
On the Performance of Primal/Dual Schemes for
Congestion Control in Networks With Dynamic

Flows
Kexin Ma Ravi Mazumdar Jun Luo
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Email: {k8ma, j7luo}@engmail.uwaterloo.ca, mazum@eceweb.uwaterloo.ca

Abstract— Stability and fairness are two design objectives of
congestion control mechanisms; they have traditionally been
analyzed for long-lived flows (or elephants). It is only recently
that short-lived flows (or mice) have received attention. Whereas
stability has been established for the existing primal-dual based
control mechanisms, the performance issue has been largely
overlooked. In this paper, we study utility maximization problems
for networks with dynamic flows. In particular, we consider the
case where sessions of each class results in flows that arrive
according to a Poisson process and have a length given by
a general distribution. The goal is to maximize the long-term
expected system utility that is a function of the number of flows
and the rate (identical within a given class) allocated to each
flow. Our results show that, as long as the average amount of
work brought by the flows is strictly within the network stability
region, the rate allocation and stability issues aredecoupled .
While stability can be guaranteed by, for example, a FIFO policy,
utility maximization becomes an unconstrained optimization that
results in a static rate allocation for flows . We also provide a
queueing interpretation of this seemingly surprising result and
show that not all utility functions make sense for dynamic flows.
Finally, we use simulation results to show that indeed the open-
loop algorithm maximizes the expected system utility.

I. I NTRODUCTION

Congestion control plays an important role in modern com-
munication networks. It involves two complementary design
objectives, namelystability and fairness. While the stability
prevents the delay from going beyond a tolerable level, the
fairness is measured through a utility function that represents
the satisfaction of a flow on the assigned resource or trans-
mission rate. Neglecting either objective can result in a trivial
problem, because, for example, stability can be universally
achieved by always assigning zero rate to a flow. A well
designed congestion control scheme will maintain the network
stability while optimizing a criterion based on the user utilities
such as the total system utility. The seminal work of Kelly,
Maulloo and Tan [3] provides a fundamental framework to
solve such a global optimization problem in the context of
wired networks with a fixed number of flows. The most
important message conveyed by [3] is that the original global
optimization problem can be solved by a distributed iterative
algorithm.

Based on [3], congestion control has been studied exten-
sively in the context of wired networks. Yaiche, Mazumdar and
Rosenberg [12] studied the optimization problem from a game
theoretical point of view. This work focuses on developing an
algorithm, which not only provides the rate settings of flows
that are Pareto optimal from the point of view of the whole
system, but are also consistent with the fairness axioms of
game theory. In contrast to [3], [12] uses the user throughputs
to determine the performance characteristics. A primal-dual
based framework was then introduced to solve for the user
rates in a distributed manner. A formulation using general
concave utility functions but with the same structural results
can be found in [8]. More recently, Lin and Shroff [6] adopt
the same techniques used in [12] and extend the results to
the networks where multipath routing is allowed. In this case,
the utility function is not strictly concave. Thus, a modified
version of primal-dual algorithm based on a penalty function
is proposed.

We note that a common assumption made by aforemen-
tioned proposals is that the number of flows in the system is
fixed and each flow has infinite backlog to transfer. Therefore,
these control mechanisms aim at controlling the long-lived
flows and hoping that the short-lived flows may “fly” through
the network with little delay or loss [9]. There was no strong
proof that these mechanisms would meet the stability and
fairness objectives when subjected to dynamic flows.

Recently, research has focused on networks with flows
that arrive and depart dynamically [1], [5] with the aim
of studying the stability issues related to the primal-dual
framework. Bonald and L. Massoulié [1] assume “middle-
lived” flows: whose length is not infinite but long enough
to allow the control algorithm to converge to its optimal
value (also known as time-scale separation assumption). They
show that the optimal rate allocation does guarantee network
stability if the utility function is chosen carefully. Lin and
Shroff [5] remove the time-scale separation assumption and
prove that the network stability can still be achieved given
the fact that the traffic intensity is within the network stability
region. They considered logarithmic utilities as in [12]. as well
as a more general class of utility functions parametrized by



a parameterα that was introduced in [11] that is referred to
as fair bandwidth sharing in the literature. The advantage is
that this allows one to study a very large class of behaviors
corresponding to max-min fairness , proportional fairness,
and other points on the Pareto surface. The analysis was
based on Poisson arrivals and exponential holding times for
the flows. These results were extended to the case of more
general holding time distributions in [10] assuming time-
scale separation and the effect of the utility functions was
also presented suggesting that logarithmic utilities are more
desirable. More recently [2] presents a fluid network approach
for general file size distributions for the fair bandwidth sharing
policy.

