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Abstract: The abundance of accessible educational data, supported by the technology-enhanced learning 
platforms, provides opportunities to mine learning behavior of students, addressing their issues, 
optimizing the educational environment, and enabling data-driven decision making. Virtual learning 
environments complement the learning analytics paradigm by effectively providing datasets for analysing 
and reporting the learning process of students and its reflection and contribution in their respective 
performances. This study deploys a deep artificial neural network on a set of unique handcrafted features, 
extracted from the virtual learning environments clickstream data, to predict at-risk students providing 
measures for early intervention of such cases. The results show the proposed model to achieve a 
classification accuracy of 84%-93%. We show that a deep artificial neural network outperforms the 
baseline logistic regression and support vector machine models. While logistic regression achieves an 
accuracy of 79.82% - 85.60%, the support vector machine achieves 79.95% - 89.14%. Aligned with the 
existing studies - our findings demonstrate the inclusion of legacy data and assessment-related data to 
impact the model significantly. Students interested in accessing the content of the previous lectures are 
observed to demonstrate better performance. The study intends to assist institutes in formulating a 
necessary framework for pedagogical support, facilitating higher education decision-making process 
towards sustainable education.

Keywords: Learning Analytics; Predicting Success; Educational Data; Machine Learning; Deep Learning; Virtual 

Learning Environments (VLE).
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optimizing the educational environment, and enabling data-driven decision making. Virtual learning 
environments complement the learning analytics paradigm by effectively providing datasets for analysing 
and reporting the learning process of students and its reflection and contribution in their respective 
performances. This study deploys a deep artificial neural network on a set of unique handcrafted features, 
extracted from the virtual learning environments clickstream data, to predict at-risk students providing 
measures for early intervention of such cases. The results show the proposed model to achieve a 
classification accuracy of 84%-93%. We show that a deep artificial neural network outperforms the 
baseline logistic regression and support vector machine models. While logistic regression achieves an 
accuracy of 79.82% - 85.60%, the support vector machine achieves 79.95% - 89.14%. Aligned with the 
existing studies - our findings demonstrate the inclusion of legacy data and assessment-related data to 
impact the model significantly. Students interested in accessing the content of the previous lectures are 
observed to demonstrate better performance. The study intends to assist institutes in formulating a 
necessary framework for pedagogical support, facilitating higher education decision-making process 
towards sustainable education.

Keywords: Learning Analytics; Predicting Success; Educational Data; Machine Learning; Deep Learning; Virtual 

Learning Environments (VLE).

1 Introduction

Rapid advancements in Technology-Enhanced Learning platforms have shown a tremendous 

increase in online educational data to yield ample educational repositories (Treasure-Jones et al., 

2019) - demonstrating significant impact on Higher Educational Institutions. This rapid increase 

in educational data is also providing opportunities to optimize users’ engagement with 

technological platforms to enhance the learning experience (Shorfuzzaman et al., 2019). The 

progression of the accumulated educational data has stimulated the emergence of several 

research communities, such as learning analytics to predict learners’ behavior and providing 

indicators for optimized policy formulations (Azcona & Smeaton, 2017; Viberg et al., 2018; 

Capuano & Toti 2019). Educational data, a by-product of the interaction between learners and 

instructors, has been substantiated as a multidisciplinary field of study, involving researchers 

from various research disciplines (Xu et al., 2019). This has generated the inclusion of numerous 

terms associated with the exploration of educational data, such as academic analytics, predictive 
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analytics, and learning analytics. A more recent term formulated is ‘educational data science,’ 

which cohesively combines various researchers from different disciplines and backgrounds, 

bringing them together to work collaboratively on research interests related to educational data 

(Piety et al., 2014).

1.1 Deep Learning for Educational Data Science

The Artificial Neural Networks (ANNs) are the most prominent practice utilized in the 

Educational Data Mining (EDM) domain (Coelho & Silveira, 2017). Although there have been 

issues associated with ANNs, especially when extracting human-interpretable patterns from the 

predicted results, most of these concerns were resolved in the last decade, with the emergence of  

Deep ANNs (Coelho & Silveira, 2017; LeCun et al., 2015). Deep learning, evolved from 

machine learning, and characterized by numerous computational layers, enable the model to 

learn from examples, patterns (Wang et al., 2011; Nawaz et al., 2012) or events (Ananiadou et 

al., 2013; Nawaz et al., 2012), superseding the traditional techniques of hand-engineering the 

features (Poplin et al., 2018).

Contrary to the increasing rise in deep learning techniques, sufficient evidence of Deep ANNs in 

EDM and learning analytics literature is not available. Coelho & Silveira (2017) conducted a 

systematic literature review to investigate the evidence found in learning analytics and deep 

learning studies. They identified student performance (Guo et al., 2015; Okubo et al., 2017; 

Wang et al., 2017), student assessment (Li et al., 2016) and hand writing recognition (Gross et 

al., 2015), as being some of the areas where deep learning was deployed, proving better than the 

baseline models. Numerous models have been explored in the learning analytics research 

paradigm, however identifying the significance of deep learning in the learning analytics domain 

is still in its infancy, with studies on the adoption of this technique emerging in the last few 

years.

Learning analytics comprises of several facets with the inclusion of gathering, assembling, 

examining and analysing students’ information to enhance understanding of the learning 

environment, resulting in optimized learners’ and instructors’ performance (Siemens, 2010; 

Siemens & Long, 2011). It is also interpreted as emphasizing on individually assessing the 

learners’ performance and its corresponding impact on the institutions performance (Baker & 
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Inventado, 2014; Daniel, 2017; Romero & Ventura, 2010). Additionally, it deals with 

formulating policies and developing strategies in order to elevate the ability of institutions at an 

academician level, stimulating effective decision-making (Elias, 2011; Leitner et al., 2017). It 

aids in inferring patterns from the educational data to not only optimize students’ performance, 

but also to provide supplementary support in teaching mechanisms by tailoring teaching 

methods, holistically improving the learning environment (Khalil & Ebner, 2015). 

