
 

Systematic Evaluation of Deep Face Recognition Methods Communicated by Dr Zhen Lei

Journal Pre-proof

Systematic Evaluation of Deep Face Recognition Methods

Mingyu You, Xuan Han, Yangliu Xu, Li Li

PII: S0925-2312(20)30055-2
DOI: https://doi.org/10.1016/j.neucom.2020.01.023
Reference: NEUCOM 21767

To appear in: Neurocomputing

Received date: 22 July 2019
Revised date: 29 November 2019
Accepted date: 6 January 2020

Please cite this article as: Mingyu You, Xuan Han, Yangliu Xu, Li Li, System-
atic Evaluation of Deep Face Recognition Methods, Neurocomputing (2020), doi:
https://doi.org/10.1016/j.neucom.2020.01.023

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.neucom.2020.01.023
https://doi.org/10.1016/j.neucom.2020.01.023


Neurocomputing 00 (2020) 1–??

Systematic Evaluation of Deep Face Recognition Methods

Mingyu You*a,b, Xuan Hana, Yangliu Xua, Li Lia,b

aDepartment of Control Science & Engineering, Tongji University, Shanghai, China
bShanghai Institute of Intelligent Science & Technology, Tongji University, Shanghai, China

Abstract

Face recognition is an important task in both academia and industry. With the development of deep convolutional neural networks, many deep
face recognition methods have been proposed and have achieved remarkable results. However, these methods show great diversity among their
datasets, network architectures, loss functions, and parameter learning strategies. For those who want to apply these technologies to establish a
deep face recognition system, it is bewildering to evaluate which improvements are more suitable and effective.

This study systematically summarizes and evaluates the state-of-the-art face recognition methods. However, unlike general reviews, on the
basis of a survey, this study presents a comprehensive evaluation framework and measures the effects of multifarious settings in five components,
including data augmentation, network architecture, loss function, network training, and model compression.

Based on the experimental results, the influences of these five components on the deep face recognition are summarized. In terms of the
datasets, a high sample-identity ratio is conducive to generalization, but it leads to increased difficulty for the training to converge. For the
network architecture, deep ResNet has an advantage over other designs. Various normalization operations in the network are also necessary. For
the loss function, whose performance is closely related to network design and training conditions. The angle-margin loss has a higher upper
bound performance, but the traditional Euclidean-margin loss has a stable performance in limited training condition and shallower network. In
terms of the training strategy, the step-declining learning rate and large batch size are recommended for recognition tasks. Furthermore, this study
compares several popular model compression methods and shows that MobileNet has advantages over the others in terms of both compression
ratio and robustness. Finally, a detailed list of recommended settings is provided.

Keywords: Deep Face Recognition, Facial Model Evaluation, Model Design Recommendation

1. Introduction

Face recognition (FR) has a wide range of applications, such
as security and electronic payments. It has drawn much at-
tention in computer vision in recent decades. In the early
stage, many traditional methods encounter bottlenecks in per-
formance due to the limitations of computing power and model
capability[1, 2]. With the advent of deep convolutional neural
networks (DCNNs) and increased hardware capability, these re-
strictions have been rapidly eliminated, and many DCNN-based
FR methods have been proposed[3–7].

However, these DCNN-based methods show great diversity
among their implementation settings, which makes it difficult
to determine which settings of a specific method are worth
learning. For instance, Parkhi et al.[8] designed a VGGNet-
based model trained with face images from 2,622 identities, and
Schroff et al. purposed the GoogLeNet-based FaceNet[9], but
trained with images from 8M different identities. Although the
latter model achieved a better result than the former, we can-
not simply assert that GoogLeNet-based[10] models are more
suitable for face feature extraction than VGGNet-based mod-

els. Moreover, even within a single method, the effectiveness
of operations is difficult to confirm. Taking Arcface[11] as an
example, the original paper stated that Arcface Loss was favor-
able to network training, but it lacked comparison experiments.
Thus, it remains questionable whether that loss function is bet-
ter than the conventional Center Loss[12].

A complete FR system has a few fixed components. Figure 1
shows the general pipeline, including the detection, alignment,
feature extraction, and similarity calculation[13, 14]. In this ar-
ticle, we focus on the feature extraction, which is a key factor
for improving the performance of FR systems (Figure 1 can de-
scribe both traditional and DCNN-based recognition systems.
We primarily discusses the latter in this paper. Unless other-
wise specified, the term “model” in the following refers to the
DCNN model).

In this paper, we analyze the process of model design, and
summarize five components that have great influences on the
final performance, including data augmentation, network ar-
chitecture, loss functions, network training, and model com-
pression. Each component has various alternative settings or
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Figure 1. Pipeline of face recognition

operations. E.g., for loss functions, there are candidates such
as the original Softmax Loss[15], Center Loss, and Sphereface
Loss[16]. By systematically summarizing and evaluating the
start-of-the-art works, we filter out the popular settings for each.
We then design an evaluation framework that formulates the de-
fault settings regarding all five influencing factors. This frame-
work provides a baseline for comparison experiments. In each
experiment, except for the discussed factors, all the settings re-
main unchanged.

The contributions of this paper are summarized as follows:

• We conduct a systematic evaluation of a broad spectrum
of FR methods for the first time and evaluate different can-
didates with respect to the components of the deep FR
pipeline.

• By investigating the state-of-the-art methods in this field,
we summarize five components that affect the recognition
accuracy and design an evaluation framework.

• After synthesizing all the experiment results, we suggest
a series of recommended settings. In the screening pro-
cess, we consider both the performance accuracy and the
stability of the training stage.

The remainder of this paper is organized as follows: In the
second section, we review related works of FR reported in re-
cent years. The third section explains the five components
and introduces the evaluation framework. The fourth section
demonstrates and analyzes all the experimental results. In the
last section, we summarize this work and draw conclusions.

2. Related Works

FR has been studied for decades. Some traditional works
used hand-crafted features such as Local Binary Patterns(LBP)
and Histogram of Oriented Gradient(HOG). These methods
worked well under constrained conditions. But the hyperpa-
rameters in these methods had to be rigorously tuned to achieve
acceptable results. Instead of using traditional handcrafted fea-
tures, researchers currently tend to use DCNN-based features.

In the following, we briefly review the existing studies accord-
ing to the five aforementioned components.