By now there have been a large number of extensions related
to the stability issue for both wireline and wireless networks
when using primal-dual type algorithms [7] . However, one key
connection that has been missing is to relate the primal-dual al-
gorithms to the original optimization problem. In other words,
what criterion does the primal-dual mechanism optimize when
flows are dynamic because if stability is the only consequence
then some simpler mechanisms might suffice. This is the focus
of this paper.

In this paper, we study the utility maximization problem
in networks with dynamic flows. We assume the flow length
is random with finite second moment and we do not require
the time-scale separation assumption. The utility per flow is
defined as a function of the transmission rate allocated to it
and the total system utility is the sum over all flow utilities.
Since flows arrive and depart dynamically, an appropriate
objective would be to maximize the long-term expected system
utility, under the link capacity constraints. Our analysis shows
that, as long as the traffic intensity is within the network
stability region as has been assumed in the prior work on
stability, we can achieve the stability and fairness objectives
independently i.e utility maximization becomes an open-loop
procedure. Moreover, we investigate the system steady-state
behavior in terms of delay. Finally, we study via simulations
the open-loop approach as well as algorithms in [1], [5]. The
results demonstrate that, while all these algorithms guarantee
stability, the approach presented here maximizes the long-term
expected utility.

The rest of the paper is structured as follows. In Section II,
we present the system model and problem formulation. Sec-
tion III and Section IV obtain the principal result showing that
the stability and control issues can be decoupled. Section V
provides an explanation on the results in Section III through
queueing interpretation; we also discuss the possible file length
distribution and issue of choosing the right utility functions in
this section. Section VI considers the steady-state behavior in
terms of delay. We report our simulation results in Section VII
before finally conclude our paper in Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe our system model and define the
associated optimization problem. We consider a network with
L links andS classes of flows. We denote the sets of links

and classes byL and S, respectively. The capacity of each
link l ∈ L is Rl. [A] is anL× S incidence or routing matrix
that represents the routes of the flows:Al

s = 1 if the flows of
classs ∈ S uses linkl and Al

s = 0 otherwise.1 The arrival
process of the flows of any classs is Poisson with rateλs and
the durations are of an arbitrary length distribution with mean
µ−1

s . Thus, the traffic intensity brought by flows of classs is
ρs = λs/µs. We further assume that~ρ = [ρs] is within the
stability region defined byΘ = {~ρ|

∑S
s=1 Al

sρs ≤ Rl,∀l}.
For each classs, let xs(t) denote the rate allocated for

each flow at timet, and let Us(xs(t)) = log xs(t) be the
utility received by the flow of classs when the allocated
transmission rate isxs(t). The utility function represents the
level of satisfaction of a flow, and different utility functions
will achieve different fairness objectives. Here,log (·) function
will ensure proportional fairness.2 We assume that each flow
of classs has a maximum transmission rate,Ms.

Let ns(t), s = 1, 2, . . . , S denote the number of flows
of class s that are present in the system, and~x(t) =
[x1(t), x2(t), . . . , xS(t)] denote the rate vector at timet. In our
model, time is slotted and the length of each slot isT seconds.
Flows arriving within a slot will start transmission at the
beginning of the next slot as shown in Fig.1. Therefore,ns(t)
can be decomposed into two parts,ns(t) = nw

s (t) + nt
s(t),

wherenw
s (t) represent the flows waiting for transmission and

nt
s(t) represent the flows transmitting data. Therefore, the

global optimization problem can be formulated as:

(k-1)T (k+1)T kT 

Customer arrives 

Transfer starts 

Fig. 1. Transmission Model

max
~x(t)∈X(t)

lim
t→∞

1
t

∫ ∞

t=0

S∑
s=1

nt
s(t)Us(xs(t))dt (1)

subject to lim
t→∞

1
t

∫ ∞

t=0

S∑
s=1

Al
sn

t
s(t)xs(t)dt ≤ Rl, ∀l (2)

(1) has an interpretation of maximizing expected long-term
system utility. The constraint (2) addresses stability require-
ment.

