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Performance Analysis of FD-NOMA-based 
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Ali Kashif Bashir, Senior Member, IEEE, Arumugam Nallanathan, Fellow, IEEE, and Byonghyo Shim, Senior 

Member, IEEE 

Abstract—In order to meet the requirements of massively 
connected devices, different quality of services (QoSs), various 
transmit rates and ultra-reliable and low latency communications 
(URLLC) in vehicle to everything (V2X) communications, we introduce 
a full duplex non-orthogonal multiple access (FDNOMA)-based 
decentralized V2X system model. We then classify the V2X 
communications into two scenarios and give their exact capacity 
expressions. To solve the computation complicated problems of the 
involved exponential integral functions, we give the approximate 
closed-form expressions with arbitrary small errors. Numerical results 
indicate the validness of our derivations. Our analysis has that the 
accuracy of our approximate expressions is controlled by the division 
of  in the urban and crowded scenario, and the truncation point T in 
the suburban and remote scenario. Numerical results manifest 1) 
Increasing the number of V2X device, NOMA power and Rician factor 
value yields better capacity performance. 2) Effect of FD-NOMA is 
determined by the FD self-interference and the channel noise. 3) FD-
NOMA has better latency performance compared to other schemes. 

Index Terms—Vehicle communications, V2X, full duplex, 
nonorthogonal multiple access, capacity analysis. 

I. INTRODUCTION 

A. Background 

There are two distinct regimes in vehicle to everything (V2X) 

communications, i.e., the dedicated short-range 

communications (DSRC) [1], [2] and the cellular-V2X (C-V2X) [3], 

[4]. 

DSRC was popular in the past decades. Recently, C-V2X 
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has received much attention with explosively growing devices 

connecting to the wireless networks. With the help of cellular 

network, C-V2X can connect more V2X devices [5], [6]; it can 

establish the link among vehicles, smart infrastructures and 

pedestrians. C-V2X operates in two modes. First, in the direct 

communications (DC) mode, V2X devices can directly 

communicate with each other. Well-known examples include 

vehicle to vehicle (V2V), vehicle to pedestrian (V2P) 

communications. Second, in the network-based 

communications (NC) mode, cellular base station (BS) is playing 

the dominant role, and the V2X devices communicate with (or 

with the help of) the cellular, for instance, vehicle to network 

(V2N), vehicle to infrastructure (V2I) communications. 

However, the current version of C-V2X (i.e., the long term 

evolution V2X (LTEV2X)) cannot fully satisfy the requirements 

of low latency, various quality of services (QoSs) and different 

transmit rates [6], [7]. 

In addition, the existing orthogonal frequency division 

multiple access (OFDMA)-basced LTE-V2X systems need 

orthogonality. Different from the static or non-mobility wireless 

communications, moving vehicle caused Doppler effect is a vital 

problem for OFDMA-based LTE-V2X systems [8]. As is known, 

carrier frequency offset (CFO) caused by the Doppler effect will 

lead to inter-carrier interference (ICI) to the OFDMbased 

wireless communications [9]. In literature, there have been 

various studies to solve the CFO compensation, see, e.g., [9], 

[10]. However, because the oscillators can never be oscillating 

at the identical frequency, in OFDMA-based wireless 

communications, CFO side-effect always exists even for 

nonmoving circumstance [9]. 

It is noticed that besides the OFDMA, some fifth generation 

(5G) technologies can be used to address the issues of low 

latency [11], various QoS and different transmit rates in V2X 

communications. From the upper layer perspective, the 

software-defined networks (SDNs) with its centralized control 

plan and distributed multiple nodes are more suitable for 

vehicle communications. With the aid of machine learning and 

big data analysis, we can monitor all types of events and 

maintain a global network status [12]. From the physical layer 

perspective, under the equal frequency resources constraint, 

NOMA can accommodate more users comparing to the 

orthogonal multiple access (OMA) scheme. Besides, these users 

can be with different QoS requirements [13], [14]. In addition, 

NOMA is insensitive to CFO effect caused by moving vehicles 
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because of its non-orthogonal frequency. NOMA employs the 

same resource block (RB) for multiple user’s transmission, 

which can alleviate the spectrum bottleneck of wireless 

communications [15]–[17]. NOMA can pair users with different 

transmit rates for simultaneous transmission [18]–[20]. On the 

other hand, while simultaneously transmitting and receiving 

information, full duplex (FD) can provide faster speed and 

better spectrum efficiency (SE) performances [13]. Moreover, 

FD can offer reliable communications [21], which is useful for 

V2X applications such as navigation and emergency message 

broadcasting. 