Objectives
 Learner’s Intuition
 Student Progress
 Improving Learner’s Experience
 Improve Collaboration

Tools & Techniques
 Statistical Analysis
 Machine Learning 

 Classification 
          (Pass-Fail)
 Regression 
          (Scores)

 Deep Learning
 Deep ANN
 LSTM

Educational Analytics

Objectives
 Longitudinal Interventions
 Student Success
 Academic Difficulty
 Customizing Courses
 Tailoring Teaching Methods
 Student Retention

Tools & Techniques
 Machine Learning 

 Classification Tasks 
 Regression 

Academic Analytics

Objectives
 Academic Engagement
 Administration Level

- Policies
- Guidelines

 Student Affordability 
 Student Access
 Resource Allocation

Tools & Techniques
 Machine Learning 

- Classification tasks
        (SVM, Naïve Bayes, 
          Decision Tree)
- Regression

Educational Data, Tools & Technologies

Learning Analytics

Figure 1: Educational data, tools and technologies 

In higher education, learning analytics is defined consistently with notions of academic analytics, 

aiding institutions in their financial strength by reducing attrition rates, improving learning 

outcomes by considering learner’s behavior, recommending corrective policies for instructors 

that eventually yield in establishing a stable institute and exercising a suitable resource allocation 

method. Student retention has become  a standard strategic imperative for institutions, and the 

learning analytics phenomena cumulatively aids in retaining students, consequently resulting in 

accumulated graduation rates (Palmer, 2013). Academic and learning analytics consistently 

overlap in formulating the ‘Educational Analytics’ paradigm - learning analytics is associated 

with the learner’s experience and academic analytics implicitly incorporates the overall institute 
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and its performance (Waheed et al., 2018). Moreover, a semantic mapping of deep learning with 

educational data science is presented in Fig. 1, constituting of the objectives related to 

educational data science and the tools/techniques associated with machine learning that are 

deployed in the existing literature. The paradigm of educational data science encompasses the 

various overlapping educational analytics terms such as Learning analytics, Educational 

analytics and Academic analytics, as depicted in Fig. 1. Deploying deep learning techniques 

enables to capture the students’ learning perception in a more rigorous manner, facilitating 

longitudinal interventions by the academia, and tailoring teaching methods to improve learner’s 

experience.

Multiple facets of learning analytics, encompassing learning excellence and monitoring 

operational services, enable the integration of educational repositories, affording higher 

education to achieve effective decision making, eventually aiding an institute in maintaining a 

stable performance (Van Barneveld et al., 2012). Another dimension of this domain is the 

prediction of student performance, monitoring their actions to gain insight into their patterns of 

accessing the system and identifying potentially weak students or those at risk of failing. 

Aljohani et al., (2018) discussed the need of learning analytics applications, tailored for each 

course, in order to have a better understanding of a learners cognition, pedagogy intention and 

online behavior. Learning analytics in mobile learning is a relatively new emergent area, 

formulating policies for assessing the behavior of mobile learners (Aljohani et al., 2012). 

Aljohani & Davis (2013) developed an app to record feedback from mobile learners after each 

lecture, which consequently assisted in examining the learner’s behavior.

With the growth of internet, online education has become one of the rising key phenomena 

providing sufficient repositories for student and learner information. This allows analysis for 

predicting patterns in an educational setting, defining association between the stakeholders 

involved and optimizing the learning environment. Online systems included, but not limited to, 

Learning Management Systems (LMS), Course Management Systems (CMS), Massive Open 

Online Courses (MOOCS), Virtual Learning Environments (VLE), Intelligent Tutoring systems 

(ITS) and other web-based educational systems  contribute in generating digital footprints that 

can be examined to assess the prospective behavior of learners, analysing activities of successful 

and at-risk students, providing corrective strategies based on learner’s performances, 
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consequently assisting instructors in improving the pedagogical methods (Casquero et al., 2016; 

Fidalgo-Blanco et al., 2015). 

Learning analytics assists in providing automated, real time opinions and recommendations for 

constructive pedagogical strategies through multiple learning analytics platforms (such as 

learning analytics dashboard, LMS visualization systems). These feedback systems aid in 

constructing a more robust platform to measure, examine and predict student involvement, 

contributing self-regulated learning and driving motivational factors to regulate successful goal 

achievement (Corrin & de Barba, 2014; Mah, 2016; Siemens et al., 2011; Siemens & Long, 

2011). Corrin & de Barba (2014) initiated a study to interpret the influence that feedback 

provided via learning analytics dashboards had on students’ performance, motivational drive and 

strategy development for course work. These applications induce a positive drive in students 

learning, consequently impacting performance (Arnold & Pistilli, 2012).

1.2 Contributions

The overall research agenda for this study is to measure the effectiveness of VLEs in predicting 

students’ performance, for timely intervention by the instructors, providing suitable pedagogical 

support. Moreover, determining learners’ behavior and various patterns associated with them, the 

performance of the students can be assessed by the extent of their interaction with the virtual 

environment.  More specifically, students’ interactions with the deployed learning management 

tools generate an abundance of clickstream data, consequently reflecting their participation with 

the learning environment. The current students’ performance is indicative of their legacy data, 

such as their past performance in assessments and quizzes. The objectives to be addressed in this 

study are as follows:

 Determining the effectiveness of deep learning models in predicting students’ academic 

performance for the following categories: ‘withdrawn-pass’, ‘pass-fail’, ‘distinction-pass’ 

and ‘distinction-fail’ using VLE dataset.

 Exploiting clickstream data generated through students interaction with the virtual 

learning management system to assess their performance.

 Ascertaining the effectiveness of deep learning models for the early prediction of 

students’ performance.
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The proposed contribution of this study, as derived from the above research objectives, is 

essential in identifying the effectiveness of the learner’s digital footprints in the VLE, including 

their legacy data and ascertaining interaction patterns of students’ at-risk of failure or 

withdrawal. In this study, we explored a well-known freely available dataset, called Open 

University Learning Analytics (OULA) provided by Open University, to analyse student 

behavior and the impact of students’ interaction with the VLE on their performance. The rest of 

the paper is organized as follows. Section 2 briefly describes existing educational data science 

literature in predicting students’ performance in an online environment. Section 3 describes the 

dataset and discusses the methodology. Section 4 presents the experimental results and 

discussion. Finally, section 5 summarizes the paper by providing concluding remarks and 

proposing future directions.

2 Literature Review

The research area related to students’ performance prediction is multidimensional and can be 

explored and analysed via multiple perspectives, including early prediction of dropouts and 

withdrawals in an on-going course, analysing the intrinsic factors impacting their performance 

and deploying statistical techniques to measure the performance of students. Various data mining 

techniques are deployed on educational datasets to predict students’ performance, assessing slow 

learners and dropouts (Abu-Oda & El-Halees, 2015; Kaur, 2015; Hardman et al., 2013; Yadav, 

2012). The techniques employed on these learning analytics datasets aid in data-driven decision 

making (Waheed et al., 2018). Early prediction is a new phenomenon in this domain, 

encompassing methods to timely assess the students in order to retain them, by suggesting 

suitable corrective strategies and policies, subsequently managing and reducing attrition rates. In 

the literature, there has been substantial debate on the subject of student retention in MOOCs. 