Suppose the queueing process at each source node is in
equilibrium and ergodic (we will justify this assumption in
Section V). Letν(~nt, ~x) denote the density (which we assume
exists without loss of generality) of the joint distribution of
~nt and ~x in equilibrium. Given~x, the stationary distribution
of ~n can be shown to be conditionally independent (follows
from a truncation of theM/G/∞ model). Letν(nt

s|~x) denote

1Our results can be readily extended to the case where the link capacity is
time-varying and the routes are not pre-defined.

2As we will show later, we are not taking the log utility by chance. It seems
to be the only meaningful utility under dynamic flows.



the conditional density of flowxs given ~x, then ν(~nt, ~x) =
[
∏S

s=1 ν(nt
s|~x)]p(~x), wherep(~x) denotes the joint density of

~x.
Then (1) can be written as the following problem:

max
~x

∫
X

S∑
s=1

 ∞∑
nt

s=0

nt
sUs(xs)ν(nt

s|~x)

 p(~x)d~x (3)

subject to∫
X

S∑
s=1

Al
s

 ∞∑
nt

s=0

nt
sxsν(nt

s|~x)

 p(~x)d~x ≤ Rl, ∀l (4)

whereX = {~x|xs ∈ (0,Ms], s = 1, 2, . . . , S}. Therefore, the
maximization problem is essentially about finding an optimal
joint densityp(~x). Define

g(~x) =
S∑

s=1

∞∑
nt

s=0

nt
sUs(xs)ν(nt

s|~x)

=
S∑

s=1

log (xs)
∞∑

nt
s=0

nt
sν(nt

s|~x)

=
S∑

s=1

log (xs)E[N t
s |~x]

=
S∑

s=1

log (xs)ρs/xs (5)

To evaluateE[N t
s |~x], we have applied Little’s law in the above

derivation. It is easy to see that the expected service time
excluding the waiting time is1/(µsxs) in equilibrium. Thus,
by Little’s law, E[N t

s |xs] = λs/(µsxs) = ρs/xs. Substitute
(5) into (3), we have

max
~x

∫
X

g(~x)p(~x)d~x (6)

Now, we are going to investigate the properties ofg(~x) to
obtain the structure ofp(~x). The first order and second order
partial derivative ofg(~x) are given by

∂g(~x)
∂xs

=
ρs(1− log(xs))

xs
(7)

∂2g(~x)
∂x2

s

=
ρs(2 log(xs)− 3)

x3
s

(8)

∂2g(~x)
∂xsxt

= 0, s 6= t (9)

From (7), it is easy to see thatg(~x) has a unique global
maxima atx∗s = e for all s. In addition, from (8) and (9), we
can conclude thatg(~x) is strictly concave if0 < xs < e3/2

and strictly convex ifxs > e3/2 for all s. Within the convex
region, the minima occurs atxs = ∞, which can be inferred
from (7).

To maximize (6),p(~x) should put all its mass at~x∗ if ~x∗

satisfies (4) and0 < x∗s ≤ Ms for all s. This is because
g( ~x∗) > g(~x) for all ~x 6= ~x∗. Otherwise,p(~x) should put all
its mass at one of its boundary points of the solution space.

This is because thatg(~x) strictly increases until it reaches
the global maxima, and then strictly decreases on each of its
dimension. In either case,p(~x) is a Dirac delta function.

As a consequence, we can transfer the stochastic optimiza-
tion problem (3) and (4) in to a deterministic one in the
following:3

max
~x∈X

S∑
s=1

E[N t
s |xs]Us(xs) (10)

subject to
S∑

s=1

Al
sE[N t

s |xs]xs ≤ Rl, ∀l (11)

where N t
s is a random variable representing the number of

classs flows in transmission when ratexs is assigned. Let
DL denote the above optimization problem.