B. Related Works and Motivations 

Some antecedent works has been done on FD-NOMA. For 

instance, it was found that FD-NOMA can significantly suppress 

the co-channel interferences and achieve better performance 

gains compared to half duplex NOMA (HDNOMA) and 

orthogonal multiple access (OMA) [22]. Analysis and simulation 

results in [23] demonstrated that rate region performance of 

FD-NOMA outperforms the one with NOMA. Analysis and 

simulation results in [24] indicates that FDNOMA improves the 

5G’s system performance compared to HD-NOMA. Based on 

the relaying system model, analysis and simulation results in 

[13] indicated that FD-NOMA outperforms HD-NOMA in terms 

of outage probability and ergodic sum rate in low signal to noise 

ratio (SNR) region, but displays an inferior performance in high 

SNR region. 

In V2X communications, there are some existing works on 

NOMA-V2X and FD-V2X [25]–[27]. Based on the NOMA, the 

authors in [26] proposed the graph-based practical encoding 

and joint belief propagation (BP) decoding techniques, which 

can achieve any rate pair close to the capacity region. B. Di et 

al. in [25] employed NOMA for URLLC communications while 

proposing a NOMA-based mixed centralized/distributed 

(NOMA-MCD) scheme to reduce the resource collision. In [27], 

an optimal blind interference alignment scheme was proposed 

for the coexisting of FD and HD modes. This scheme can 

improve the sum rate performance in the finite SNR regime. 

However, most of these studies on NOMA-V2X and FD-V2X 

communications are based on the NC mode, which is a 

challenge for connecting massive V2X devices because of the 

cellular throughput restriction. Although the authors 

investigated the decentralized NOMA-V2X systems in [25], 

there has been no capacity analysis for such a system. To the 

best of our knowledge, a study investigating the impact of 

FDNOMA techniques on V2X systems is rare, which motivates 

us to develop this treatise. 

                                                                 
1 Besides C-V2X communications, there are other types of cellular 

communications, our work can not offload all the cellular network load 

In literature, various channel models are used for the ergodic 

capacity analysis, for instance, the κ − µ channel model [28], 

[29] and the η − µ channel model [28]. However, obtaining the 

closed-form capacity expression in these channel models is 

difficult because of the involved infinity series operations. 

Authors thus employed some special conditions and methods 

to give the closed-form expressions, e.g., µ with positive integer 

values [29] and the approximate method [30]. On the other 

hand, the difficulty to obtain a closed-form expression with 

Rayleigh or Rician channel model lies in the involved 

exponential integral functions. In order to solve this problem, 

some approximate methods and algorithms have been 

proposed, for instance, the Swamee and Ohija method for 

exponential integral function [31] and the fast and accurate 

algorithm for generalized exponential integral function [32]. 

However, these methods are based on some special conditions 

(e.g., [32]), or with low accuracies (e.g., [31]). In this paper, we 

give the approximate closed-form capacity expressions for both 

Rayleigh and Rician channel models while taming the 

troublesome exponential integral functions. 

In this work, we propose the FD-NOMA-based decentralized 

V2X system model, and also provide the capacity analysis to 

obtain the approximate closed-form capacity expressions with 

high accuracy. We try to answer the following key questions. 

• Can we use one solution to meet the requirements of V2X 

communications? If it is not possible, what about a 

combination of FD-NOMA techniques? 

• If the combination is feasible to satisfy the requirements of 

V2X communications, what about the capacity and 

throughput performance of the V2X systems? 

• Is there any approximate expressions for the capacity 

expressions with arbitrary small error and low 

computational complexity? 

C. Contributions 

The main contributions of this work can be summarized as 

follows: 

• The FD-NOMA-based decentralized V2X systems can 

partly offload the cellular network1. Compared to OFDMA, 

NOMA is insensitive to Doppler effect caused by moving 

vehicles. In addition, FD-NOMA can accommodate more 

users with different QoSs and transmit rates for 

simultaneous transmission and reception. 