Numerous studies have emphasized the identification of  the factors contributing to students’ 

dropout rates (Aulck et al., 2016; Fei & Yeung, 2015; Tan & Shao, 2015; Xing, 2016). Various 

factors, such as the attribute of time, motivational factors, non-existent interactivity between 

students-instructors, lack of knowledge of the course pre-requisites and effectiveness of the 

course content, are associated with the early withdrawal of students in MOOCs (Hone & Said, 

2016; Khalil & Ebner, 2014). Jaggers & Xu (2016) conducted a study identifying the major 
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factors influencing student performance in an online environment and concluded student-

instructor interaction to be the foremost attribute positively impacting one’s performance.

Different attributes are associated with the prediction of students’ performance. Shahiri & 

Husain (2015) conducted a systematic literature review to observe the characteristics 

substantially contributing to the prediction of class-room performances. Cumulative grade point 

(CGPA) and assessments (such as assignments and quiz marks) were considered to be the two 

primary attributes to assess students’ performance (Elakia & Aarthi, 2014; Mayilvaganan & 

Kalpanadevi, 2014; Papamitsiou et al., 2014; Tucker et al., 2014). Another perspective 

encompasses factors of students’ legacy data (such as past performances in previous 

assessments/entry test etc.) and demographics in being significant contributors to assessing 

performances (Leitner et al., 2017). Furthermore, another study employed family characteristics, 

such as family expenditure, income and students personal information, to assess the impact on 

their performance (Daud et al., 2017). They concluded that excessive rental expenditures and 

health expenses impacted the overall environment ultimately influencing student’s performance. 

Emotional stability, a student’s inherent attribute, was considered to be an important predictor of 

their performance. 

Several studies deploy machine learning techniques to analyse student behavior and predict 

students at-risk of a failure (Costa et al., 2017; Hassan et al., 2019; Wasif et al., 2019). In the 

existing literature, another array of studies follow a sequential approach to convert the course 

duration into a week-wise format and assess student performance according to their interaction 

with the learning environment. Marbouti & Diefes-Dux (2015) utilised machine learning 

techniques to predict students at-risk of a failure in the 2nd, 4th and 9th week of their first year of 

engineering. Their dataset comprised of attendances, quizzes and assignments, with the inclusion 

of an additional attribute of mid-term exams in the 9th week. Deploying a logistic regression 

model, they achieved an accuracy of 98% by the 9th week. Additionally, in a study, at-risk 

students were predicted by deploying various data mining techniques, including Support Vector 

Machines (SVM), Naïve Bayes Classifier, Decision Tree, K-Nearest Neighbor and Multi-Layer 

Perceptron, to identify the best prediction modeling method. Logistic Regression was employed 

as the baseline model (Chui et al., 2018;  Marbouti et al., 2016). Assessment engagement pattern 

is considered to be another parameter that effectively captures the behavior of students and 

induces a positive impact on their performance (Hussain et al., 2018; Jung & Lee, 2018). In 
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contrast to the clickstream behavior that only captures 10% variance of student learning 

dynamics, assessment related activities enable to tap a much broader variation of student 

behavior (Tempelaar et al., 2015). Similarly, the involvement in the discussion forums was found 

to be positively associated with student success (Bonafini et al., 2017).

Deploying deep learning techniques on learning analytics to predict successful and at-risk 

students is rather a new area of research. Deep learning employs techniques that encompass 

constructing a model comprising of multiple layers to learn representations from raw data. This 

representation learning consists of multiple layers, where each layer transforms the 

representation to a more abstract form for the next layer (LeCun et al., 2015). Corrigan & 

Smeaton (2017) predicted student success via a VLE by including the number of times a student 

interacts with the environment. They deployed Recurrent Neural Network’s (RNN) variation 

Long Short Term Memory (LSTM), to predict the success of students based on their interaction 

with the Moodle based learning environment. The results were evaluated using Random Forests, 

and LSTM outperformed it by 13.3% of the variance of the model, as opposed to 8.1%.

Okubo et al. (2017) predicted student success by utilizing various features extracted from 

Kyushu University’s learning system named M2B. They collected 108 student learning logs for 

an ‘Information Science’ course. The learning logs comprised of a feature set of weekly quiz, 

attendance, notes on the lectures delivered, sides view and book markers. They deployed the 

RNN model with hidden layers of LSTM to predict students grades based on their interactions 

and defined features. The results were compared with multiple regression analysis and the 

proposed model surpassed the regression models through early prediction of the grades. Fei & 

Yeung (2015) employed different machine learning techniques to predict student dropout rates in 

two courses from Massive Open Online Courses (MOOCS). Since the data is time dependent, 

they viewed it as a sequence classification problem. MOOCS are subjected to high attrition rates; 

hence apart from baseline models such as SVM and Logistic regression, they implemented Input 

Output Hidden Markov Model (IOHMM), RNN and LSTM to identify the best technique among 

these.The feature set incorporated lecture view, lectures downloaded, quiz attempts, numbers of 

access, forum activities, forum views and number of times students commented on forums. After 

deploying the above mentioned techniques, they found that a combination of RNN and LSTM 

had the highest accuracy.
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Table 1: Comparative Analysis on the studies on OULA dataset
Authors Objectives Techniques applied Evaluation
(Hlosta et al., 
2017)

Identifying at-risk students based 
on first assessment

Machine learning algorithms 
SVM, Naïve Bayes, Logistic 
Regression, Random Forest, 
XGBoost

71.31%  F1 
measure

(Hussain et al., 
2018)

Identifying students at-risk of low-
engagement in a VLE

DT, J48, CART, JRIP, Gradient 
Boosting Trees, NB

88.52% accuracy, 
0.63 Kappa by J48

(Heuer & 
Breiter, 2018)

Predicting student success through 
daily activities

Decision Tree, Random Forest, 
Logistic Regression, and 
Support Vector Machine

90.85% accuracy 
by SVM 

(Haiyang et al., 
2018)

Early prediction of dropouts by 
converting data into day-wise 
sequences  

Decision Trees (10 fold cross-
validation)

Almost 90% 
accuracy with the 
whole dataset

(Peach et al., 
2019)

Identify students at-risk of low 
performance in online engagement

Time-series clustering and graph 
partitioning algorithms to 
identify clusters with similar 
patterns

Low performers 
are concentrated in 
the massed 
learning clusters.