Dataset Many studies[17] have committed to aggregating
datasets of face images. CASIA-WebFace[18], maintained
by Yi et al., contains 494,414 images from 10,575 identities.
UMD-Faces[19] is another popular dataset with 367,920 im-
ages of 8,501 identities. VGG-Face, used by VGGNet-based
networks, is made up of images from 2,622 identities, each with
1,000 samples. Recently, researchers have increasingly trained
their networks with MS-Celeb-1M[20] or MegaFace[21, 22].
MS-Celeb-1M is the largest public face dataset to date, which
contains 10M images of 10K celebrities, whereas MegaFace
has the largest number of identities (approximately 672K). In
general, researchers tend to use as much data as possible to
guarantee the final performance of their models, which has re-
sulted in works from different times being based on datasets
of different sizes. Without the same training and testing data,
comparisons among methods would be unfair.

Apart from the varied training databases, in order to ver-
ify the discrimination ability of the face recognition system in
different scenario, many distinctive testing datasets have been
proposed. Huang et al. proposed LFW (Labeled Faces in
the Wild)[23] in 2008, which was the most typical face veri-
fication set. LFW contains 6000 pairs of images, 3000 pairs
are the same identity (positive samples) and the other 3000 of
which are not (negative samples). The testing task is to ver-
ify whether the images in one pair are from the same identity.
YTF (YouTube Faces)[24] is another important testing dataset.
Other than other image-to-image set, YTF consists of 3425 in-
dependent videos. And the final task is to verify whether the
persons in two videos are the same one. Besides the univer-
sal face verification set like LFW and YTF, There are also a
few testing databases focusing on the special scenario. CACD-
VS (Cross-Age Celebrity Dataset Validation Set) [25] was re-
leased in 2014, whose final task is to determine whether two
faces with great difference between ages are from the same per-
son. It contains 2000 positive image pairs and 2000 negative
pairs. Another wildly noted scenario is cross-angle validation
set. The most popular dataset in this field is CFP (Celebrities
in Frontal-Profile in the Wild) [26], which has 7000 pairs of
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Frontal-Frontal and 7000 pairs of Frontal- Profile face images.
Network Architecture As with the case of the datasets, the

works focusing on reforming the network architecture are also
disordered[27–29]. The work of Parkhi et al. was based on
VGGNet-16. It resulted in a more discriminative decision func-
tion and fewer parameters and achieved 98.95% accuracy in
LFW. FaceNet from Schroff et al. was based on GoogLeNet,
which was capable of processing visual information at vari-
ous scales. Hasnat et al.[30] designed an architecture called
Face-ResNet, which contained 11 residual modules, and the
accuracy reached 99.63% in LFW. Most of the works in re-
cent years used deep ResNet. ArcFace used ResNet-100, and
CosFace[31] utilized ResNet-64. Apart from using a single
network to extract the embeddings, some works combined the
outputs of multiple networks. The most representative one of
these is DeepID[32, 33] series. In DeepID, the authors trained
60 relatively shallow networks that shared the same architec-
ture. Each processed different face regions with different sizes.
Features extracted by these subnetworks were then combined
as the final embedding. On the basis of DeepID, DeepID2
reduced the number of subnetworks, and used Softmax Loss
and Contrastive Loss to jointly supervise the training, achiev-
ing an accuracy of 99.15% on LFW. The newest generation in
this series, DeepID3[34], replaced shallow networks with deep
networks, which were rebuilt from VGGNet and GoogLeNet.
Compared to DeepID2, DeepID3’s accuracy has increased by
nearly 0.4%. It must be pointed out that although these studies
have been tested on the same test set, we still cannot simply
assert the strengths of the network structures according to the
accuracies. Because these studies differed in many of their ex-
perimental settings, VGGFace performed 0.68% lower on LFW
than FaceNet. The former used 2.6M images to train, whereas
the latter used Google’s internal dataset, which contains 500M
samples. It is therefore unfair to compare them directly.

Loss Function In the field of deep FR, loss functions draw
more research attention than any other topics. This is because
FR has stricter requirements on the separability and discrim-
inability of deep embedding space[35, 36] than many other im-
age classification tasks and the loss function is the most direct
constraint of that aspect. Sun et al. combined Softmax Loss
with Contrastive Loss[37], which not only retained the feature
identifiability provided by Softmax Loss, but also incorporated
the advantages of the expanding intraclass from Contrastive
Loss. Schroff et al. used Triplet Loss[38], which enforced the
margin between different faces. Contrastive Loss and Triplet
Loss require constructing binary or ternary sample sets. Wen et
al. proposed Center Loss, which could penalize the distances
between features by learning the center of each class. Zhang et
al. proposed Range Loss[39], which was specifically designed
for training data with a long-tail distribution. In all these works,
only Zhang et al. compared the results with other loss func-
tions, although the comparison was under their own long-tail
distribution training set. Although the loss functions described
above attempted to improve the ability of constraining features
for Softmax Loss, they still failed to replace it. In most cases,
either of these loss functions must be used jointly with Softmax
Loss to make the model converge. In contrast, the A-Softmax

series[11, 16, 31, 40] have a unique approach. They put the
module length of the feature aside, and emphasize the aggre-
gation and dispersion of features in terms. It has been proved
by practice that the A-Softmax series loss can replace Softmax
supervision training.

Training Strategy The learning rate policy and batch size
are known collectively as the training strategy. For the learning
rate, decreasing it with respect to the training round is widely
used, although recent studies have explored periodic learning
rates to achieve better results[41, 42]. As for the batch size, it
is generally believed that large mini-batch improves the utiliza-
tion of computing resources[43], while small mini-batch will
bring more randomness to the training procedure and improve
the generalization performance[44, 45].

Model Compression As mentioned in Section 1, many FR
systems are now required to be built on mobile or embedded
platforms, and thus compressing models to fit these platforms is
becoming an important issue. Currently, there are two popular
schemes, SqueezeNet[46] and MobileNet[47]. Both networks
can be trained from scratch. And both methods reduce the num-
ber of parameters by changing the structure of the convolutional
layer.

With several years of development, this field has accumu-
lated rich research results, but the chaos of the experimental
conditions obstructs the convenient application of such models.
In this case, we intend to systematically summarize the state-
of-the-art methods and evaluate the effects of different settings.

3. Evaluation Framework

This section describes the evaluation framework. In the first
subsection, we present the five components that influence the
performance of FR systems. These components are summa-
rized according to the sequential logic. As shown in Figure 2,
they cover the entire process of building an FR system, from
design to deployment. This forms the basis of our evaluation
framework, and the subsequent evaluations will follow this or-
der. In the second subsection, we formulate the default settings
regarding all the influencing factors.