• Based on the system model, we derive the exact system 

ergodic capacity expressions and their approximate 

closedform expressions for both scenarios. These 

approximate closed-form expressions are with low 

computational complexity and controllable arbitrary small 

errors compared to the existing approximate expressions. 
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Insights from our analysis has 1) the accuracy of our 

simplified approximate expression in urban and crowded 

scenario is controlled by the associated division of  (with 

respect to the exponential integral function E1(x)). 2) The 

accuracy of our simplified approximate expression in 

suburban and remote scenario is controlled by the 

truncation point T (with respect to the exponential 

integral function En(x)). • It is observed from our numerical 

results that: 1) the analytical results coincide with the 

Monte-Carlo based simulation results perfectly, which 

demonstrates the validity of our derivations. 2) The system 

capacity increases with the increasing allocated power 

value, SNR and Rician factor values. 3) The FD self-

interference and the channel noise determine the effect 

of FD-NOMA. 4) FD-NOMA has better latency performance 

compared to HD-NOMA and HD-orthogonal multiple 

access (HD-OMA) schemes. 

D. Notations and Organization 

Notations: In this article, we use upper case boldface letters 

to denote matrices (e.g., A), and we use lower case boldface 

letters to denote vectors (e.g., a). In addition, we use AT as the 

transpose of A, a • b to denote the multiply by position 

operation for two vector a and b. On the other hand, A ↔ B 

means a transmit-receive pair with A and B transceivers on each 

side working on FD mode, A → B the transmission procedure 

from A to B, vice versa. 

The remainder of the paper is organized as follows. In section 

II, the FD-NOMA-based decentralized V2X system model is 

proposed. We divide the V2X communications into different 

scenarios in this section. We analysis the system capacity of 

different scenarios in section III. The numerical simulations are 

given by section IV, and conclusion is given in section V. 

II. THE FD-NOMA-BASED DECENTRALIZED V2X SYSTEMS 

A. System Model 

The FD-NOMA-based decentralized V2X system model is 

given in Fig. 1. This system is slightly different from the existing 

ones in the following respects. A) Different from the existing 

studies on FD-NOMA, no relaying systems are used because of 

the vehicle’s limited energy. B) V2X devices can directly 

communicate with each other through DC mode without the 

cellular’s help, and the required contents are obtained from 

neighboring V2X caches [33]. This system model thus has 

shorter transmission distance and better latency performance 

[33]. The cellular network load can be reduced too. 

Once can notice that to simplify the analysis, only V2V and 

V2I communications are considered in the existing V2X studies, 

see, e.g., [25]–[27], [34]–[36]. As discussed, not only the 

vehicles, V2X aims to connect everything on the road. In order 

to cope with this trend, in our FD-NOMA-based decentralized 

V2X systems, all V2X devices (vehicle, pedestrian, traffic lights, 

etc.) are comprehensively included. The massive connected 

devices and their various applications are making the V2X 

communications more complicated. To deal with this 

intractable problem, in this work, we classify the V2X 

communications into two scenarios: 1) the urban and crowded 

scenario and 2) the suburban and remote scenario. 

In urban and crowded scenario, Rayleigh fading can be used 

as the channel model. This is due to the abundant reflection and 

refraction links between source and destination [37]. In 

contrast, Rician channel model is suitable for the suburban and 

remote scenario because of the less obstacles, where we can 

always establish a dominant light of sight (LoS) path from 

source to destination [38]. 

 

Fig. 1: The M ↔ N FD-NOMA-based decentralized V2X system 

model. The communications among V2X devices can be 

accomplished by FD-NOMA working on the DC mode. 

B. Received Signal and Power Allocation Scheme 

In the FD-NOMA-based decentralized V2X systems, the 

channel matrix from M sources to N destinations is 

H  

where hi,j is the channel between source i and destination j. 

In this case, the received signal can be given as 

√ 

 y = H p • x + n, (2) 

where p ∈ C 

 √ M×1, is the allocated downlink NOMA power 
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matrix, x ∈ CM×1 is the downlink transmit signal and n ∼ 

CN(0,σ2IN) is the downlink channel noise. Under the condition 

that Hˆ = HT is the uplink channel with FD mode, uplink transmit 

information with FD mode will be 

 yˆ = Hˆ ppˆ • z + nˆ, (3) 

where z ∈ CN×1 is the uplink information. NOMA power and 

channel noise vectors thus can be given as pˆ . 

The total power received by destination n from all M sources is 

given by 

Similarly, 

pn = p1,n + p2,n + ... + pM,n. (4) 

 pˆn = pˆn,1 + pˆn,2 + ... + pˆn,M, (5) 

is the self-interference power when transmitting information to 

M destinations from source n. 