We can further deduce the optimal joint distributionp(~x)
by setting the following equality:∫

X

p(~x)d~x =
∫
X

p(~x)d~x = 1 (12)

whereX is the set of~x that solve problem (10) and (11).
The solution is straightforward:p(~x) can be any distribution
as long as (12) is met. Ifg(~x) has an unique maxima onX,
X = {~x∗} is a singleton and thusp(~x) = δ(~x− ~x∗) whereδ
is the Dirac delta function.

Note that the constraint given in (11) refers to long-term
congestion avoidance. If instantaneous congestion avoidance
is required, (11) will be replaced by

S∑
s=1

Al
sn

t
sxs ≤ Rl, ∀ l a.s. (13)

Let DS denote this modified problem. In later sections, we
will show the trade-off between these two problem formula-
tions. Intuitively, problemDS has a more stringent constraint,
which implies that its performance might be worse than that
of the problemDL.

III. D ISTRIBUTED ALGORITHM AND STABILITY ANALYSIS

This section presents the derivation of the distributed control
algorithm and its stability analysis for problemDL. The stan-
dard primal-dual technique is employed to find the solution.
Note that the objective function does not have the convex
property and there will be a duality gap. We will ignore this
issue now since we will show that the duality gap actually
disappears naturally in our problem. The Lagrangian function
associated with problemDL is

L(~q, ~x) =
S∑

s=1

E[N t
s |xs] log(xs)

−
L∑

l=1

ql(
S∑

s=1

Al
sE[N t

s |xs]xs −Rl) (14)

3Although the density functionsν(nt
s|~x) are still involved, they are

completely specified by~x and the Poisson assumption on the arrivals.



where ~q = (q1, q2, . . . , qL) are the Lagrangian multipliers,
and they represent the level of congestion. Then, the dual of
problemDL is defined as

min
~q≥0

F (~q) (15)

where

F (~q) = max
~x∈X

L(~q, ~x) (16)

Let D denote the dual problem. To solve problemD, we
consider the problem in (16) first. For a given~q, the problem
is separable ins, ~x(~q) maximizes L(~q, ~x) if and only if
~x(~q) = (x1(~q), x2(~q), . . . , xS(~q)), where

x∗s(~q) = arg max
0<xs≤Ms

{E[N t
s |xs] log(xs)

−E[N t
s |xs]xs

L∑
l=1

Al
sql} (17)

SubstituteE[N t
s |xs] = λs/(µsxs) = ρs/xs into (17). Then,

the solution of (17) can be expressed as

x∗s(~q) = arg max
0<xs≤Ms

{log(xs)/xs}

= min{arg max(log(xs)/xs),Ms} (18)

Since the functionlog(x)/x strictly increases first and then
strictly decreases, the solution given in (18) is a global optimal
solution.

An interesting observation is that the solution ofxs is
independentof the dual variable~q. In other words, the utility
maximization is fully decoupled from the stability issue. This
implies that the algorithm does not require the feedback from
the network in finding the optimal transmission rate, and the
duality gap does not affect the optimization at all. This result
actually simplifies the implementation of the control algorithm
significantly. In classical literature about distributed utility
maximization algorithm, the noise and delay associated with
the feedback of dual variable updates usually create non-trivial
difficulties. Although some recent works have demonstrated
that the algorithm will converge to the optimal solution, they
usually require assumptions such as the noise must be unbiased
and the variance of the noise must be bounded. The details can
be found in [13].

The role of the dual variable updates is to stabilize the
network and thus prevent network congestion. However, for
the long-term average, this step is naturally achieved. If the
traffic intensityρs is strictly within the stability regionΘ, then
we can show via a standard Lyapunov argument based on the
conditional drifts that the network is stable, where the network
stability criterion is given by

lim sup
t→∞

1
t

∫ t

0

1{PS
s=1 ns(t)+

PL
l=1 ql(t)>M}dt → 0

as M →∞ (19)

where ns denotes the number of flows in classs. In other
words, the number of flows at each source node and the queues

at each link must be finite. By Little’s law, we have

E[Ns|xs] = E[Nw
s |xs] + E[N t

s |xs], ∀s
= λsT/2 + ρs/xs (20)

where the termT/2 comes from the fact that given a Poisson
arrival occurs within interval[0, T ], the expected arrival time is
T/2. To have a bounded number of flows,xs must be strictly
greater than zero and the mean of the file length must be
finite. According to (18),xs > 0 is satisfied, andρs is finite
by definition. As a result, the first term withinlim sup of
(19) converges to zero. Since the system is not lossy, the load
injected into the network isρs by each class in equilibrium.
Thus, the load imposed on each link is