3.1. Components

We list the five components in the first column of Table 1.
In particular, the network structure and training strategy both
contain several subparts, which are listed in the second column.
They are sorted as follows:

• Dataset: The dataset plays a significant role in model
training. Its influence on the performance originates from
the dataset size. Mishkin et al.[48] proved that a larger
dataset could improve the performance of DCNNs, di-
rectly comparing datasets with significantly different sizes
is meaningless and unfair. Moreover, datasets are not only
diverse with respect to their sizes, but also to their sample–
identity ratios (SIRs), which reflect the data richness in
every category. The SIR is relevant to the training dif-
ficulty and generalization. In FR system implementation,
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Table 1. Factors and operations compared in this work.

Components Sub-components Candidates

Dataset - More Identities Less Samples; Less Identities More Samples;

Network Architecture

Widely Used Network GoogLeNet; VGG-16; Face-ResNet; ResNet-50;
Activation Function ReLU; PReLU; ELU; LeakyReLU;

Feature Normalization With; Without;
Batch Normalization Before Activation; After Activation;

SE Block With; Without;

Downsample
Max Pooling; Average Pooling; Stochastic Pooling; Strided

Convolution;

Loss Function -
Softmax Loss; Contrastive Loss; Triplet Loss; Center Loss; Range
Loss; SphereFace Loss; ArcFace Loss; CosFace Loss; Ring Loss;

Training Strategy
Learning Rate Step; Sqrt; Square; Linear;

Batch Size 16; 32; 64; 128; 256; 512;
Model Compression - SqueezeNet; MobileNet;

Figure 2. Components to be evaluated and their positions in the FR system building procedure.

the builders are usually required to collect additional train-
ing data to finetune the model. Collecting adequate sam-
ples for every identity is of great significance. In this case,
we focus on the correlation between SIR and model per-
formance.

• Network Structure: A deep neural network is a hierar-
chical model whose structure is easily adjusted by stack-
ing or removing certain layers. In practice, most stud-
ies restructure the network to adapt to specific applica-
tion. Although there are numerous designs of DCNNs
for facial feature extraction, they still belong to several
popular styles, such as VGG, GoogLeNet, and ResNet.
In this part, the evaluation of network styles will be our
priority. Apart from the style, the network structure in-
volves many other detailed factors, such as the activa-
tion function, batch normalization[49], feature normaliza-
tion, down-sample layer, and squeeze-and-excitation (SE)
block. These can be regarded as special layers or blocks
in the deep model, which will also be discussed in the next
section.

• Loss Function: The design of the loss function is a sig-
nificant topic. Facial-related tasks have extremely high
requirements for the separability and discriminability of
features. First, the differences among heterogeneous faces
are relatively small. Second, a DCNN-based model usu-
ally needs to identify tens of thousands of individuals. The

loss function embodies the penalizing rule of models. For
FR tasks, we hope that the intra-category gap of features
is small, and the inter-category gap is as large as possible.
Almost all loss functions are based on this principle. Many
studies on loss functions have emerged in recent years. In
this work, we evaluate eight representative loss functions:
Contrastive Loss, Triplet Loss, Center Loss, Range Loss,
SphereFace Loss, ArcFace Loss, CosFace Loss and Ring
Loss.

• Training Strategy: After determining the dataset, net-
work structure, and loss function, we enter the model train-
ing process. This involves the initial value of the learning
rate and the shift strategy, the setting of the batch size, and
so on. The choice of these parameters affects the entire
optimization path. The proper settings of these hyperpa-
rameters make the model converge precisely and rapidly.
In this article, we focus on the learning rate shift strategy
and batch size.

• Model Compression: In the last part, we consider the
choice of model compression methods. For model com-
pression, layer restructuring methods are the most popular
choices. Here, we compare two methods: SqueezeNet and
MobileNet. Both methods reduce the number of param-
eters by replacing the convolutional layers with specific
blocks.

This study evaluates several available settings for every com-
4
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ponent. Because of time constraints, the widely used settings
are prioritized. All the candidates to be discussed are listed in
the third column of Table 1. Detailed descriptions of these set-
tings are given in the next section.

3.2. Default Experimental Settings

The purpose of this research is to compare the validity of
different operations of facial feature extraction, and thus the
basic experimental settings, including database, pre-processing
method and training parameters, are extremely important. Ex-
cept for the network architecture comparison, all the experi-
ments use the Face-ResNet network, which is introduced in the
next section.

3.2.1. Training Set and Validation Set
In Section 2, we list several common datasets. Every dataset

is maintained by a professional team and has complete anno-
tation information. These datasets vary in size. MS-Celeb-
1M includes approximately 10M images from 100K identi-
ties, and the latter includes approximately 4.7M images from
67K identities. Because our work involves many experiments,
training with large datasets would severely increase the time
cost, and we finally employ UMD-Faces and CASIA-WebFace.
UMD-Faces contains 367888 face images of 8277 identities
and CASIA-WebFace contains 494414 face images of 10575
identities (approximately 100 times smaller than MS-Celeb-1M
and MegaFace), which balance data diversity with efficiency. In
addition, they are comparable in terms of SIR, which makes the
union of the two datasets easier. We combine UMD-Faces and
CASIA-WebFace as UMD-CASIA, and remove the identities
overlapping with our testing sets. UMD-CASIA is divided into
training and validation at a ratio of 9:1.

3.2.2. Testing Set
LFW, YTF, CACD-VS and CFP Frontal-Frontal are selected

as the testing sets. The distances between extracted features are
measured cosine similarity.

Generally, testing on YTF is more complex than other three
image-pair validation sets, because face verification[50, 51] on
LFW, CACD and CFP-FF measures image-to-image similari-
ties, whereas YTF calculates set-to-set similarities. For each
video sequence in YTF, we truncate the first 100 frames for
testing. Cosine similarity is utilized here. We take the average
accuracy of five models as the actual score, which are randomly
selected after the accuracy on the validation set stops increas-
ing. Moreover, we check the variance to ensure that there are
no abnormal results.

3.2.3. Pre-processing
Pre-processing can be segmented into two steps: face detec-

tion and face alignment. Face detection is to locate the face in
an original image and crop it separately. MTCNN[52] is used
in this work for detection. It was published in 2016, and has
recently become the most popular detection method. It consists
of three cascaded networks capable of predicting the bounding
boxes and five landmarks of each face.

After the faces are detected, we use a five-point similarity
transformation to align the image. The gestures of the faces
are varied, with different angles and expressions. To some ex-
tent, face alignment erases the influence of gesture variance and
benefits the facial feature extraction. The five points we use are
provided by MTCNN, which are the center of the left eye, cen-
ter of the right eye, tip of the nose, left corner of the mouth, and
right corner of the mouth. The similarity transformation is to
adjust these five points to be as close as possible to the given
five reference points by rotation and scaling.

All the images are aligned to 112*96*3 RGB and their mir-
rored versions are also sent to the network while training, and
all the images are shuffled after each training epoch.