Remark 1: The received signal is composed of the received 

downlink information and its self-interference from the FD 

uplink. (1.10) On the other hand, transmission and reception 

processes in the FD-NOMA-based decentralized V2X systems 

are different from the centralized cellular-based 

communications, i.e., each V2X destination can receive 

information with different NOMA power vectors from multiple 

distributed sources. By invoking the FD-NOMA techniques for 

simultaneous transmission and reception, the power received 

and transmitted by each V2X device are pn,pˆn. 

III. ERGODIC CAPACITY ANALYSIS IN DIFFERENT SCENARIOS 

In literature, capacity analysis is to reveal the intuitive and 

simple-to-compute capacity expressions for the wireless 

systems [39], [40]. In this regard, closed-form capacity 

expression is of great importance. Generally, capacity can be 

classified into two different types, i.e., the ergodic (Shannon) 

capacity and the outage capacity [41]. In time varying channels, 

on condition that the channel state information (CSI) is known 

at the receiver but not the transmitter, i.e., γ (signal to 

interference plus noise ratio (SINR)) is known for every time 

slot. On condition that the CSI cannot be perfectly obtained 

because of the feedback delay or channel estimation error [42]–

[44], the system performance is reduced. The hardware 

impairment (HI) is another issue that reduce the system 

performance. The impacts of imperfect CSI and HI to the 

NOMA-based systems have been investigated in prior works, 

see, e.g., [45], [46]. In literature, there are some methods to 

alleviate the side-effects of imperfect CSI and HI, for instance, 

the deep learning-based CSI prediction [47]. In addition, some 

transmission methods without CSI have been investigated, see, 

e.g., [48]. 

On condition that the distribution of γ is known at both the 

transmitter and receiver. Ergodic capacity is defined by data 

transmission going through all fading states, which is also called 

the Shannon capacity since it is the average of instantaneous 

capacity over all states. In contrast, outage capacity is used to 

describe the system performance under slowly varying 

channels with a constant instantaneous γ [41], [49]. Here in this 

study, we adopt the ergodic capacity since V2X channels are 

generally the time varying channels. 

In the decentralized FD-NOMA V2X systems, transmission 

channels are uncorrelated. In this case, the considered multiple 

input multiple output NOMA (MIMO-NOMA) can be treated as 

a sum of additive single input single output NOMA (SISONOMA) 

links. Moreover, similar to prior works [13], [50], we adopt an 

increasing order of the channel response, which means |hi,1|2 

≤,...,|hi,j|2 ≤,...,≤ |hi,N|2,∀i ∈ [1,M],j ∈ [1,N], vice versa. In this case, 

after successive interference cancellation (SIC), NOMA co-

channel interference of the i-th user are from the (i + 1)-th user 

to the N-th user [50]. 

According to Shannon theory [19], achievable capacity of 

each destination can be given by (6), see the equation in the top 

of next page. Here  yields the co-channel 

interference from neighboring users after SIC, ηpˆi,k is the 

selfinterference by FD uplink, σ2 is the channel noise power, 

respectively. Additionally, η is the coefficient of self-

interference with η ∈ [0,1], which makes our expressions 

versatile to describe different schemes. For instance, in FD-

NOMA scheme, large value of η denotes the strong FD self-

interference, and small value denotes the weak FD self-

interference. On condition that η = 0, the expression reduces to 

the pure NOMA expression. On the basis of (6), normalizing the 

channel noise power value will give (7). Here ρ is the SNR, and 

we use αi,j,αi,l,αi,k to denote the allocated NOMA power 

coefficient with FD transmission in line with a normalized 

channel noise power value. In the sequel, we adopt the 

normalized noise power. 

A. Ergodic Capacity Analysis in Urban and Crowded Scenario 

We first analyze the achievable sum capacity in urban and 

crowded scenario. Note that we use the superscript a and c to 

distinguish different scenarios. In urban and crowded scenario, 

PDF of instantaneous signal to interference plus noise ratio 

(SINR) in each time slot, say, γi,j, is given by 

 , (8) 

where 

 , (9) 

is the averaged channel power gain of each destination. As is 

well known, ergodic capacity is achieved by experiencing all the 

channel fading states, which means 
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(10) 

. 

In the following theorem, we provide the exact ergodic capacity 

expression of the FD-NOMA-based decentralized V2X system- 

s. 

Theorem 1: In urban and crowded scenario, the exact 

achievable sum ergodic capacity of the FD-NOMA-based 

decentralized V2X systems is 

  (11) 

where E1(x) is the exponential integral function that defined as 

(12) 

Additionally, we have γ¯i,j given as 

(9). 

