ

and then generate a bootstrap sample Y s
i , i = 1, . . . , N ,

from f̂i(yi|bsi ). We use 200 bootstrap samples to con-

duct the bootstrap test. Below we illustrate how the

asymptotic and bootstrap tests based on (4) can be

performed.

Implementation of the asymptotic test

The asymptotic test can be carried out by the following

steps:

1. Generate K, say 1000, random-effect points bk from

Ĝ.

2. Compute the gradient function (3) and its squared

deviation from 1 for each bk.

3. Calculate the test statistic T being the average of

the K squared deviations obtained in step 2 (which

is a Monte Carlo approximation of T ).

4. If T is greater than the 95% quantile of the asymp-

totic distribution (mentioned above), then rejectH0,

indicating that the assumed random-effects distri-

bution G is not appropriate for random effects. Oth-

erwise, G is correctly specified.

Implementation of the bootstrap test

The bootstrap test can be carried out by the following

steps:

1. Generate K, say 1000, random-effect points bk from

Ĝ.

2. Compute the gradient function (3) and its squared

deviation from 1 for each bk.

3. Calculate the test statistic T being the average of

the K squared deviations obtained in step 2 (which

is a Monte Carlo approximation of T ), and denote

it by Tobs.

4. For each bootstrap step s, s = 1, . . . , 200, repeat the

following two steps:

i. First generate random effects bsi , i = 1, . . . , N ,

from Ĝ and then generate a bootstrap sample

Y s
i , i = 1, . . . , N , from f̂i(yi|bsi ).

ii. Calculate the test statistic T for the bootstrap

sample obtained in step i and denote it by T s.

5. If the proportion of T s exceeding Tobs is less than

0.05, then reject H0, indicating that the assumed

random-effects distribution G is not appropriate for

random effects. Otherwise, G is correctly specified.

The above steps for the asymptotic and bootstrap

tests can be coded in a standard software package. A

SAS code is available from the author upon request.

In [8] we showed, via simulations, that both the

asymptotic and bootstrap tests perform well in detect-

ing misspecification of the random-effects distribution

in the case of generalized linear mixed models with one

random effect. However, it is not known how the tests

perform in nonlinear mixed-effects models, especially

in the presence of multiple random effects, as in (1). In

those cases, as discussed in the introduction, assessing

the random-effects distribution is more challenging. In

the next section, we use simulations and real data to in-

vestigate the performance of both the asymptotic and

bootstrap tests for assessing the random-effects distri-

bution in the nonlinear mixed-effects model (1).

Results

Real data: theophylline data

Theophylline is a well-known anti-asthmatic agent, ad-

ministered orally [4,6,7]. In an intensive pharmacoki-

netic study, 12 subjects were given the same oral dose

(mg/kg) of theophylline, and blood samples were taken

at several times following administration were assayed

for theophylline concentration [7]. The individual pro-

files, presented in Figure 1, show that the theophylline

concentrations have a similar shape for all subjects, but

peak concentration achieved, rise, and decay vary sig-

nificantly across the subjects. These differences are due

to the inter-subject variation in the underlying phar-

macokinetic processes, understanding of which is crit-

ical for developing dosing guidelines. To characterize

these processes formally, we consider the following one-

compartment model with first-order absorption and elim-

ination: (see also [7])

Ci(tij) =
dikaikei

CLi(kai − kei)

[
exp(−keitij)−exp(−kaitij)

]
+εij ,

(5)

where Ci(tij) is the observed theophylline concentration

on subject i at time tij , di is the dose administered to

subject i, kai is the fractional absorption rate constant

for subject i, kei is the fractional elimination rate con-

stant for subject i, and CLi is the clearance for subject

i. Note that the one-compartment model (5) can equiv-

alently be written based on the volume of distribution

(V ) by using the relationship CL = ke.V (see [17] p.

354).