3.2.4. Training Parameters
To ensure fairness, we keep the training hyperparameters

consistent across the experiment groups. We use the stochas-
tic gradient descent (SGD) optimizer, with the momentum set
to 0.9. The default batch size is set to 64. The learning rate is
initially set to 10−2 and then decreases by a factor of 10 when
the validation accuracy stops increasing. We keep training the
network until its learning rate decreases to 10−6. All the net-
works are trained from scratch.

Figure 3. Architecture of Face-ResNet and its two sub-blocks types, indepen-
dent convolution block and residual block. c out represents the channel number
of the output. k size means kernel size. p size is the size of the pooling kernel.

3.2.5. Face-ResNet
We choose Face-ResNet as the default network in the fol-

lowing contrast experiments. It was proposed by Wen in 2016
5
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Figure 4. Visualization of sample capacities and sample–identity ratios of
datasets. (CACD was proposed by [25], and Celeb Faces+ was from [55].)

Figure 5. (a) Full dataset, (b) MSLI, (c) LSMI. The images surrounded by a
dotted circle are from same identity and the red diagonal lines represent aban-
doned images.

along with Center Loss. The structure of Face-ResNet is shown
in Figure 3(a). Face-ResNet contains 11 residual blocks and 5
independent convolutional blocks. Their interior structures are
illustrated in Figure 3(b) and (c). Moreover, each convolution
operation is followed by a PReLU activation function.

Among all the alternative FR networks, Face-ResNet is not
the best-performing one. However, those better-preforming
models such as ResNet-50[53, 54] are too deep to experiment
frequently, and their extremely high baseline would submerge
the effect gaps among various settings or operations. Moreover,
the training of Face-ResNet is steadier than other candidates.
Therefore, we finally choose Face-ResNet as our default net-
work.

4. Evaluation Results and Analyses

4.1. Data Augmentation

We do not compare these datasets by experiments directly.
First, there are significant differences among the numbers of
images, which sometimes reach a factor of 100 or more. Sec-
ond, most images in the public datasets are photographs of
celebrities crawled from websites, which have high repetition
rates among them. In most instances, researchers do not make
choices, but rather combine them.

As shown in Figure 4, there is significant imparity among
the mean SIRs(sampleidentity ratios) of the datasets. For MS-
Celeb-1M, it is approximately 100:1, and it is approximately
70:1 for MegaFace. As for UMD-Faces and CASIA-WebFace,
their mean SIRs are almost 45:1. In general, richer samples can

provide more references to grasp the core characteristics of the
identity, but do redundant samples hinder the convergence of
the model? To answer this question, we design and implement
the following evaluation.

Table 2. Results of datasets with MSLI and LSMI.

Train Set SIR
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

UMD-
CASIA

45.21 96.46 90.08 94.20 94.35
22.61 96.62 90.78 94.28 93.71

UMD-
Faces

43.28 93.60 87.60 89.70 91.75
21.64 93.47 88.40 90.35 91.52

CASIA-
WebFace

46.75 94.85 88.28 92.08 92.86
23.38 94.82 88.36 92.85 93.16

The model is trained with three datasets: UMD-Faces,
CASIA-WebFace, and UMD-CASIA, where UMD-CASIA is
a union of the other two. As shown in Figure 5, there are two
compare tests for each group. In the first, we only use half of
the identities but keep all the samples of each. We call it More
Samples Less Identities (MSLI). In the second, we keep all the
identities but randomly select only half of the samples. This is
called Less Samples More Identities (LSMI). The total number
of images is unchanged across the contrastive tests. The results
are shown in Table 2.

Owing to the advantage of its large data size, UMD-CASIA
achieves an higher accuracy than the others, which verifies the
previous idea that a larger dataset benefits the performance of
model. The results of YTF show more deviations than the oth-
ers. In YTF, the average accuracy of LSMI is 0.53% higher than
that of MSLI. Because YTF is a typical single-identity-multi-
sample face image test set, it is theoretically expected to achieve
a better performance with a high-SIR training set. However, the
MSLI training set significantly reduces the score. This means
that the sample richness and the model’s generalization are not
positively correlated as we envisioned. Therefore, it is risky to
blindly increase the samples of the same individual. For ex-
ample, the sample numbers of the identities in MegaFace are
highly nonuniform (minimum 3 and maximum 2000+). When
we use the rich categories, it is recommended to prune them.

More samples of the same identity provide more references
for efficiently capturing features, but the various useless details
in the extra samples make the training more challenging. These
results also demonstrate that the expansion of categories is more
efficient than that of samples.

4.2. Network Architecture

Widely used networks VGG-16, GoogLeNet, ResNet-50,
and Face-ResNet have all been applied in FR tasks. They
represent three popular styles of DCNN design, VGG-style,
GoogLeNet-style, and ResNet-style, respectively. ResNet-50
and Face-ResNet share the same type but differ in depth. VGG-
style networks are relatively unchanged, with a strict hierarchi-
cal form without any branch or skip. VGGNet-16 contains 16
convolution layers and 5 pooling layers. It replaces the 7 × 7
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and 11 × 11 receptive fields in AlexNet[56] with a 3 × 3 recep-
tive field. GoogLeNet-style focuses on the horizontal expan-
sion of networks. GoogLeNet was applied to recognize faces
from 2015. The author of the original paper designed five im-
proved versions to verify the validity. In this work, we use the
version named NN2, in which the inception modules concate-
nate several convolution layers’ output to get different feature
granularity. Finally, ResNet-style introduces residual links into
the network to facilitate vertical expansion. Here, ResNet-50 is
included to test the influence of depth and residual principles
on the network. The original pooling layers of GoogLeNet and
ResNet-50 are replaced by global pooling to handle rectangular
images, and the other components remain unchanged.

Table 3. Results of different network architectures.

Network Train Set
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

VGG-16
CASIA-
WebFace

96.52 90.92 94.97 95.17

UMD-
CASIA

97.41 92.98 95.79 96.10

GoogLe-
Net

CASIA-
WebFace

94.92 87.36 89.78 90.17

UMD-
CASIA

96.22 90.36 91.60 92.55

Face-
ResNet

CASIA-
WebFace

96.77 90.52 95.25 95.67

UMD-
CASIA

97.70 91.98 95.90 96.05

ResNet-
50

CASIA-
WebFace

97.72 91.00 96.25 95.51

UMD-
CASIA

98.52 94.16 97.28 96.93

The experimental results are shown in Table 3. ResNet-
50 achieves the highest accuracy among the four networks in
all validation set, and GoogLeNet obtained the lowest. For
each group, Face-ResNet’s performance is always below that
of ResNet-50, and sometimes lower than VGG-16. We at-
tribute this to the structural incompleteness of Face-ResNet. In
the original paper, Face-ResNet was followed by a feature nor-
malization layer. The accuracy gaps between Face-ResNet and
GoogLeNet reach 2–3% in LFW and YTF, and are more ap-
parent in CACD and CFP. The inception module of GoogLeNet
has not brought the expected increase in accuracy, but rather a
decline compared to the single-track model VGG-16. This im-
plies that vertical expansion of a network can be more efficient
than horizontal expansion for facial feature extraction.