 Proof: See Appendix A.  

Exact ergodic capacity expression in urban and crowded 

scenario is provided in Theorem 1. Since the exponential 

integral function is involved, this expression thus is not given in 

closed-form. We thereby further pursue an approximate 

closedform expression of the achievable capacity. As noticed, in 

(11), the only expression not given by closed-form is the 

generalized exponential integral functions. In this case, our 

main focus is to find out a closed-form expression of E1(x). 

Lemma 1: Closed-form expression (lower bound) of the 

generalized exponential integral function is given by 

 , (13) 

where ak,bk are defined as 

 , (14) 

cotθk−1 − cotθk 

                                                                 
2 It is worth noting that here in our analysis, the equal division of  is used. 

bk = . (15) θk − 
θk−1 

In addition, θk,k ∈ [0,n + 1] is given by 0 ≤ θ0 < θ1 < 

. Besides, as,bs,θs are defined with the 

same method, i.e., 

 , (16) 

cotθs−1 − cotθs 

bs = , (17) θs − 
θs−1 

and . It is also worth 

noting that the approximation accuracy is controlled by the 

division of  with θk and θs (associate with as,bs)2. 

 Proof: See Appendix B.  

In order to verify the tightness of this expression, we 

compare the performances of the exact expression, the 

approximate expression and the well known Swamee and Ohija 

approximation. Note that the Swamee and Ohija approximation 

expression is given by [31] 

(18) 

where 

 ,

 (19) 

(20) 

Here while using the approximate expression in Lemma 1, we 

divide the  with 1000 segments, which means, θk−θk−1 = 

. The simulation results are given by Fig. 2. As noticed, the 

gap between the approximation and the exact form curves is 

large. Although this approximation method is better than the 

Swamee and Ohija approximation method, it is still unsuitable 

to be adopted directly. 

We notice from Appendix B that in our derivations, the only 

issue that might bring in difference is the Jensen’s inequality, 

i.e., in the derivations of Q(x)-function’s closed-form 

expression, we use 

, (6) 

 , (7) 
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 . (21) 

Additionally, one can see from Fig. 2 that the approximation 

curve displays a similar curvature to the exact curve. We can 

expect that a coefficient factor to the closed-form expression 

might improve the accuracy, i.e., 

 . (22) 

Consequently, our task is to find out a q satisfying 

  (23) 

Here we use . After some manipulations, we notice 

that when , the above condition is met (e.g., 

E1(1)| = |0.2193827−0.2193839| = 1.2187×10−6). We thus 

have an approximate closed-form expression of E1(x) as 

 . (24) 

We further give the comparison results of the exact, improved 

and approximate expressions, which is shown in Fig. 3. 

Compared to the approximate results, the improved 

approximate results coincide with the exact results perfectly, 

which indicates the validity of our hypothesis. Closed-form 

expression of CsumRay is given by the following corollary. 

Corollary 1: By substituting (24) into (11), we obtain the 

approximate closed-form expression of the achievable capacity 

in urban and crowded scenario 

. 

(25) 

Remark 2: Insights from Corollary 1 is that the system ergodic 

capacity in urban and crowded scenario is determined by M,N, 

γ¯i,j. The system capacity increases with M,N. The accuracy of 

this approximate closed-form expression is determined by n,t. 

That is, the divisions of . The validity of this approximate 

expression will be verified by the following numerical results. 

 

Fig. 2: Comparison of the exact, approximation and Swamee 

and Ohija-based expressions. 

 

Fig. 3: Comparison of the exact, improved and approximate 

expressions. 

B. Ergodic Capacity Analysis in Suburban and Remote Scenario 

In the subsection III. A, we have obtained both exact and 

approximate forms of the capacity of the FD-NOMA-based 

decentralized V2X systems in urban and crowded scenario. In 

this subsection, we focus on the system capacity analysis in the 

suburban and remote scenario. We use K as the Rician factor 

(which is the ratio between the deterministic and random 

fastfading component). It is noticed that in Rician channel, we 

have 

 . (26) 
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where r2 yields the channel gain of LoS component, 2ω2 is the 

average channel power gain of all NLoS components. By 

defining the total average power gain as γ¯ and following the 

prior work in [51], PDF of γi,j can be given as 

 

Here I0(·) is the first kind modified Bessel function with zeroth 

order. By following a similar procedure of the previous analysis, 

we can obtain Theorem 2. 