∑S
s=1 Al

sρs. If ~ρ ∈ Θ
is satisfied, queues at each link will be bounded for all work
conserving scheduling policies, and this fact provides the
convergence of the second term in (19).

IV. D ISTRIBUTED ALGORITHM FOR INSTANTANEOUS

CONGESTIONCONTROL

Let us now consider the problem where the allocations are
such that the instantaneous capacity constraints are not allowed
to be violated, i.e. we study the solution for the problemDS,
which provides instantaneous congestion avoidance. Again,
primal-dual method is applied. The Lagrangian function as-
sociated with problemDS is

L(~q, ~x) =
S∑

s=1

E[N t
s |xs] log(xs)

−
L∑

l=1

ql(
S∑

s=1

Al
sn

t
sxs −Rl) (21)

where~q = (q1, q2, . . . , qL) are the Lagrangian multipliers for
link capacity constraints. Then, the dual of problemDS is
defined as

min
~q≥0

F (~q) (22)

where

F (~q) = max
~x∈X

L(~q, ~x) (23)

For a given~q, the problem is separable ins, ~x(~q) maximizes
L(~q, ~x) if and only if ~x(~q) = (x1(~q), x2(~q), . . . , xS(~q)), where

x∗s(~q) = arg max
0<xs≤Ms

{E[N t
s |xs] log(xs)− nt

sxs

L∑
l=1

Al
sql}

= arg max
0<xs≤Ms

{ρs log xs

xs
− nt

sxs

L∑
l=1

Al
sql} (24)

The dual problem is solved by using gradient projection
method. The partial derivative ofL(~q, ~x) is

∂

∂ql
L(~q, ~x) = Rl −

S∑
s=1

Al
sn

t
sxs (25)



Thus,ql is updated through

ql(k + 1) = [ql(k) + γ(
S∑

s=1

Al
sn

t
sxs −Rl)]+, ∀l (26)

where γ is the step-size. To ensure the convergence of this
algorithm, we setγ = 1/k. Sincent

s is random,x∗s andql will
converge converge as processes. As the result of the projection
operation[·]+, E[ql] > 0 and the second term in (24) will be
non-negative∀t. Therefore,x∗s will be always be dominated
by the solution given in (18), andE[x∗s] < e. Sinceg(~x) is a
strictly increasing function until it reaches its global maxima,
xs = e, the performance of the solution given by (24) and (26)
will be worse than that of the long-term congestion avoidance
algorithm. In addition, a smaller transmission rate will induce
a longer delay.

Thus, the trade-offs between instantaneous and long-term
congestion avoidance are utility and delay. If stability is the
only requirement, the long-term congestion control solution
has much more advantages in terms of implementation and
complexity. For this reason, all the discussion from this point
on will be focusing on the algorithm of problemDL unless
explicit explanation is made.

V. QUEUEING INTERPRETATION ANDDISCUSSION

We now provide intuitive explanation for the results de-
scribed in Section III. First of all, we will justify the fact
that the queuing process at each source node is ergodic as
mentioned in Section II. In Fig. 2, we illustrate a simplified
version of the queueing systems under investigation. For the

r ms s=ls/
gs s s( ) ( ) ( )t =n t x t

n ms s s( ) ( )/t =n t
Q t q ti i( )= ( )/a

r tin( )

r tni( )

Transport layer queue
Network layer queue

Fig. 2. Relationship Between Transport Layer and Network Layer Queues

ease of exposition, we concatenate the two queues that hold
bothnw

s (waiting queue) andnt
s (transmission queue) into one

transport layer queue. Since the first queue is a pure delay
block, nw

s (t) is stationary. Moreover, the second queue is of
G/M/∞ type because the service rate is scaled withnt

s(t). As
a result, this queue is “self-stabilizing” and stationary, i.e., it
is always stable no matter what intensityρs is. Consequently,
ns(t) = nw

s (t) + nt
s(t) is also a stationary process. Note

that the arrival process of the second queue is in the form
of periodic bursts with varying number of customers.