Batch normalization Batch normalization (BN) is one of the
most efficient methods to optimize the training of a neural net-
work. The basic principle can be described as follows. For each
hidden layer neuron, the inputs gradually approach to the satu-
ration region of the activation function. Normalizing them to a
standard normal distribution before feeding to a specific layer
makes their values fall into the linear area of the activation func-
tion, thereby avoiding the problem of gradient disappearance.

Table 4. Results of different networks with different placements of batch nor-
malization.

Network Place
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

VGG-16
No 97.41 92.98 95.79 96.10

After - - - -
Before 98.94 94.78 98.75 98.57

GoogLe-
Net

No 96.22 90.39 91.60 92.55
After - - - -

Before 98.16 93.55 93.40 94.63

Face-
ResNet

No 97.70 91.98 95.90 96.05
After 95.42 89.40 94.45 92.29

Before 97.76 91.90 95.78 96.28

ResNet-50
No - - - -

After - - - -
Before 98.52 94.16 97.28 96.93

BN is usually placed before or after the activation function. Be-
cause it is a common configuration of DCNNs, we only focus
on its location.

The results in Table 4 show that the BN layer does have a
positive effect on the final accuracy, especially for ResNet-50,
which fails to converge when all the BN layers are removed.
However, the influence of the BN location is also beyond our
expectations. For GoogLeNet and VGG-16, an incorrect lo-
cation makes the training process unable to converge, and for
Face-ResNet, an incorrect location leads to a decline in the ac-
curacy. Therefore, it is necessary to add BN to overcome the
gradient disappearance and accelerate the optimization, but the
location of the BN layer should be considered. If a network
with BN layers cannot converge after many epochs, it is recom-
mended to adjust the location of the BN layers.

Table 5. Results of different network architectures with or without feature nor-
malization.

Network FN Layer
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

VGG-16
Without 97.41 92.98 95.79 96.10

With 99.00 94.29 98.29 98.25
GoogLe-

Net
Without 96.22 90.39 91.60 92.55

With 97.58 92.72 95.48 95.09
Face-

ResNet
Without 97.70 91.98 95.90 96.05

With 99.37 95.08 98.65 98.83
ResNet-

50
Without 98.52 94.16 97.28 96.93

With 99.13 94.99 97.91 97.87

Feature normalization Feature normalization (FN) is usu-
ally located at the end of the network. It normalizes the ele-
ments of feature embeddings to ensure they have an equal con-
tribution to the loss function. FN has been used in DCNN-based
FR since DeepVisage[30] and has shown remarkable perfor-
mance.

As shown in Table 5, the increase is clear for all four net-
works after adding an FN layer. For LFW, the accuracies in-
crease by 1.30% on average, for YTF, the increase is approx-
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Table 6. Results of Face-ResNet with different activation functions

Activation Function Formula Parameter
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

ReLU y = max(x, 0) - 97.78 91.77 95.58 96.14
PReLU y = max(x, αx) α is learnable 97.70 91.98 95.90 96.05

ELU y =


α(ex − 1) if x < 0

x if x ≥ 0

α = 0.01 96.17 90.16 92.00 91.70
α = 0.1 95.83 90.16 92.18 92.91
α = 1 96.54 90.29 93.63 94.00

LeakyReLU y = max(x, αx)
α = 0.01 97.48 91.62 95.47 96.22
α = 0.1 97.60 91.74 96.28 96.59
α = 1 94.24 81.50 88.27 85.38

imately 1.89%, while CACD and CFP get 2.44% and 2.10%.
Moreover, the increases of Face-ResNet are remarkable. With
FN, Face-ResNet surpasses VGG-16 on each test set, which
also proves that Face-ResNet and an FN layer have excellent
fitness.

Activation function In neural networks, the activation func-
tion introduces nonlinearity to the model. The Sigmoid has
gradually been abandoned because of the vanishing gradient
problem. Currently, most studies tend to use the ReLU series.
In this part, we compare several popular activation functions,
including ReLU[57], PReLU, ELU[58], and LeakyReLU[59].
They all remain linear over an interval greater than zero. To
ensure the attributes of nonlinearity, they are segmented. Their
mathematical expressions are shown in Table 6.

As we can see, the curve of PReLU is the same as that of
LeakyReLU, but the parameter of PReLU is learnable. When
the coefficients of PReLU, ELU, and LeakyReLU are zero, they
degenerate to ReLU. For functions with handcrafted parame-
ters, we set several contrastive groups with different values.

The results in Table 6 show that ReLU and PReLU (both
without handcrafted parameters) obtain stable performance in
four validation sets and occupy the top two in the accuracy
rankings of LFW and YTF. The LeakyReLU reaches the high-
est score when we set α to 0.1, and ELU reaches its maximum
when α = 1. When LeakyReLU’s α is set to 1, the mean accu-
racy of four datasets decreases by approximately 7.97%. This
phenomenon also verifies the importance of the nonlinearity of
the activation function. To summarize, if a model has other
hyperparameters that need to be adjusted, it is recommended
to use activation functions such as ReLU and PReLU without
parameters or self-tuning parameters. But it is undeniable that
some of the manual-tuning activation functions can achieve bet-
ter results.

Table 7. Results of Face-ResNet with different pooling layers.

Pooling
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

Max pooling 97.70 91.98 95.90 96.05
Average pooling 97.57 91.76 95.58 96.11

Stochastic pooling 93.93 89.41 87.45 87.12
Strided convolution 97.63 92.00 95.68 96.35

Downsample Pooling is the most classic downsampling op-
eration in DCNNs, which produces highly compact feature
maps by discarding some high-frequency information. In this
part, we discuss four downsample strategies: max pooling, av-
erage pooling, stochastic pooling[60], and strided convolution.
Here, we do not change the window and stride.

The results in Table 7 show that there is a clear gap between
stochastic pooling and other pooling operations. It can be spec-
ulated that for FR, a classification task requires great image de-
tail, the uncertainty in stochastic pooling may bring some neg-
ative effects. In addition, we also try the sum of max pooling
and average pooling, but Face-ResNet fail to converge with this
method.