Theorem 2: Exact ergodic capacity expression of the 

FDNOMA-based decentralized V2X systems in suburban and 

remote scenario is given by 

 

Here En(x) is the generalized exponential integral function 

defined as [52] 

 , (29) 

where Re(x) yields the real part of x. 

 Proof: See Appendix C.  

This expression is still intractable to use directly because of 

the involved infinite factorial and generalized exponential 

integral expressions. In order to tame this troublesome 

problem, we give one approximate expression with arbitrary 

small error by invoking the truncation method in the sequel. 

We find that the following expression 

  (30) 

has an upper ceiling approximation, as shown by Corollary 2. In 

this case, the system capacity can be given by an approximate 

expression with much lower computation complexity and 

arbitrary small error, . 

Corollary 2: By truncating the infinite series with regard to 

T, the capacity expression is approximately given as 

 

The truncation error is 

 

 Proof: See Appendix D.  

Remark 3: One can notice that the accuracy of the 

approximate expression in (31) is controlled by T. In other 

                                                                 
3 App: approximate, MC: Monte Carlo. 

words, we may obtain an approximate expression with an 

arbitrary small error when 

 
(33) 

Insight from Corollary 2 has that the system capacity expression 

is determined by M,N, γ¯i,j and K. With M,N increasing, the 

system capacity always increases. The precise effects of γ¯i,j,K to 

the capacity are still nonintuitive, which will be discussed in the 

following section. 

IV. NUMERICAL RESULTS 

In this section, we perform the Monte Carlo simulations to 

verify the validity of our analysis. We also perform simulations 

to exposit the effects of different parameters to the system 

capacity, and compare the performance between FD-NOMA 

and NOMA schemes based on the decentralized FD-

NOMAenabled V2X systems. Due to variable parameters, we 

separately explain them and their values in the following 

simulations. 

We first check the validity of the derived capacity expressions 

in (25) and (31). In these simulations, for the sake of 

compactness, one source with multiple destinations are used, 

where the source employs the FD-NOMA scheme to serve these 

destinations. We also assume that the allocated NOMA power 

variance is growing linearly with a normalized noise variance 

value (e.g., with 4 users, the NOMA power vector is ai = 

[4,3,2,1]), where ai = [αi,1,...,αi,N]). Additionally, η = 0.1,αi,k = 5 

are used. As clearly shown by Fig. 4 and 

Fig. 5, our analytical results3 and the MC results almost exactly 

coincide, which demonstrates the validity of our analysis. For 

instance, in Fig. 4, with ρ = 15 dB, 1 ↔ 4, the MC and 

App results are respectively 3.6865,3.6866 Bit/S/Hz. Under the 

same condition, as shown in Fig. 5, MC result and App result are 

3.8458,3.8455 Bit/S/Hz, respectively. The differences are less 

than 0.001 Bit/S/Hz in both scenarios. We also observe that as 

the values of N,ρ increases, the system capacity always 

increases. By comparing Fig. 4 and Fig. 5, we notice that under 

the same condition, capacities in suburban and remote scenario 

always outperform the ones in urban and crowded scenario (for 

instance, in 1 ↔ 3 case, SNR = 0 dB, ; SNR 

= 30 dB, ). This is because of the less 

propagation loss with a dominant LoS path between source and 

destination in the suburban and remote scenario. 

In order to verify the benefits of our analytical expressions, 

we compare the consumed time of App and MC simulations in 

Table I with ρ = 15 dB as an example. In these simulations, 

eight-core 3.4 GHz processors, 16 GB memory and windows 10 

64-bit operating system are used. The results are rounded off 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 

10.1109/TCOMM.2019.2904499, IEEE Transactions on Communications 
8 

 

to four decimal places. As shown in Table I, the consumed time 

of our analytical expressions are about 106 times shorter than 

the MC simulations. 

In the next step, we check the effect of Rician factor K to the 

system capacity in suburban and remote scenario. In order to 

keep K as the only variable, we do some manipulations as 

follows: 1) we keep all variables consistent except K; 2) with 

normalized noise power value and 3 destinations, we set ai = 

[1,2,3]. The simulation results of the system capacity vs the 

destination number in suburban and remote scenario is given 

in Fig. 6. We notice that as the K increases, system capacity 

 

Fig. 4: Comparison of the system achievable sum capacity 

performances of App and MC results in urban and crowded 

scenario. The approximate results are obtained according to 

(25). 