From Figure 1, the pharmacokinetic parameters vary

from subject to subject, therefore we include subject-

specific random effects in the pharmacokinetic param-
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Fig. 1 Theophylline data: individual profiles for 12 subjects.

eters as follows

CLi = exp(β1 + bi1),

kai = exp(β2 + bi2),

kei = exp(β3 + bi3),

(6)

in which the vector of random effects bi = (bi1, bi2, bi3)′

is assumed to have mean 0 and covariance matrix D

given by

Cov(bi) = D =

d11 d12 d13d12 d22 d23
d13 d23 d33

 .
Assuming that bi follows a multivariate normal dis-

tribution, we obtained the maximum likelihood esti-
mates of parameters (fixed-effect parameters, residual

variance, and variance components of random effects)

in the one-compartment model (5-6) along with their

associated standard errors. The results are reported in

Table 1. Using the estimates of variance components

in this table, we computed the estimated correlation

matrix of bi as follows

Ĉorr(bi) =

 1.000 −0.098 0.672

−0.098 1.000 −0.261

0.672 −0.261 1.000

 ,
which indicates that the clearance is highly correlated

with the fractional elimination (Corr(b1i, bi3) = 0.672)

while it has a very small correlation with the fractional

absorption (Corr(b1i, bi2) = −0.098). Hence, it might be

reasonable to assume the clearance and the fractional

elimination are described by the same random effect,

rather than two (highly) correlated ones. Considering

the relationship CL = ke.V , we might let bi3 = λbi1,

Table 1 Theophylline data: the maximum likelihood esti-
mates of parameters (fixed-effect parameters, residual vari-
ance, and variance components of random effects) in the
one-compartment model (5) with the random effects bi =
(bi1, bi2, bi3)′ given in (6), along with the associated stan-
dard errors.

Parameter Estimate (s.e.)
Fixed effects:
β1 −3.277 (0.046)
β2 0.537 (0.063)
β3 −2.454 (0.064)

Residual variance:
σ2 0.624 (0.083)

Variance components of bi:
d11 0.057 (0.022)
d12 −0.012 (0.018)
d22 0.264 (0.054)
d13 0.030 (0.020)
d23 −0.025 (0.017)
d33 0.035 (0.017)
−2 log-likelihood 341.7

where λ is a fixed variance inflation parameter to be

estimated. Then, (6) can be simplified as

CLi = exp(β1 + bi1),

kai = exp(β2 + bi2),

kei = exp(β3 + λbi1).

(7)

Now, we fit the one-compartment model (5) with

the two random effects bi1 and bi2 given in (7) to the

theophylline data. Again it is needed to assume a dis-

tribution for the random effects, and here a bivariate

normal distribution is a handy choice. The parameter

estimates under the bivariate normality assumption of

bi1 and bi2 are calculated and reported in Table 2. The

results suggest that (7) produces a better fit than (6)

in terms of log-likelihood.

To verify the appropriateness of the bivariate nor-

mal distribution for the random effects bi1 and bi2, we

would apply the diagnostic test (4). Since the perfor-

mance of this diagnostic test has not yet been examined

for nonlinear mixed-effects models and subsequently for

one-compartment models, we first conduct a simula-

tion study to see whether the diagnostic test (4) has a

good power in detecting misspecification of the random-

effects distribution in such nonlinear models.

Simulations

In this subsection, we conduct a simulation study in

accordance with the one-compartment model (5) used

for the theophylline data. For each sample size N =



6 Reza Drikvandi

Table 2 Theophylline data: the maximum likelihood esti-
mates of parameters (fixed-effect parameters, residual vari-
ance, variance components of random effects, and variance
inflation parameter) in one-compartment model (5) with the
random effects bi = (bi1, bi2)′ specified in (7), along with the
associated standard errors.

Parameter Estimate (s.e.)
Fixed effects:
β1 −3.216 (0.081)
β2 0.464 (0.199)
β3 −2.439 (0.064)

Residual variance:
σ2 0.516 (0.075)

Variance components of bi:
d11 0.063 (0.031)
d12 −0.023 (0.053)
d22 0.435 (0.202)

Variance inflation parameter:
λ 0.515 (0.132)
−2 log-likelihood 333.3

10, 50, 100, 200, 500, 1000 and with 10 repeated measure-

ments per subject, we generated 1000 data sets from

the one-compartment model (5) with the pharmacoki-

netic parameters given in (7). In simulations, the fixed-

effect parameters were fixed at β1 = −3.2, β2 = 0.5,

β3 = −2.4, in accordance with the estimates in Ta-

ble 2. Also, we set λ = 0.5 and σ2 = 0.5. For sim-

plicity in the simulations, we here assumed that the

two random effects bi1 and bi2 are independent (in Ta-

ble 2 the estimate of Cov(bi1, bi2) is very close to 0).