SE block General convolutional layers express local spatial
connectivity patterns, which means they are restricted to local
receptive fields. To this end, Hu et al.[61] designed SE block to
utilize global information. It achieved the highest precision in
the ILSVRC 2017 classification task. In this work, we replace
the residual modules in Face-ResNet with SE-ResNet modules
and vary the reduction ratio r to verify its effectiveness.

The results in Table 8 imply that the improvement in FR with
SE block is disappointing. Owing to the concomitant decline in
performance, it is not recommended to apply.

Table 8. Results of Face-ResNet with or without SE Block.

SE-Block Param
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

Without - 97.70 91.98 95.90 96.05

With

r = 4 97.38 91.45 95.65 95.90
r = 8 97.34 90.99 94.97 95.34

r = 16 97.49 91.06 95.43 95.66
r = 32 97.43 91.46 95.70 95.93

4.3. Loss Function

Contrastive Loss is the most direct penalty for the distance
between classes and the distance within the class. Its mathemat-
ical expression is shown in Equation (1). d represents the Eu-
clidean distance between two sample features, and y indicates
whether the two samples belong to the same class. When y = 1,
L = 1

2N

∑N
n=1 yd2. When y = 0, L = max(margin− d, 0)2, where

margin is artificially defined and represents a penalty threshold
8
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for the distance between classes. The loss is only calculated
if the distance between different types of samples is less than
margin.

LContrastive =
1

2N

N∑

n=1

yd2 + (1 − y)max(margin − d, 0)2 (1)

Triplet Loss was proposed based on the principle that the dis-
tance between different samples should be greater than the dis-
tance between the same samples. Its expression is shown in
Equation (2).

LTriplet =

N∑

i

[∥∥∥ f (xa
i ) − f (xp

i )
∥∥∥2

2
−

∥∥∥ f (xa
i ) − f (xn

i )
∥∥∥2

2
+ α

]
(2)

In this formula, a, p, and n index three samples in a triplet
group, where a and p belong to the same identity, n belongs
to another, and f (∗) represents their feature vector. The geo-
metrical meaning of this formula is: for one triplet group, the
same distance should be at least α units smaller than the het-
erogeneous distance. Were it to be satisfied, the loss would be
zero.

Both Contrastive Loss and Triplet Loss need to construct the
sample group. Especially with Triplet Loss, one must ensure
that each batch contains a certain number of samples from the
same identity, which actually destroys the conditions of an in-
dependent identical distribution. In addition, they are sensitive
to the strategy of constructing the sample group. Taking Con-
trastive Loss as an example, if we follow the original batch gen-
eration strategy, the number of positive sample groups is much
smaller than the number of negative sample groups, such that
the aggregation within the class is also difficult to achieve. Cen-
ter Loss and Range Loss were proposed to solve this problem.
The formula for Center Loss is shown in Equation (3).

LCenter =
1
2

m∑

i=1

∥∥∥xi − cyi

∥∥∥2

2
(3)

The principle of Center Loss is intuitive. It learns a feature
center for each class and uses the Euclidean distance of each
sample relative to its center as the loss value. C in Equation
(3) represents a center for class Yi. Center Loss does not con-
strain the distance between classes. It is only responsible for
the aggregation within the class.

The mathematical formula for Range Loss is shown in Equa-
tion (4.3):

LRange = αLRintra + βLRinter (4)

LRintra =
∑

i⊆I

Li
Rintra

=
∑

i⊆I

k
∑k

j=1
1

D j

LRinter = max(m − DCenter, 0) = max(m −
∥∥∥XQ − XR

∥∥∥2

2
, 0)

Range Loss is divided into two parts. The first part is the
intra-class loss LR-intra, which is the harmonic mean of the k

largest Euclidean distances among features of the same class,
and the second part is the inter-class loss LR-inter, which is
calculated according to distance between class centers. For the
sake of fairness, we maintain the parameter settings and sample
group construction methods of the original paper.

As mentioned in Section 2, the A-Softmax series introduce
the discriminant angle into the FR loss. Starting with the form
of the basic SphereFace Loss, an improved form, ArcFace Loss
and CosFace Loss, have been proposed. The formulas are
shown in Equation (5) (6) (7).

LS phereFace = −log


e‖ f (xi)‖cos(mθyi ,i)

e‖ f (xi)‖cos(mθyi ,i) +
∑

j e‖ f (xi)‖cos(θ j,i)

 (5)

LArcFace = −log


e‖ f (xi)‖cos(θyi +m,i)

e‖ f (xi)‖cos(θyi +m,i) +
∑

j e‖ f (xi)‖cos(θ j,i)

 (6)

LCosFace = −log


e‖ f (xi)‖(cos(θyi ,i)+m)

e‖ f (xi)‖(cos(θyi ,i)+m) +
∑

j e‖ f (xi)‖cos(θ j,i)

 (7)

where θyi represents the angle between Wyi and xi, and m is
an artificially set parameter. Comparing them with the origi-
nal Softmax, it can be seen that A-Softmax Serial Loss is sim-
ilar to Softmax. And their principles are the same as that of
SphereFace: by limiting the angle between the feature and its
class vector, features are more angularly aggregated, and het-
erogeneous features remain different in angle.

Ring Loss was proposed in 2018 and its expression is shown
in Equation (8):

LRing =
1

2N

N∑

i=1

‖‖ f (xi)‖ − R‖2 (8)

where ‖ f (xi)‖ represents the modulus of the feature vector
and R is the center of the modulus, which is similar to Ci of
Center Loss. R is a learnable parameter, except that the for-
mer corresponds to a specific class of samples and the latter
is shared by all samples. The geometric meaning of Equation
(8) is that the modulus lengths of all sample features should be
concentrated on R.

The original authors gave an explanation for the design of
Ring Loss. In Softmax, the penalty for small modular length is
heavier than for large modular length classes, which makes the
final discriminant angle unbalanced[62]. Adding constraints on
the feature length can theoretically solve this problem, and sub-
sequent experiments have confirmed the effectiveness of Ring
Loss.

In this part, we design two contrast experiments. The first
one follows the settings of our evaluation framework strictly,
which means all these non-softmax loss functions will be uti-
lized together with Softmax Loss in Face-ResNet (without BN).
The aim is to evaluate the performance of different supervisions
in the case of relatively limited training condition and shallower
network. As shown in Table 9, among eight loss functions, the
gain achieved by Center Loss is the most obvious, followed by
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Table 9. Results of Face-ResNet(w/o BN) with different loss functions.