(Hassan et al., 
2019)

Identifying early withdrawals by 
converting online interactions into a 
week-wise sequential vector

LSTM 97.25% accuracy

(Wasif et al., 
2019)

Identifying students at-risk of low 
performance 

SVM, Logistic Regression, 
Random Forest, Naïve Bayes

89% accuracy

(Azizah et al., 
2018)

Identifying academic performance 
based on web pages visited

Naïve Bayes, C4.5 Tree 63.8% accuracy by  
Naïve Bayes

(Rizvi et al.,  
2019)

Identifying impact of demographics 
on academic performance

Decision Tree algorithms 83.14% accuracy

(Kuzilek et al., 
2018)

Identifying withdrawals from active 
versus non-active students

Markov chain models 0.25 withdrawal 
probability for 
active students and 
0.95 for non-active 
ones.

Recently, in the existing literature many studies have explored the OULA dataset to leverage the 

power of machine learning in analysing and predicting student performance. Table 1 presents a 

conclusive comparison of the studies using OULA dataset in performance and courses 

evaluation. Overall, in the existing literature several studies leverage the ability of machine 

learning techniques to predict student performance through various parameters of student 

engagement. However, such studies either emphasize on predicting at-risk students or analyse 

the dropouts. In this study, we intend to analyse student performance through the initiation of 

different performance-related categories. The investigation of such categories will assist in 

identifying behavioral patterns of various performance categories, providing opportunities for 

educational stakeholders to support students in need.
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Table 2: Class Label Categories

Categories No. of Students

Pass-Fail 22,437

Withdrawn-Pass 25,541

Distinction-Fail 10,076

Distinction-Pass 15,385

3 Data and Methodology

This section presents an overview of dataset, pre-processing techniques and details of deep 

learning model employed.

3.1 Dataset

The dataset is retrieved from the openly accessible OULA which provides demographic, 

clickstream behavior and assessment performance of 32,593 students over a course period of 9 

months, from 2014-2015 (Kuzilek et al., 2017). It is comprised of 7 courses, referred to as 

modules, each presented at least twice and at different times in a year. The resultant marks of 

students are classified into four classes; distinction (3,024), pass (12,361), fail (7,052) and 

withdrawn (10,156). The dataset consists of several files, consisting of students’ demographics, 

VLE data, interaction with the VLE represented by clickstream data, assessment marks and 

modules information. The VLE data is comprised of 20 activities, where each activity type 

represents an important element of the VLE, and students interact with the VLE to access course 

material and participate in discussion events, through these activities (See Table A-1 in 

Appendix A).

In this study, to analyse student performance prediction, the provided student performances are 

devised into four categories, with each category being a binary classification. To devise these 

categories,  class labels pass and distinction are merged into one label ‘pass’, owing to the class 

imbalance problem. To predict students’ at-risk of failure, class labels ‘pass’ merged with 

‘distinction’, and ‘fail’ are deployed on the model.  The problem, hence, becomes a binary 

classification problem with 22,437 unique students and ‘pass’ , ‘fail’ as class labels, where class 

0 depicts pass and 1 represents fail. The withdrawal cases tend to have a distinct attitude where a 

student might withdraw in the first few weeks. Therefore, it is considered another category and 
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withdrawals are predicted with the ‘pass merged with distinction’ cases. Again the problem is 

converted to a binary classification with 25,541 unique students and ‘withdrawn’, ‘pass’ as class 

labels (see Table 2). Similarly, to predict students with distinctions, they are employed on the 

model with ‘pass’ and ‘fail’. Overall four categories of the dataset are computed with respect to 

the class labels. Each category represents a binary classification system, to address the objectives 

of the study.

An array of analytical techniques are employed on this dataset to predict students’ performance 

by identifying students at-risk of a course failure, early prediction of at-risk and withdrawal 

students and identifying patterns of students passing with distinction. A two-fold approach is 

utilized to represent the OULA dataset to encompass the objectives of our study. Firstly, 

demographics, assignments and total clicks of each student are computed to address the 

objectives of this study. Secondly, each module is divided into quartiles, to provide early 

intervention of the students at-risk of failure or withdrawal. A detailed description of all the 

features employed in the two approaches is described below in the preprocessing section.

3.2 Methods

The study follows a two-fold analysis: a) mining student activity with the VLE portal and static 

demographics data; b) mining quarterly clickstream data for each student in each new course. In 

order to evaluate students’ performance, the OULA dataset is analysed as follows to obtain the 

objectives of this study. 

3.2.1 Mining Demographics and VLE Portal 

The first approach mines the data that includes the students’ demographics and VLE portal 

information, such as the number of clicks for each activity type provided in the dataset. 

Moreover, students are able to access the VLE a few weeks before the start of the module; hence 

the number of clicks for each activity type, before the module started, is considered another 

range of features. Similarly, the data relevant to the assessments and number of late assignments 

submitted are also included in the dataset. A list of these 54 features is provided in Table A-1, 

Appendix A.
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The dataset, comprising students’ demographics and VLE portal information, is sparse with 54 

features and one binary class label for each category. Sparse feature reduction technique is 

employed to find the optimal features impacting student’s performance. To cater the data sparsity 

on this feature set, sparse feature reduction technique using truncated Singular Value 

Decomposition (SVD) is deployed, to identify the top 30 significant attributes. This technique 

performs linear dimensionality reduction by means of truncated SVD. SVD corresponds to 

dimensionality reduction by means of a low rank approximation, assuming there is a 

matrix ‘X’ and it is to be estimated to a rank ‘r’ matrix ‘ ’, where r < rank(X). The estimated 𝑋^

inaccuracy is computed by the Frobenius norm, which corresponds to the square root of the 

squared error. It reduces the ‘squared distance’ between each data point. The problem then 

becomes:  such that, rank ( ) = r. The rank ‘r’ denotes the dimension of the linear  min
𝑋^

|𝑋 ― 𝑋^|𝐹 𝑋^

sub-space of the data points.   is the computed low rank estimation of the data matrix implying 𝑋^

that the data points in ‘X’ matrix are compressed into a r-dimensional sub-space. In terms of 

centered data SVD corresponds to Principle Component Analysis (PCA), which can be defined 

as reducing the estimation error (Jolliffe & Cadima, 2016). However, in terms of non-centered 

data, such as in this case where the data is sparse, SVD instead of the covariance matrix, is 

expressed as the Eigen-decomposition of the matrix XTX. 