Secondly, the network achieves the largest stability region
without the time-scale separation assumption. Given the fact
that ~ρ ∈ Θ, stabilizing the network layer queue is straight-
forward: a normal FIFO policy would work [4]. Indeed, any
work conserving policy will ensure stability. This fact can be

proved by looking at the expected one-step drift of the queues:

E[ql(k + 1)− ql(k)] =
S∑

s=1

Al
sxsE[N t

s ]−Rl (27)

wherexs is given by (18). In fact,E[N t
s ] should be written

asE[N t
s |xs] becauseN t

s is a function of the control strategy.
From the previous discussion,E[N t

s |xs] = ρs/xs. Substitute
this expression into the right hand side of (27) to obtain∑S

s=1 Al
sρs −Rl ≤ 0, which indicates that the expected one-

step drift is non-positive.
Our results hold for a large class of file length distribution

including even heavy tail distributions with finite mean; the
performance of the algorithm is insensitive to this distribution.
However, the expected number of flows at each source node
and their sojourn time are linearly related to the mean of the
distribution.

The utility function can be expressed in a more general form
as well, and the convexity ofg(~x) can be more complicated.
Thus, there may be multiple optimal solutions which maxi-
mizes (6). However, from the system utility maximization’s
point of view, the mass distribution over these points will not
affect the total utility. This fact implies that the structure of
ν(~x) can still be a delta function.

If the utility function is a linear function of the transmission
rate (U(x) = γx), the system utility is constant and indepen-
dent of transmission rate. A simple proof is

max
~x∈X

S∑
s=1

E[N t
s |xs]Us(xs)

= max
~x∈X

S∑
s=1

ρs

xs
γxs

= Sγ

However, from individual user’s point of view, individual
flow’s utility is maximized if xs = Ms.

In addition, if we take the generalα utility Us(xs) =
ws

x1−α
s

1−α introduced by Mo and Walrand [11], then the optimal
solution is given by

x∗s =

 Ms, if α > 1

0, if 0 < α < 1
(28)

for α 6= 1 and alls. The solution can be obtained by checking
the first order partial derivative ofg(~x)

g(~x) =
S∑

s=1

Us(xs)E[N t
s |~x]

=
S∑

s=1

ws
x1−α

s

1− α

ρs

xs

=
wsρs

1− α
x−α

s

∂

∂xs
g(~x) =

αwsρs

α− 1
x−α−1

s



Note thatg(~x) is either a strictly increasing or strictly de-
creasing function depending onα. Consequently, the optimal
solution is one of the two boundary points. This solution shows
that the generalα utility (apart from the log utility that we
have taken) is not suitable in the case of dynamic flows as
xs = 0 is not a feasible solution.

VI. D ELAY ANALYSIS

In this section, we present the transport layer delay analysis
of our algorithm. The queueing model is shown in Fig. 2. Let
Dee

s denote the end-to-end delay of classs flows. Then we
haveDee

s = Dt
s + Dq

s , whereDt
s and Dq

s are the queueing
delay at transport layer and within the network (along the path
towards destination), respectively. The evaluation of network
queueing delay is out of the scope of our paper. Here we focus
on Dt

s.
The transport layer delay for classs flows Dt

s consists of
the waiting time and the transmission time. LetW be the
random variable denoting the waiting time andFs be the
random variable denoting the file length of classs. Since the
arrival process is Poisson, given that an arrival occurs,W has
an uniform distribution in the interval[0, T ]. The transport
layer delay can be written as

Dt
s = W + Fs/xs (29)

where the second termFs/xs is an exponential distribution
with rate xsµs. Since the arrival time is independent of the
file length, the distribution ofDt

s is given by the convolution
of the distribution ofW with the distribution ofFs/xs.