Loss Function
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

Softmax Loss 97.70 91.98 95.90 96.05
Contrastive Loss 98.23 92.28 97.36 97.47

Triplet Loss 98.20 93.22 96.88 97.07
Center Loss 99.23 94.60 98.41 98.57
Range Loss 98.92 93.83 97.85 97.89

SphereFace Loss 98.32 92.94 97.68 97.41
ArcFace Loss 98.17 92.70 96.87 96.99
CosFace Loss 98.82 93.70 97.93 97.79

Ring Loss 98.88 93.62 97.42 97.67

Table 10. Results of ResNet-64(w/ BN) with different loss functions.

Loss Function
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

Softmax Loss 97.85 92.84 96.25 96.51
Contrastive Loss 98.63 93.10 97.26 97.67

Triplet Loss 98.56 93.24 97.12 97.12
Center Loss 99.32 94.36 98.44 98.19
Range Loss 99.02 93.34 97.62 97.97

SphereFace Loss 99.38 94.46 98.68 98.23
ArcFace Loss 98.95 93.52 97.56 97.71
CosFace Loss 99.50 95.00 98.20 98.21

Ring Loss 99.24 93.34 97.98 97.97

Range Loss, Ring Loss and CosFace Loss. Contrastive Loss
and Triplet Loss only yields a lower improvement. In other
words, the well-constructed inter-class distances of other su-
pervision schemes fail to achieve the desired results. During
the training, in order to obtain more positive sample pairs to
strengthen the intra-class distance constraint, we must make
provisions for the choice of the mini-batch, which destroys the
independent and identical distribution conditions, and leads to
an optimization path offset.

To our surprise, in the first contrast experiment, the A-
Softmax serial loss functions fail to show their excellent nature
in supervising. The mean accuracies of ArcFace, SphereFace
and CosFace are 1.52%, 1.12% and 0.64% lower than Center
Loss respectively, which seems to conflict to the results of the
original paper. This phenomenon has strongly drawn our at-
tention. We speculate it is partly result from that Center Loss
and Face-ResNet were proposed together and well-adapted with
each other. To be fair, we design the second contrast experi-
ment, in which the ResNet-64 (with BN) is employed as the
backbone network. And following the recommended setting,
we separate all three A-softmax Losses from original Softmax.
The results of the second contrast experiment are shown in Ta-
ble 10. As we can see, in ResNet-64 (with BN) the superiority
of A- softmax serial lossW is fully reflected. Compared with the
results in Face-ResNet(without BN), CosFace and SphereFace
get a big boosting in performance, which surpass the Center
Loss at least 0.13% in mean accuracy, meanwhile the gap be-

tween ArcFace and Center Loss reduces to 0.64%. It indicates
that to show the angle-margin losses’ advantages, a deeper net-
work is required.

Combining the results of the above two contrast experiments,
we can present some recommendations about the loss func-
tion selection. Firstly, the inter-intra-class margin losses like
Contrastive Loss and Triplet Loss require special mini-batch
sampling method, which will damage the i.i.d conditions to
some extent. So it is recommended to employ them in fine-
tune than training from scratch. Secondly, the effectiveness
of different supervision is strongly associated with the train-
ing condition and network design. To our best knowledge, the
advanced angle-margin losses have higher upper limit in per-
formance, and their advantages are more likely to emerge when
they work with a more updated (like with BN Layer) and deeper
(Like ResNet-64) network. It can be partially explained that
the constraint of the angle margin is more difficult to meet than
in the Euclidean margin. To sum up, the angle-margin losses
like Sphereface have a higher upper bound performance, but the
traditional Euclidean-margin losses like Center Loss do have a
steady nature in the limited training condition and the shallower
network.

4.4. Training Strategy
Learning rate In this study, we use the SGD optimizer with

momentum 0.9 in the experiments. Here, we compare four
learning rate shift strategies: Step, Sqrt, Liner, and Square. The
formulas for these strategies are shown in Table 11, where L0 is
the initial learning rate, s is the step size for Step policy, and m
is the number of iterations. γ represents the decrease factor of
the learning rate. Here, L0 = 0.01, s = 2 × 104, and m = 105,
which make all the learning rates drop to zero after 100,000
iterations. We compare the networks trained from scratch, as
well as the networks finetuned from a well-trained model with
a smaller learning rate.

The results are shown in Table 11. When training starts from
scratch. It is worth noting that Step has the highest average
accuracy, while the Square has the lowest. As for the finetun-
ing training method, Step obtained an accuracy higher than the
others. These results imply the characteristics and application
scopes of the different shift modes. For randomly initialized
networks, the parameters in the network should be significantly
adjusted, and thus the strategies with higher mean learning rate
tend to get better results, because they tend to make larger ad-
justments in the same iteration round, such as Sqrt. Conversely,
for a pre-trained network, the parameter adjustment space is
limited, and a strategy with a lower mean learning rate is re-
quired.

There are a few different learning rate scheduling schemes.
Many studies have presented other ideas. GoogLeNet and
SqueezeNet chose to use a polynomial learning rate, which
gradually reduces the learning rate after each iteration of train-
ing. ResNet-110 warmed up by training with a low learning
rate and then continues training with a higher one.

Batch size The batch size has a decisive effect on the opti-
mization path. Owing to the limitation of resources, we cannot
put the whole training set into the forward operation at every
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Table 11. Results of different learning rate policies with UMD-CASIA.

Training Method Learning Rate Formula
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

From Scratch

Step Lri = L0γ f loor(i/s) 97.70 91.98 95.90 96.05
Sqrt Lri = L0

√
(1 − i/m) 98.00 91.74 94.62 94.79

Linear Lri = L0(1 − i/m) 97.88 91.60 93.96 93.95
Square Lri = L0(1 − i/m)2 97.40 91.36 93.68 94.00

Finetune

Step Lri = L0γ f loor(i/s)/10 97.56 92.14 96.01 96.25
Sqrt Lri = L0

√
(1 − i/m)/10 96.36 90.03 92.91 92.51

Linear Lri = L0(1 − i/m)/10 95.64 90.23 92.15 91.31
Square Lri = L0(1 − i/m)2/10 95.52 89.62 91.80 92.06

Table 12. Results of different batch sizes trained with UMD-CASIA.

Batch Size
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

16 97.43 91.64 95.40 95.52
32 97.76 91.24 95.17 96.35
64 97.50 91.31 95.06 95.39
128 97.20 90.24 93.71 94.81
256 97.70 91.98 95.90 96.05
512 97.53 90.84 94.70 95.14

step. Therefore, we divide the data into mini-batches, calcu-
late the loss value, and update the parameters. With mini-batch
training, the parameters are not updated directly, but rather in
a zigzag manner. In theory, however, if each batch is indepen-
dent and identically distributed (iid) with the training set, the
direction of the update does not change. Therefore, when train-
ing the network, some researchers tend to choose a larger batch
size to try to pursue the iid condition.