A list of the 30 features (F1-F30) selected by the sparse reduction technique (SVD) is provided 

in Table A-1 in Appendix A, where each feature is listed with respect to its significance on the 

student’s performance. The demographics data is available in the OULA dataset. However, the 

VLE portal information, constituting of the overall total clicks on each activity, is computed 

through the available raw OULA dataset.

3.2.2 Mining Quarterly VLE Clickstream Events

The second approach in this study is the early intervention for all the categories (as provided in 

Table 2). To address early intervention, modules are divided into quarters. The duration of a 

module is nine months, so each module is divided into 4 quartiles and for each quartile the 

clickstream data of each activity is computed. Clickstream data refers to the interaction behavior 

of the students with the online learning platform. For each quarter temporal features are 

computed, that are updated with respect to each quarter. This forms another array of derived 
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features, in order to assess the most significant time in a module affecting a student’s 

performance, which can further be utilized for early intervention by the academia. 

Each module quarter contains the computed clickstream data of the temporal longitudinal 

activities, which vary with respect to each quarter. Each new quarter is computed by adding 

clickstream data of its previous quarters, such that Q2 will contain the clickstream activities of 

Q1 and Q2 cumulatively. Similarly, Q3 and Q4 are computed, with each of them including the 

clickstream information of their previous quarters. The activities in OULA VLE have been 

discussed previously in the dataset section. The number of features in each quarter corresponds 

to the number of activities in the VLE; however, the clickstream information of each quarter 

varies.

3.2.3 Artificial Neural Network 

Finally, the Deep Artificial Neural Network or Deep ANN classification model is employed to 

learn the predictive function of predicting students’ at-risk of failure, those likely to withdraw 

from their courses, early prediction of withdrawal students, and determining the students who 

outperform others with distinction.

Deep learning methods are referred to as representation-learning methods constituting several 

layers of non-linear modules. This enables the system to be proficient enough to learn complex 

functions, making it robust enough to be sensitive to intricate and minute specificities. In contrast 

to the statistical methods, Deep ANNs facilitate generalization, which enables them to correctly 

infer hidden patterns from the data, assisting in making data driven assumptions (Montavon, 

Samek, & Müller, 2018). The network learns from the examples in the training data, thus 

increasing the training split leads to a more robust accuracy (Nielsen, 2015). The stack of non-

linear layers between the input and output layers are referred to as hidden layers, weights are 

adjusted in the layers through stochastic gradient, to calculate the error computed in classifying 

and predicting correct answers. An ANN with multiple non-linear layers, also referred to as a 

Multiple Layered Perceptron, is capable of implementing complicated input functions (LeCun et 

al., 2015). 

An ANN is composed of inter-connected objects referred to as processing units. Each unit takes 

the weighted sum of inputs and produces an output. An ANN has a layered architecture where 

neurons are assembled in consecutive layers and output of each layer is fed to its successive 
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layer. A combination of non-linear functions is deployed on the input, hidden and output layers. 

In binary classification the output layer is activated with ‘sigmoid’ function, because sigmoid 

squashes the values into 0 or 1. For a supervised learning problem, the weight vector ‘w’ for the 

‘nth’ unit at time instant ‘t’ is defined as shown in Eq. 1.

(t+1) = (t) + (1)𝑤𝑖 𝑤𝑖 ∆𝑤𝑖𝑡

where  denotes the change in the weight vector. For each instance the weight vector is ∆𝑤𝑖𝑡

changed with respect to the difference in the actual and desired output,

(2)∆𝑤𝑖 = 𝜂 ∗ (𝐷 ∗ 𝑌).𝐼𝑖

where  is the learning rate of the model, D and Y are the desired and actual outputs, respectively 𝜂

and  denotes the ith input instance. The model is trained to find appropriate weight vector values 𝐼𝑖

that correspond to a robust prediction (Da Silva et al., 2017).

In this study, Deep ANN is employed to predict the students’ performance, in terms of 

identifying students’ at-risk of failure in their modules. After feature selection, min / max scaling 

is employed to normalize the data. The data is split into train test and is fed to the neural network 

in the form of a feature vector. A train-test split of 70% is performed with 30% reserved for the 

validation of the model. Fig. 2 illustrates the proposed architecture level system of the ANN. For 

each of the four categories defined in Table 2, extensive experimentations were conducted to 

select the appropriate parameters providing optimal results. After rigorous experiments ANN 

with three hidden layers is implemented with each hidden layer constituting of 50, 20 and 10 

neurons respectively. Moreover, each hidden layer is activated with either ‘relu’ or ‘tanh’ 

function and the output layer with ‘sigmoid’ function. Further, the experimentation details are 

provided in the next section.

4 Experiments and Results

The study follows a two-fold analysis: a) over-all data including student activity with the VLE 

portal and demographics data; b) quarterly clickstream data for each student in each new course. 

For each of these cases different experiments were performed with different parameters, however 

optimized results were obtained by deploying the deep ANN model with three hidden layers of 

different neurons, a batch size ranging from 32 to 64 and either ‘adam’ or ‘rmsprop’ as 

optimizers. 
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Figure 2: Proposed Architecture of Artificial Neural Network

4.1 Analyses of demographics and VLE portal events

To predict students’ performance, considering their demographics and overall portal VLE 

information, 30 features, through sparse reduction technique were selected from a total of 54 

features, provided in Appendix A. From these 54 features F1-F30 were selected through sparse 

reduction technique. Table 3 represents the evaluation results of our Deep ANN with the baseline 

models Support Vector Machine (SVM) and Logistic Regression (LR) where cross validation 

was performed on the data. Each method was executed multiple times with a random train-test 

split; these results were then averaged and reported in Table 3. Due to the consistency in the 

existing literature, SVM and LR were selected as baseline models.