Note that this assumption may not be realistic in prac-

tice and we would not make this assumption in our

analysis of the theophylline data. We generated each of

the random effects bi1 and bi2 from four distinct distri-

butions: N(0, 1), Chi-squared(2), Log-normal(3, 1), and

F(1, 7). All the generated random effects were shifted

and rescaled such that bi1 and bi2 have both zero mean,

but with different variances equal to 0.1 and 0.5 respec-

tively, in accordance with the estimates of their vari-

ances in Table 2.

For each simulation setting, we first fitted the one-

compartment model (5)-(7) to each of the generated

data sets under a bivariate normality assumption of bi1
and bi2, and then for each fitted model we carried out

both the asymptotic and bootstrap tests using the al-

gorithms on page 4. We computed the rejection rates

of the asymptotic and bootstrap tests. When the true

random-effects distribution was normal, the rejection

rate would actually correspond to the Type I error rate,

otherwise it represents the power of the test to detect

misspecification.

The rejection rates (powers) of the asymptotic test

and the bootstrap test are shown in Figure 2 with solid

and dashed lines, respectively. Figure 2(a) indicates that

the asymptotic test shows a Type I error rate smaller

than the nominal level 0.05 while it gets closer to the

nominal level when N increases. Thus, the asymptotic

test is conservative in terms of Type I error when the

sample size is not very large. The results in Figure 2(b,c,d)

show that the power of the asymptotic test is not high

when the sample size N is small, but it increases with

the sample size. On the other hand, the results suggest

that the bootstrap test has the correct Type I error

rate with a high power and it is more powerful than the

asymptotic test when the sample size N is small. Based

on the simulation results, we conclude that a sample

size of at least 200 is required to apply the asymptotic

test to the one-compartment model (5)-(7) fitted to the

theophylline data. Therefore, we should use the boot-

strap test for the theophylline data.

In the above simulations, we used ni = 10 because

the theophylline data contain 10 repeated measurements

for each subject. However, in many other applications

there might be a smaller number of repeated measure-

ments per subject (i.e., sparse sampling). To examine

the performance of the proposed diagnostic test in such

situations, we repeated the previous simulation study

but with ni = 5. The simulation results, presented in

Figure 3, suggest that both the asymptotic and boot-

strap tests lose power when the number of repeated

measurements per subject gets smaller. However, the

power loss from 10 repeated measurements to 5 re-

peated measurements is not substantial especially when

the number of subjects N is large.

We also ran simulations to see how the diagnostic

test performs when the estimates of random effects are

shrunk. For this, a good example is when random ef-

fects are generated from a mixture of normals, then

the estimates of random effects obtained under the uni-

modal normality assumption are potentially shrunk to-

ward the mean (see [21] and [23]). We repeated the

previous simulation study but with random effects bi1
and bi2 each generated from 1

2N(−2, 1)+ 1
2N(2, 1). The

simulation results for ni = 10 and ni = 5, presented in

Figure 4, show that the asymptotic and bootstrap tests

perform reasonably well for the case when estimates

of random effects are shrunk. It is probably because

the proposed diagnostic method does not use the esti-

mates of random effects, and instead it is based on the

marginal likelihood after integrating out the random

effects. Note that only the estimates of fixed-effects pa-

rameters and residual variance are used in our method

just for calculation of the estimated gradient function.
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(a) (b)

(c) (d)

Fig. 2 Rejection rates (powers) of the asymptotic test (solid line) and the bootstrap test (dashed line) at the significance
level 0.05 with ni = 10 repeated measurements per subject and under four random-effects distributions: (a) N(0, 1), (b)
Chi-squared(2), (c) Log-normal(3, 1), and (d) F(1, 7). Note that all the generated values of random effects were shifted and
rescaled such that random effects bi1 and bi2 have both zero mean and variances equal to 0.1 and 0.5, respectively.