In order to verify the effectiveness of a large batch size, we
adjust the batch size from 16 to 512. The results are shown in
Table 12. We do not find an obvious tendency of the accuracy.
In particular, the difference between the large and small batches
is not expected. The accuracy of the 512 batch size is actually
lower than those of the 16 and 32 batch sizes. However, a large
batch size tends to cooperate more with a high initial learning
rate. With batch sizes of 256 and 512, the networks trained
with an initial learning rate of 0.1 can still converge, but the
networks trained with lower initial learning rates fail to con-
verge. Therefore, it is recommended to increase the learning
rate appropriately.

4.5. Model Compression

Figure 6 shows their improvement. After replacing the
convolutional layer of Face-ResNet with the methods of
SqueezeNet and MobileNet, the model is greatly compressed.
Table 13 shows a comparison of the parameters before and after
compression. When using SqueezeNet, the parameters reduce
by a factor of 6.02 from 22.29M to 3.70M, and when using Mo-
bileNet, the reduction ratio is 8.78. Moreover, there are BN lay-
ers in MobileNet but not in SqueezeNet. To eliminate their in-

Figure 6. Model compression methods tested in this study. (a) is a normal
convolution layer. (b) and (c) represent its substitutions in SqueezeNet and
MobileNet. c in is the number of input channels. c out is the number of output
channels. k size represents the weight and height of the convolution kernel.
Conv Depth is a depthwise convolution layer designed for MobileNet.

fluence, we tried MobileNet-based and SqueezeNet-based net-
works with or without BN.

In addition to the mentioned changes, it can be seen that
model compression inevitably results in a decrease in the per-
formance. In the experimental group without the BN layer, the
amplitude of the decline is more obvious. The mean accuracy in
four test sets of the SqueezeNet-based network is 2.24% lower
than the original network, and that of the MobileNet-based net-
work is 3.33% lower. For the FR model, these declines are
large enough to be considered. In the group with the BN layer,
the SqueezeNet-based network does not converge after adding
the BN layer. The complete MobileNet-based network with the
BN layer achieves great performance, with an average accuracy
2.94% higher than that of without, and only 0.41% lower than
the original network. From all the experiments, the MobileNet-
based network has advantages not only in the degree of param-
eter compression, but also in model performance.

5. Conclusion

In this study, we systematically summarize and evaluate the
existing state-of-the-art FR studies, and compare the effects of
different settings and operations with respect to five significant
components, including data augmentation, network architec-
ture, loss function, training strategy, and model compression.
Unlike general review articles, we design an evaluation frame-
work and measure the effects of multifarious settings with ex-
tensive experiments.
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Table 13. Results of Face-ResNet with different compression methods.

Method BN
LFW
(%)

YTF
(%)

CACD
(%)

CFP
(%)

Params
(M)

Baseline w/o 97.70 91.98 95.90 96.05 22.29
SqueezeNet w/o 95.45 89.52 93.80 93.92 3.70
MobileNet w/o 94.43 88.24 92.67 92.98 2.54
Baseline w/ 97.76 91.90 95.78 96.28 22.29

SqueezeNet w/ - - - - 3.70
MobileNet w/ 97.34 91.39 95.43 95.92 2.54

Table 14. All the results after the evaluation. Recommended factors are represented with bold text.

Components Sub-components Candidates

Dataset - More Identities Less Samples; Less Identities More Samples;

Network architecture

Widely used Network GoogLeNet; VGG-16; Face-ResNet; ResNet-50;
Activation Function ReLU; PReLU; ELU; LeakyReLU;

Feature Normalization With; Without;
Batch Normalization Before Activation Function; After Activation Function;

SE Block With; Without;

Downsample
Max Pooling; Average Pooling; Stochastic Pooling; Strided

Convolution;

Loss Function -
Softmax Loss; Contrastive Loss; Triplet Loss; Center Loss; Range
Loss; SphereFace Loss; ArcFace Loss; CosFace Loss; Ring Loss;

Network Training
Learning Rate Step; Sqrt; Square; Linear;

Batch Size 16; 32; 64; 128; 256; 512;
Model Compression - SqueezeNet; MobileNet;

The recommended settings are bold in Table 14. With
respect to selecting the dataset, those with high SIR are
theoretically conducive to generalization, but they also make
convergence more difficult for the training. For network
architecture, deep ResNet series networks such as ResNet-50
still have an advantage over other designs. Moreover, BN and
FN layers also benefit the model’s performance. In terms of
the loss function, combining weak-constraint loss functions,
such as Center Loss and Ring Loss, with Softmax Loss or
A-Softmax Loss would be a stable choice. For the training
strategy, the Step decline strategy rate and large batch size are
recommended. In terms of model compression, many existing
compression methods can effectively reduce the number of
parameters, but the resulting accuracy decline must be carefully
considered. Finally, based on the experimental results, we
present the following suggestions:

• It is risky to blindly increase the samples of the same in-
dividual, which makes training more challenging and has
less of an effect on model performance. When the SIR of
the training set is too high, it is recommended to prune it
properly.

• A deeper network that contains residual blocks well facil-
itates the extraction of facial features. ResNet-style net-
works have an advantage over the others, which implies
that the vertical expansion of a network is far more effi-

cient than horizontal expansion for FR systems.

• Both BN and FN are effective methods to optimize net-
work performance. However, particular networks are sen-
sitive to the location of the BN layer.

• There is no particular benefit to using one activation func-
tion over the other, but ReLU and PReLU are more conve-
nient because they have no artificial hyperparameters.

• For an FR model, there is no need to replace max pool-
ing layers with other downsample layers, such as stochas-
tic pooling in particular, because its uncertainty may have
some negative effects.

• SE block has no obvious effect on FR and is not recom-
mended to be implemented.

• The choosing of loss function is greatly related to the net-
work design and training condition. According to our ex-
periment results, the angle-margin losses like Sphereface
have a higher upper bound performance, but the traditional
Euclidean-margin loss like Center Loss have a steady na-
ture in limited training condition and shallower network.

• The learning rate reduction strategy should be selected ac-
cording to the current task. If the model starts training
from scratch, the learning rate should not decrease rapidly.
If the model is being finetuned, the learning rate should be
maintained at a low level.
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• It is better to use a large batch size with other parameters,
such as the learning rate. A large batch size should be used
along with a high initial learning rate.

• MobileNet-based networks have advantages not only in
parameter compression, but also in model performance.
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