 

Fig. 5: Comparison of the system achievable sum capacity 

performances with App and MC results in suburban and remote 

scenario. The analytical results are obtained according to (31). 

also increases. This is because the higher K brings in a stronger 

LoS component and a weaker multi-path propagation loss. 

Besides the effects of N,ρ,K, the effects of M and ai to the 

system capacity are also checked with: 1) a linearly growing 

power value with M = 1 (i.e., a1 = [0.5,1,1.5],a2 = [1,2,3],a3 = 

[2,4,6]); 2) different NOMA power vectors with M = 2 (i.e., 2 ↔ 

3,a1,a3 denote that two sources are transmitting information to 

3 destinations with FD-NOMA, where the NOMA power vector 

are a1,a2, respectively). The simulation results are given by Fig. 

7 and Fig. 8. As shown by the solid lines in both figures, 

increasing the power values leads 
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Fig. 6: Comparison of the capacities with different power values 

and source numbers. 

 

Fig. 7: Comparison of the capacities with different power values 

and source numbers. 

to better capacity performance, which is due to the increased 

SNR value. For instance, in 1 ↔ 3 case and SNR = 20 dB, we 

have . We can also confirm from 

both figures that as M increases, the system capacities also 

increase. 

Finally, we compare the achievable throughputs with FD- 

NOMA, NOMA, FD-OMA and HD-OMA schemes in different Fig. 

8: Comparison of the capacities with different power values and 

source numbers. 

scenarios. The results are given in Fig. 9 and Fig. 10. In these 

simulations, carrier bandwidth B = 100 MHz, ai = [3,2,1],η = 0.1 

and αi,k = 0.1,1,10 are used. In order to be fair, we average the 

allocated power in FD-OMA and HD-OMA schemes. As shown 

in both figures, NOMA scheme has a better throughput 

performance compared to OMA scheme. Moreover, with a 

smaller value of αi,k, FD-NOMA always outperforms the other 

schemes (HD-NOMA, FD-OMA, HD-OMA). However, the benefit 

of FD-NOMA decreases while αi,k increasing. This is mainly due 

to the increased FD self-interferences. We also notice that even 

with a higher FD self-interference value, FD-NOMA 

outperforms NOMA in low SNR scenario (i.e., ρ ∈ [0,5] dB). This 

is because in low SNR scenario, channel noise is the dominant 

factor compared to FD self-interference. In contrast, FD-NOMA 

self-interference becomes the dominant factor in high SNR 

scenario, NOMA scheme without FD selfinterference thus has a 

better throughput performance. It is also worth noting that the 

effective transmission time is limited because of the fast 

moving V2X devices. FD-NOMA enabled bidirectional 

transmission can greatly reduce the transmission latency 

compared to other schemes. For example, compared to HD-

NOMA and HD-OMA, FD-NOMA only needs a half latency time 

to transmit the same amount of data by its simultaneous 

transmission and reception scheme. 

TABLE I: Consumed time (second) of App and MC simulations with ρ = 15 dB. 

Urban and crowded scenario 

App 0.0002 0.0001 0.0001 0.0001 0.0004 0.0000 0.0000 0.0000 

MC 83.0272 89.2913 83.0986 80.8462 81.7240 87.6330 91.5975 87.3378 

Suburban and remote 

scenario 
App 0.0781 0.0153 0.0036 0.0034 0.0066 0.0035 0.4032 0.06056 

MC 92.9720 89.8830 89.6005 92.4459 95.3015 97.2475 95.9309 94.8763 
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V. CONCLUSION 

In this article, we proposed the FD-NOMA-based 

decentralized V2X systems. We classified the V2X 

communications 

 

Fig. 9: System achievable throughput comparisons with 

FDNOMA, NOMA, FD-OMA and HD-OMA schemes in urban and 

crowded scenario. 

 

Fig. 10: System achievable throughput comparisons with 

FDNOMA, NOMA, FD-OMA and HD-OMA schemes in suburban 

and remote scenario. 

into two typical scenarios, i.e., the urban and crowd scenario 

and the suburban and remote scenario, and then derived the 

exact system capacity expressions in both scenarios. To tackle 

down the capacity expression’s intractable calculations in both 

scenarios, we further obtained their simplified approximate 

expressions. Insights of our analysis are that the accuracy of our 

simplified approximate expression in urban and crowded 

scenario is determined by the associated division of  (with 

respect to exponential integral function (E1(x)), and the 

accuracy of simplified approximate expression in suburban and 

remote scenario is determined by the truncation point T (with 

respect to generalized exponential integral function (En(x)). 