Analysis of the theophylline data

In our initial analysis of the theophylline data above,

we found that the one-compartment model (5) with

the pharmacokinetic parameters given in (7) produces

a better fit than with the pharmacokinetic parameters

in (6). There it was assumed that the random effects

are normally distributed. Now, we want to check if the

normality assumption is valid. For this purpose, we first

look at the gradient function plot obtained from fitting

the one-compartment model (5) with the pharmacoki-

netic parameters (7) to the theophylline data. The gra-

dient plot, presented in Figure 5, shows some fluctua-

tions from 1 and one may conclude that the bivariate

normal distribution is not a proper choice. However,

these fluctuations may be due to random variability

in the estimates of parameters needed for calculation

of the gradient function. Thus, we shall apply the di-

agnostic test based on (4) to formally check if a bi-

variate normal distribution is appropriate for bi1 and

bi2. According to the simulation results, we should ap-

ply the bootstrap test as there are 12 subjects in this

dataset. The bootstrap test with 200 bootstrap samples

and with 1000 Monte Carlo integration nodes provides a

test statistic of 3.82, giving a p-value of 0.14. Therefore,

it suggests that a bivariate normal distribution is ap-

propriate for the random effects bi1 and bi2. Although

for the theophylline data the diagnostic test suggests

no evidence for misspecification of the random-effects

distribution, one might be cautious as the simulations

showed that the diagnostic test does not have a high

power to detect misspecification when the sample size

is very small.
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(a) (b)

(c) (d)

Fig. 3 Rejection rates (powers) of the asymptotic test (solid line) and the bootstrap test (dashed line) at the significance
level 0.05 with ni = 5 repeated measurements per subject and under four random-effects distributions: (a) N(0, 1), (b) Chi-
squared(2), (c) Log-normal(3, 1), and (d) F(1, 7). Note that all the generated values of random effects were shifted and rescaled
such that random effects bi1 and bi2 have both zero mean and variances equal to 0.1 and 0.5, respectively.

(a) (b)

Fig. 4 Rejection rates (powers) of the asymptotic test (solid line) and the bootstrap test (dashed line) at the significance
level 0.05 when random effects are generated from 1

2
N(−2, 1) + 1

2
N(2, 1), and with (a) ni = 10 repeated measurements per

subject and (b) ni = 5 repeated measurements per subject. Note that all the generated values of random effects were shifted
and rescaled such that random effects bi1 and bi2 have both zero mean and variances equal to 0.1 and 0.5, respectively.
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Fig. 5 Bivariate gradient function for the one-compartment
model (5)-(7) fitted to the theophylline data under a bivariate
normality assumption for bi1 and bi2.

Discussion

In this paper we have shown, via simulations and real

data, that our diagnostic test based on the gradient

function performs reasonably well in detecting misspec-

ification of the random-effects distribution in nonlinear

mixed-effects models. As expected, the asymptotic test

does not show a high power when the sample size is

small or moderate, while the bootstrap test performs

better for small samples. Since the bootstrap test is

time consuming when the sample size is very large, we

suggest the asymptotic test for sufficiently large sample

sizes, and the bootstrap test for smaller samples.

We have found that the power of our diagnostic test

also depends on the number of repeated measurements

per subject as well as the magnitude of variance compo-

nents. In our real data example, the estimates of vari-

ance components of bi1 and bi2 were very small and con-

sequently our simulation study conducted with those

small variance components did not show high power

values especially in small samples, while another simu-

lation study (not reported in the paper) with the same

settings but with larger variance components showed

that the power of our diagnostic test increases consid-

erably when the variance components are larger. There-

fore, one must be cautious when applying the proposed

diagnostic test to real data applications for which the

estimates of variance components are very small, unless

the sample size is very large.

When multiple random effects are present in the

model, the gradient function plot is not much helpful

because it needs evaluating a three or higher dimen-

sional plot of gradient function which may not be easy

to interpret and judge. Therefore, it is recommended to

apply the formal diagnostic test based on the gradient

function when the model includes two or more random

effects.

We previously developed a bootstrap test based on

the gradient function (see [9]), however as shown in [8],

that bootstrap test does not have a good power even for

generalized linear mixed models, because it evaluates

the gradient function for a grid of random effects only

and moreover its bootstrap algorithm was developed

under the normality of maximum likelihood estimates

which is a large sample property. Instead, our bootstrap

test in this paper uses a powerful test statistic as well

as a simple bootstrap algorithm.
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