4.1.1 Predicting at-risk students

The problem of predicting at-risk students was converted to a binary classification problem by 

defining two classes ‘pass’ and ‘fail’.  SVM with a rbf kernel and deep ANN with three hidden 

layers of 50, 30 and 15 neurons and a batch size of 64 produced optimal results. It can be 

observed that Deep ANN yields a better accuracy in predicting students’ at-risk of failure.
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Table 3: Cross validation results for Students demographics & VLE portal data
Categories Techniques Accuracy% Loss Precision Recall

ANN 84.48 0.385 0.86 0.617
SVM 66.94 0.340 0.44 0.69

Pass/
Fail

LR 81.95 0.182 0.80 0.81
ANN 86.40 0.295 0.78 0.76
SVM 72.43 0.291 0.76 0.79

Distinction/
Fail

LR 80.15 0.197 0.79 0.80
ANN 80.54 0.495 0.69 0.82
SVM 78.93 0.253 0.66 0.79

Distinction/
Pass

LR 79.81 0.219 0.76 0.78
ANN 94.70 0.136 0.94 0.91
SVM 88.31 0.125 0.87 0.88

Withdrawn/
Pass

LR 88.34 0.135 0.88 0.89

Therefore, according to the features provided in Table A-1 in Appendix A, Deep ANN produces 

better predictions by yielding an accuracy of 84% (see Table 3).The significant features 

associated with the desired student performance are illustrated in the heat-map (part (a) of Fig. 

3). It can be observed that demographic features, previous education history, legacy data of 

students including assessments submission and the overall activity of a student in a module are 

significantly impacting student’s performance.

4.1.2 Predicting students with distinction

To predict students with distinction, the problem was considered a binary classification problem 

by defining two sets of categories, a) ‘distinction’ and ‘pass’ b) ‘distinction’ and ‘fail’. For 

‘distinction-pass’, a deep ANN with hidden layers of 50, 25, 10 neurons, batch size of 32 and 

tanh as activation function provided optimal results. As depicted in Table 3, ANNs accuracy in 

‘distinction-pass’ category does not have a significant difference from other baseline models. 

This may be attributed to the class imbalance problem; also another justification can be that both 

classes do not have significant differences in their patterns. In the ‘distinction-fail’ category deep 

ANN yields more accurate results than other baseline models, as shown in Table 3. Parameters 

were tuned by setting hidden layers of 50, 40 and 20 neurons and 32 as batch size. The 

significant features associated with the desired student performance are illustrated in the heat-

map (parts (b) and (c) of Fig. 3). To predict ‘distinction’ instances from failures, students’ portal 

information is observed to be positively associated with the performance, whereas demographic 

features including geographical region and education history are seen to be negatively associated 

with performance.
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         a) Pass-Fail correlation heat-map            b) Distinction-Pass correlation heat-map

 
c) Distinction-Fail correlation heat-map           d) Withdrawn-Pass correlation heat-map

Figure 3: Correlation Heat-maps among features and class categories

It can be observed that demographic features, previous education history, legacy data of students 

including assessments submission and the overall activity of a student in a module, are 

significantly impacting the student’s performance.

4.1.3 Predicting withdrawal cases

To predict ‘withdrawal’ instances, ‘withdrawals’ and ‘pass’ are the two classes that were 

defined. The pattern of withdrawals will distinguish from ‘pass’ instances, since withdrawals 
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tend to leave/drop out of their modules. Parameters for deep ANN were tuned with 50, 50 and 20 

neurons in the three hidden layers, 64 batch size and relu as activation function. The evaluation 

results show an accuracy of 94% in predicting the two aforementioned class labels, provided in 

Table 3. Comparing the deep ANN results with SVM and LR, deep ANN tends to give a higher 

accuracy in predicting withdrawals. The significant features associated with the desired student 

performance are depicted in the heat-map (part (d) of Fig. 3). In case of withdrawals, the 

activities before the initiation of the module are observed to be significantly impacting the 

performance. Students interested in registering in a particular module are more likely to be active 

on the portal before the module starts. It can be observed that demographic features, previous 

education history, legacy data of students including assessments submission and the overall 

activity of a student in a module, are significantly impacting the performance of students.

4.2 Analyses of Quarterly VLE Clickstream Events

For each quarter, the four categories corresponding to at-risk students, distinction students and 

withdrawals were predicted through the deep ANN classifier. The detailed analysis for each of 

these quarters is discussed below and provided in the Table 4.

4.2.1 Early Prediction of at-risk students

The problem of predicting at-risk students was converted to a binary classification problem by 

defining two classes ‘pass’ and ‘fail’. 

Table 4: Quarterly Accuracy and Loss for each Category in each Quartile
Quartiles Techniques Accuracy% Loss

Pass-Fail 77.22 0.485
Distinction-Pass 80.25 0.479
Distinction-Fail 80.63 0.360

Q1

Withdrawn-Pass 78.68 0.444
Pass-Fail 81.63 0.413
Distinction-Pass 80.48 0.469
Distinction-Fail 81.58 0.392

Q1-2

Withdrawn-Pass 86.03 0.349
Pass-Fail 86.15 0.345
Distinction-Pass 80.44 0.484
Distinction-Fail 85.81 0.301

Q1-3

Withdrawn-Pass 90.42 0.275
Pass-Fail 88.62 0.318
Distinction-Pass 81.01 0.468

Q1-4

Distinction-Fail 85.81 0.308
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Withdrawn-Pass 93.23 0.223

For each quarter, at-risk students were predicted, in order to analyse the improvement in our 

model, insinuating early prediction of students’ at risk of failure. 

Fig. 4 illustrates the accuracy for each of the quarters. It can be observed that the best accuracy is 

achieved in the last quarter that cumulatively integrates the overall clicks for each activity.

However, 2nd and 3rd quarters also do not perform poorly; they too reach an accuracy of above 

80%. Therefore, our classifier gives an accuracy of 81-86% for early prediction of at-risk 

students from the initial quarter to the final one, respectively.

Figure 4: Quarterly accuracy for each category

4.2.2 Early Prediction of students with distinction

To predict the students outperforming others with distinction, the problem was again converted 

to a binary classification by defining two sets of this problem; a) ‘distinction-pass’ b) 

‘distinction-fail’. We show that for the category ‘distinction-pass’, a major change or rise in the 

accuracy for all the quarters is not observed (see Fig. 4). The accuracy throughout the quarters 

rather remains stagnant, with a little difference in the last quarter (Q1-4), implying that a distinct 

decision boundary in the case of ‘distinction’ and ‘pass’ is not available. This may be attributed 

to the class imbalance problem, because the ‘distinction’ instances are quite scarce as compared 

to ‘pass’ instances. If ‘distinction’ instances are increased, then a distinct pattern between such 

students may be visualized.
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Figure 5: Quartiles Learning Accuracy Curves for all Categories

Similarly, to evaluate the ‘distinction-fail’ instances, these two were defined as class labels. Deep 

ANN was implemented on this set of instances, for all the quarters. Due to the class imbalance 

problem, a distinguishing pattern is not observed, as depicted in Fig. 4. It can be visualized that 

the last two quarters have a stagnant accuracy, however better than the previous quarters, 

nevertheless due to the low number of ‘distinction’ instances, a demarcating accuracy rise 

between quarters, cannot be observed for this category.