fDt
s
(d) =

∫
fw(d− τ)fFs/xs

(τ)dτ (30)

fDt
s
(d) =


1
T (1− e−µsxsd), if 0 ≤ d ≤ T

1
T e−µsxsd(eµsxsT − 1), if d ≥ T

(31)

VII. N UMERICAL RESULTS

In this section, we will compare our proposed algorithm
with current works for networks with random arrivals and
departures to demonstrate the superiority of our scheme. To
facilitate our discussion, letA denote our proposed algorithm.
Let B andC denote the algorithms with time-scale separation
assumption and the one proposed by Lin and Shroff without
time-scale separation assumption respectively. We will con-
sider both one-hop and multi-hop network configurations in
simulation. The following two objectives will be compared.

lim
t→∞

1
t

S∑
s=1

∫ t

0

nt
s(t)Us(xs(t))dt (32)

lim
t→∞

1
t

∫ t

0

nt
s(t)xs(t)dt,∀s (33)

(32) is the average system utility and (33) is the average
throughput for each class. Before we demonstrate the simu-
lation results, we will present a brief description about the
operations of algorithmsB and C. All algorithms run in
discrete time and time is slotted with lengthT .

A. Operation of Algorithm B

With time-scale separation assumption, algorithmB solves
the following optimization problem at the beginning of each
time slot.

max
x∈X

S∑
s=1

ns log(xs) (34)

subject to
S∑

s=1

Al
snsxs ≤ Rl,∀l (35)

wherexs denote the individual flow transmission rate of class
s, andns is the number of classs flows in the system. The
Lagrangian is given by

L(x, ~µ) =
S∑

s=1

ns log(xs)−
L∑

l=1

µl(
S∑

s=1

Al
snsxs −Rl) (36)

where~µ = {µ1, µ2, ..., µL}. For a given~µ, the solution ofxs

is

xs = min{1/(
L∑

l=1

Al
sµl),Ms} (37)

Suppose thatMs is a very large number, thenxs =
1/(

∑L
l=1 Al

sµl). Substitute this expression into the comple-
mentary slackness equation, we have

µl(
S∑

s=1

Al
sns/(

L∑
l=1

Al
sµl)−Rl) = 0,∀l (38)

The explicit expression ofµl depends on the routing structure.
Suppose the network is a one-hop network and only classs
flows cross linkl, then the explicit expression forµl is

µl(
ns

µl
−Rl) = 0

→ µl =
ns

Rl
(39)

wherens denote the number of classs flows crossing linkl.
Substitute (39) into the primal solution, we get

xs =
Rl

ns
(40)

Equation (40) provides us the optimal solution to which the
primal-dual algorithm will converge in equilibrium.

Suppose that the number of flows is dynamic and the primal-
dual algorithm employed converges on a much faster scale
than the dynamic ofns. In the extreme case, we assume that
the algorithm converges instantly, and the transmission rate is
updated with equation (40) at the beginning of each time slot
for one-hop network topology. This rate update mechanism
adopts the time-scale separation assumption and describes the
operation of algorithmB.
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Fig. 3. One-Hop Network Topology

TABLE I

TIME AVERAGE UTILITY COMPARISON FORONE-HOP NETWORK

A (% improvement) B C (baseline)

class 1 2.983 (+58.67%) 1.29 1.88

class 2 3.14 (+53.92%) 0.0055 2.04

class 3 3.32 (+46.26%) -4.4764 2.27

class 4 3.47 (+29.96%) -19.7793 2.67

B. Operation of Algorithm C

The detailed derivation of this algorithm can be found in
[5]. Here, we will only present the algorithm

xs(q) = min{ 1∑L
l=1 qlH l

s

,Ms} (41)

ql(k + 1) = [ql(k) + γl(
S∑

s=1

H l
sxs(k)

∫ (k+1)T

kT

nt
s(t)dt

−TRl)]+ (42)

whereγl is the step-size. The main result claimed in [5] is that
xs(t) andns(t) will converge to stationary processes and the
network can achieve the largest stability regionΘ, provided
the step-size is small enough.