Numerical results demonstrate the validity and effectiveness of 

our analytical results. Compared to MC method, the consumed 

time is greatly reduced by our Approximation expressions. 

Simulation results also demonstrated that the system capacity 

performance can be enhanced by increasing the number of V2X 

devices, NOMA power and Rician factor (suburban and remote 

scenario), and the effectiveness of FD-NOMA is determined by 

the FD self-interference and the channel noise. In addition, FD-

NOMA can greatly reduce the system latency compared to 

other schemes. 

APPENDIX A: PROOF OF THEOREM 1 

Firstly, according to the integration by parts method, we have 

 

 

(A.1) 

So far the expression is still intractable. In the next step, we 

recall the alternative generalized exponential integral 

expression [52] 

(A.2) 

, 

By substituting (A.2) into (A.1), and further summarizing the 

result with M sources and N destinations, we can safely arrive 

the final expression. 

This completes the proof. 

APPENDIX B: PROOF OF LEMMA 1 

As noticed, E1(x) can be rewritten as 
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  (B.1) 

It is also noticed that the following equality holds [53] 

  (B.2) 

Thus in the next step, our work is to seek a closed-form 

expression for the Q-function. Actually, there are various 

closedform expressions to capture the lower or upper bounds 

of the Q-function, for instance, the chernoff bound 

 , (B.3) 

the improved exponential bound 

 . (B.4) 

However, the integral is still intractable while substituting those 

expressions into (B.1), an alternative method is needed. 

According to prior work, by adopting the Craig’s form, we have 

[53] 

  (B.5) 

with ak,bk are defined as  cot

θθkk−−1θ−k−cot1 θk . 

Then by substituting the Jensen’s inequality [54] to (B.5), we 

have the lower bound expression of Q-function as 

 

Additionally, it is worth noting that θk,k ∈ [0,n + 1] is given by 

 

The approximate accuracy of this lower bound expression is 

controlled by the interval gap between each pair of [θk−1,θk]. 

Moreover, it is known that the following equality holds 

Z 

sin−2 xdx = −cotx + C. 

Substituting it into (B.6), we thus have 

(B.7) 

 . (B.8) 

Finally, by substituting (B.2) into (B.1), E1(x) can be given as 

  (B.9) 

As the final inequality is obtained while substituting the ap-√ 

proximate expression of Q( 2bkx), definitions of as,bs,θs thus are 

similar as prior definitions of ak,bk,θk, i.e., as = 

 and 0 ≤ θ0 < θ1 < ...θs < ... < 

This completes the proof. 

APPENDIX C: PROOF OF THEOREM 2 

It is noticed that the PDF of γi,j in Rician channel condition can 

be given by [51] 
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By following a similar derivation procedure as in Theorem 1, we 

have the following equation 

Ci,jc = E[log2(1 + ¯γi,j)] 

Z +∞ (C.2) c 

 = log2(1 + γi,j)f (γi,j)dγi,j. 
0 

and substituting equations (C.4) and (C.5) into this expression, 

the derivations of capacity expression of the FD-NOMA-based 

decentralized V2X systems can be given as: 

  (C.3) 

Here the second equality is due to the modified Bessel function 

of the zeroth order expression [55] 

 . (C.4) 

Additionally, the third equality is because [55] 

 

By further summarizing this expression with M sources and N 

destinations, we can finally arrive at (31). This completes the 

proof. 

APPENDIX D: PROOF OF COROLLARY 2 

The remaining section after a truncation with regard to T is 

 

As shown here, approximate error mainly comes from the 

infinite expression series with regard to m. According to prior 

work in [56], [57], En(x) monotonically decreasing in n giving 

equal x. In this case, by putting  part 

aside, we have the following expression 

(D.2) 

. 

It is noticed that giving constant values of γ¯i,j and 

then becomes a constant coefficient. Consequently, we focus 

on the function 

 . (D.3) 

By some mathematical manipulations, it is found that there 

existing x0, so that f0(x0) = 0 with f00(x0−) > 0,f00(x0+) < 0. 

Additionally, observation has that f(x) rapidly converges to 0 

after x0 (e.g., f(100) = 6.9966 × 10−125). This gives approximate 

capacity expression of (31) with an arbitrary small error . 

This completes the proof. 
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