4.2.3 Early Prediction of withdrawal cases

For early intervention in predicting withdrawals, the problem was considered a binary 

classification by deploying ‘withdrawals’ and ‘pass’ as two defined class labels. A distinct rise in 

accuracy, with respect to each of the quarters, is observed, with the last quarter reaching an 

overall accuracy of 93%. Fig. 4 demarcates a discrete pattern in the prediction of ‘withdrawal’ 

instances from ‘pass’ instances. It can be inferred that the model constantly learns the patterns of 

withdrawals for each new quarter, with accuracy ranging from 78% to 93%.
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Figure 6: Quartiles Learning Loss Curves for all Categories

Fig. 5 depicts the quarterly learning accuracy curves for all the four categories specified in this 

study. We show that for the three categories; ‘withdrawn-pass’, ‘pass-fail’ and ‘distinction-fail’, 

a clear demarcation can be observed with respect to the quarterly data. Learning accuracy 

improves with the increased clickstream quarterly data, implying the possibility of early 

prediction of students’ at-risk of failure, detecting early withdrawals and distinguishing students 

with distinction from failure instances. 

Table 5: ANN’s evaluation with the baseline for Q1-Q4
Techniques Category Accuracy% Loss Precision Recall

Pass-Fail 88.62 0.318 0.93 0.69
Distinction-Pass 81.01 0.468 0.37 0.08
Distinction-Fail 85.81 0.308 0.74 0.81

ANN

Withdrawn-Pass 93.23 0.223 0.96 0.86
Pass-Fail 85.65 0.157 0.84 0.84
Distinction-Pass 79.95 0.202 0.64 0.80
Distinction-Fail 78.08 0.219 0.79 0.78

SVM

Withdrawn-Pass 89.14 0.108 0.89 0.89
Pass-Fail 84.23 0.157 0.84 0.84
Distinction-Pass 79.82 0.202 0.75 0.80
Distinction-Fail 81.69 0.183 0.81 0.82

LR

Withdrawn-Pass 85.60 0.144 0.86 0.86
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Owing to the class imbalance problem, the ‘distinction-pass’ category does not yield substantial 

results and a clear demarcation line, in terms of improved accuracy between quartiles, is thus 

missing for this case.

Fig. 6 illustrates the quarterly learning loss curves for all the four categories mentioned. Similar 

to the learning accuracy, the loss too depicts a clear demarcation for each quartile. As accuracy 

increases the corresponding loss for each quartile decreases. Similar to the accuracy of the 

‘distinction-pass’ category, the learning loss also does not yield a distinct decrease.

Figure 7: ANN’s evaluation with the baseline for Q1-Q4

In order to evaluate the quarterly results, the last quartile encompassing data from Q1-4 was 

compared with SVM and ANN, details provided in Table 5. As illustrated in Fig. 7, the proposed 

model yields better accuracy compared to baseline models.

4.3 Discussion on Results and Policy Implications

This research contributes in predicting students’ performance through a deep ANN, by 

ascertaining significant features impacting a student’s academic performance. The student 

performance for four classes ‘pass’, ‘fail’, ‘distinction’ and ‘withdrawn’ is analyzed by devising 

each problem into binary classification and converting them to four categories; ‘pass-fail’, 

‘distinction-pass’, ‘distinction-fail’ and ‘withdrawn-pass’. The study follows a twofold analysis 

for each of these categories, where firstly the students’ demographics and overall VLE portal 

information is gathered and feature construction is performed. Significant features for each of 
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these categories, having an impact on the student performance, are examined. For students 

outperforming others with distinction, their age, region and disability are observed to be 

negatively associated with their performance, implying that students living in the rural areas may 

have hindrances or connectivity issues in accessing the VLE and hence the negative association 

with their performance. Personal characteristics impact a student’s performance, consequently 

yielding to significant decisions regarding one’s education (Daud et al., 2017). For students at-

risk of failure and withdrawal, their overall studied credits, highest education achieved till date 

and region were found to be significantly impacting their performance. The factor of age is also 

an important determinant for withdrawals, with an increase in age demonstrating a positive 

association with their performance, insinuating stability in the mindset of mature students as 

compared to youngsters. Moreover, for each of these categories the portal information collected 

after the module initiation was found to be significantly associated with an individual’s 

performance, implying that active participation during a module is positively associated with 

performance, in contrast to the activities prior the module which are found to be insignificant 

determinants of performance. Moreover, for both pass-fail and withdrawan-pass categories 

students actively clicking on the previous week’s content, to access previous lectures and 

material, were found to demonstrate a positive influence on performance. This factor highlights 

the crucial significance of the learning pattern behavior of students. The model predicts the 

students at-risk of failure by an accuracy of 88%, proving slightly better than other baseline 

models. The deep learning model correctly classifies at risk students with an accuracy of 88-

89%. Similarly, ‘withdrawn’ instances are classified accurately with an accuracy of 94-95%.  

Also students with ‘distinction’ are predicted by the model with an accuracy of 86%, proving 

slightly better than other baseline models.

In the second analysis, quarterly clickstream data for each student is computed for early 

intervention by the university. In this analysis, temporal features are computed to timely predict 

the students’ at-risk of failure, those that are likely to withdraw and students achieving a 

distinction who outperform others in achievement. For early prediction of students’ at-risk of 

failure, quarterly data shows an accuracy of 77% after the first quartile which gradually rises to 

88% with additional quarterly clickstream information. Similarly, in case of ‘withdrawn’ 

instances, a rise in accuracy from 78% to 93% is observed, suggesting the effectiveness of the 

deep learning model for early interventions in order to resolve student issues and motivating 
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them to continue their studies. In case of analysing distinction students, a distinct boundary is not 

observed that discretely demarcates between distinction and other instances. This can be 

attributed to the class imbalance problem, since ‘distinction’ instances are few in number 

compared to others which hinders the performance of the model. However, in the case of the 

‘distinction-fail’ category, the model’s accuracy slightly increases with the data of the first two 

quarters and an increase is observed in the third quarter that relatively stagnates in the last 

quarter, suggesting the effectiveness of the model in the third quarter.