C. Performance Comparison in One-hop Network

The network topology is shown in Fig. 3. This network has
four links: AB, BC, CD andDA. Each link has a capacity
of 10 units/second. There are four classes of flows whose
file lengthes are exponentially distributed with a mean of 1
unit/flow. The arrival rates are 8, 8.5, 9 and 9.5 flows/second
for class 1 to class 4. Thus, the loads brought by each class are
8, 8.5, 9 and 9.5 units/second. Each time slot is 10ms seconds
long. The simulation results are shown in Table I and II. Note
that Table I also includes the relative performance comparison
between algorithmA andC with algorithmC ’s performance
as the baseline. Since algorithmB’s performance is very low,
its relative performance with respect to that of algorithmC is
not included.

Note that each class’s throughput should be the same for all
algorithms theoretically. The discrepancy appears in Table II
is due to simulation.

TABLE II

TIME AVERAGE THROUGHPUTCOMPARISON FORONE-HOP NETWORK

A B C

class 1 8.108 8.02 8.06

class 2 8.54 8.46 8.53

class 3 9.01 9.03 9

class 4 9.43 9.54 9.5
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Fig. 4. Multi-Hop Network Topology

D. Performance Comparison in Multi-hop Network

To further emphasize the advantages of our algorithm, we
also investigate its performance in a multi-hop network shown
in Fig. 4. The network parameters are identical to the previous
example except the routing and arrival rates. In this example,
the arrival rates are 1, 2, 3 and 3.5 flows/second for class 1
to class 4. Therefore, the load on linkAB, BC, CD andDA
are 1, 3, 6 and 9.5 units/second. Since the performance of
algorithmB is not comparable with that of algorithmA and
C, only A andC ’s simulation results are shown in Table III
and IV.

E. Simulation Results Discussion

According to the simulation results, algorithmA performs
much better than the other two algorithms and maintains the

TABLE III

TIME AVERAGE UTILITY COMPARISON FORMULTI -HOP NETWORK

A (% improvement) C (baseline)

class 1 0.3572 (+29.84%) 0.2751

class 2 0.7372 (+31.93%) 0.5588

class 3 1.1042 (+31.72%) 0.8383

class 4 1.2922 (+33.84%) 0.9655

TABLE IV

TIME AVERAGE THROUGHPUTCOMPARISON FORMULTI -HOP NETWORK

A C

class 1 0.9712 0.99

class 2 2 1.99

class 3 3 3

class 4 3.51 3.49



throughput at the same time. This result can be explained from
two different prospectives.

First, we analyze the algorithm from the stability’s point
of view. In classical literatures, utility maximization problem
usually considers networks with fixed number flows. In addi-
tion, each flow is assumed to have infinite backlog to transfer.
Therefore, the dual variable must be employed to regulate
the flows to enure stability. However, when flow’s arrival and
departure are random, stability is not an issue if~ρ ∈ Θ is met
and the transmission rate is strictly greater than zero. For this
reason, the dual variable is not required to regulate the flows,
and each flow will receive more utility. In some sense, it is a
trade-off between stability and utility. If we know the system
is operating within the stable region, we should not penalize
the flows to ensure stability anymore.

Secondly, from the prospective of solution space, we can
also verify the advantage of open-loop control. The constraints
associated with these algorithms specify different solution
space. For algorithmA, the solution is selected from a space
which ensures long-term stability. For algorithmB andC, the
solutions are chosen from spaces which ensure instantaneous
and short-term congestion avoidance. If we rank these spaces
according to their sizes,A ⊇ C ⊇ B. As the result, the
performance of our algorithm should be at least as good as that
of B and C. This analysis is consistent with the simulation
results.

VIII. C ONCLUDING REMARKS

In this work, we have shown that if we seek to maximize
the long-term system utility subject to long-term stability in
networks where random dynamic arrivals and departures are
present then the control and stability issues are decoupled
when the arriving sessions lie within the stability region.
Our analysis shows that such an optimal control scheme is
independent of the queues in the network, and the stability of
the network is independent of the utility maximization prob-
lem. One way of interpreting these results is that primal-dual
based congestion control schemes should be used for long-
lived flows to prevent short-term congestion while short lived
sessions need not be controlled provided they do not bring
excessive work. Such an approach will maximize network
utility.
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