The results achieved by the study can be utilized for constructive and formative pedagogical 

guidelines. The early prediction of student performance will enable administrative and decision 

committees to adopt a pragmatic approach for timely interventions with students and influencing 

them in a positive manner by providing appropriate recommendations and counseling.  Such an 

early prediction, during the academic year, will help identify weak students, offering them 

additional support in the learning tasks. This study provides emphasis on the efficacy of ANN for 

devising data-driven decision making policies, addressing issues experienced by students and 

consequently assisting an institution in maintaining their academic career.  

5 Concluding Remarks

This study presents a contribution to knowledge in early prediction of students at-risk of low 

performance, determining students likely to withdraw from modules and ascertaining significant 

features that enable a student to outperform others. Results reveal demographic characteristics 

and student’s clickstream activity, after the module initiation, as having a significant impact on 

student performance. The participation of students with the learning environment before the 

modules begin has no association with their performance. This study also determines the 

effectiveness of the deep learning model in the early prediction of student performance, enabling 

timely intervention by the university to implement corrective strategies for students support and 

counselling. Such studies will facilitate institutes in formulating student support committees for 

their provision and benefits, thus helping an institute in maintaining its decorum and 

productivity. Due to the class imbalance problem in ‘distinction’ instances, a discrete pattern for 

such students was not observed, a limitation of our study. However, demographic and geographic 

characteristics tend to significantly impact performance. The performance evaluation model 

shows a sensitivity of 69%, a precision of 93% and overall accuracy of 88% in predicting at-risk 
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students; a sensitivity of 86%, a precision of 96% and overall accuracy 93% in predicting early 

withdrawals. Similarly, while ascertaining ‘distinction’ students from ‘fail’, a sensitivity of 74%, 

and precision of 81% and overall accuracy of 85% is achieved. 

Overall, the results demonstrate the effectiveness of the deployed techniques in evaluating the 

early prediction of students. Such data-driven studies are required to assist higher education in 

the formulation of a learning analytics framework, contributing in their decision-making process. 

An in-depth study is required to evaluate the significance and impact of all the activities 

provided in the OULA dataset. In the future we intend to investigate activity-wise importance 

and determine activities having an influential impact on the performance by mining textual data 

(Thompson et al, 2017; Shardlow et al., 2018) pertaining to students’ feedback by employing 

natural language processing (Batista-Navarro et al., 2013) and advance deep learning models 

(Jahangir et al., 2017). This will enable to formulate a discrete pattern of students belonging to a 

certain performance category, which in the future can facilitate educational stakeholders to 

develop requisite pedagogical policies and guidelines. Similarly, a more detailed analysis of the 

day-to-day activities, for each student, will enable a more intensive exploration of such 

behaviors. Such data-driven studies are required for the formulation of appropriate pedagogic 

instructional committees to provide support to students, facilitating the higher education in their 

decision-making process and devising corrective policies for students’ retention. 
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Appendix A

Table A-I: List of all 54 features 
Features Feature Code Description
F1 highest_education' highest education of a student when registering for a module
F2 imd_band Index of Multiple Depravation band of the area where student resided during the module work
F3 age_band students age band
F4 num_of_prev_attempts number of times a student has attempted a particular module
F5 studied_credits number of credits being currently studied by the student
F6 disability if student has stated a disability
F7 AC T. Clicks after course total clicks of a student for a particular module
F8 BC T. Clicks before course total clicks of a student for a particular module
F9 AC DataPlus after course total clicks on the additional information such as videos, audios, sites etc.
F10 AC DualPane after course total clicks on the information on site and activity related to that information
F11 AC Folder after course total clicks on the files relevant to course
F12 AC Forumng after course total clicks on the discussion forum
F13 AC HomePage After course total clicks on the course homepage 
F14 AC Oucollaborate after course total clicks on the online video discussions
F15 AC Oucontent after course total clicks on the contents of the assignment
F16 AC Ouwiki after course total clicks on the Wikipedia content
F17 AC Page after course total clicks on the information related to course
F18 AC Questionnaire after course total clicks on the questionnaires related to course
F19 AC Quiz after course total clicks on the course quiz 
F20 AC RepeatActivity after course total clicks on the course contents from previous weeks
F21 AC Resource after course total clicks on the pdf resources such as books
F22 AC SubPage after course total clicks on the other sites enabled in the course
F23 AC Url after course total clicks on the links to audio/video contents
F24 Tc_Activity total course activity clicks for each student for a particular module
F25 PreA-1 number of clicks for a student, one day before the assessment deadline submission
F26 BC HomePage before course total clicks on the course homepage
F27 OnAsClicks number of clicks for a student, on the assessment day deadline submission
F28 ModuleAsigns number of assessments in a module
F29 LateAsignsSub number of assignments submitted late by a student
F30 PostA-1' number of clicks for a student, one day after the assessment deadline submission
F31 BC Oucontent before course clicks on the contents of the assignment
F32 BC SubPage before course clicks on the subpage activity
F33 AC External Quiz after course clicks on the external quiz activity
F34 BC Forumng before course clicks on the discussion forum
F35 BC Url before course clicks on the links to audio/video contents
F36 AC Ouelluminate after course clicks on the online tutorial sessions
F37 BC Page before course clicks on the information related to course
F38 BC OUwiki before course clicks on the Wikipedia content
F39 BC Quiz before course clicks on the course quiz 
F40 AC Glossary after course clicks on the basic glossary related to contents of course
F41 BC HtmlActivity before course clicks on the interactive html page
F42 AC HtmlActivity after course clicks on the interactive html page
F43 BC Ouelluminate before course clicks on the ouelluminate activity
F44 BC Glossary before course clicks on the basic glossary related to contents of course
F45 BC Oucollaborate before course clicks on the online video discussions
F46 gender gender of the student
F47 BC ExternalQuiz before course clicks on the externalquiz activity
F48 BC Questionnaire before course clicks on the questionnaires related to course
F49 AC SharedSubPage after course clicks on the shared information between courses and faculty
F50 BC DataPlus before course clicks on the additional information such as videos, audios, sites etc.
F51 region Geographic region where student resided while taking that module 
F52 BC SharedSubPage before course clicks on the shared information between courses and faculty
F53 BC Resources before course clicks on the pdf resources such as books
F54 BC DualPane before course clicks on the information on site and activity related to that information
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Highlights

 The data generated by the technology-enhanced learning platforms has enabled 
sustainable data-driven decision making.

 The clickstream data from the virtual learning environments can predict at-risk students 
for early intervention.

 The artificial neural network outperforms existing models in predicting students at-risk.

 The inclusion of legacy and assessment-related data improve the prediction power of the 
model. 
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