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Abstract— Stability and fairess are two design objectives of ~ Based on [3], congestion control has been studied exten-
congestion control mechanisms; they have traditionally been sjvely in the context of wired networks. Yaiche, Mazumdar and
analyzed for long-lived flows (or elephans). It is only recently Rosenberg [12] studied the optimization problem from a game

that short-lived flows (or mice) have received attention. Whereas th tical boint of Vi Thi K f d lopi
stability has been established for the existing primal-dual based eoretical point or view. This work Tocuses on deveioping an

control mechanisms, the performance issue has been largely@lgorithm, which not only provides the rate settings of flows
overlooked. In this paper, we study utility maximization problems that are Pareto optimal from the point of view of the whole
for networks with dynamic flows. In particular, we consider the  system, but are also consistent with the fairness axioms of
case where sessions of each class results in flows that ar”"egame theory. In contrast to [3], [12] uses the user throughputs
according to a Poisson process and have a length given by L0 ’ - .

a general distribution. The goal is to maximize the long-term to determine the performanqe characteristics. A primal-dual
expected system utility that is a function of the number of flows Pased framework was then introduced to solve for the user
and the rate (identical within a given class) allocated to each rates in a distributed manner. A formulation using general
flow. Our results show that, as long as the average amount of concave utility functions but with the same structural results
work brought by the flows is strictly within the network stability 54 pe found in [8]. More recently, Lin and Shroff [6] adopt
region, the“rate allocation and stability issues aredecoupleq " the same techniques used in [12] and extend the results to
While stability can be guaranteed by, for example, a FIFO policy, a g 4 .

utility maximization becomes an unconstrained optimization that the networks where multipath routing is allowed. In this case,
results in a static rate allocation for flows . We also provide a the utility function is not strictly concave. Thus, a modified

queueing interpretation of this seemingly surprising result and version of primal-dual algorithm based on a penalty function
show that not all utility functions make sense for dynamic flows. is

i ; X . proposed.
Finally, we use simulation results to show that indeed the open-

loop algorithm maximizes the expected system utility. We note that a common assumption made by aforemen-

tioned proposals is that the number of flows in the system is
fixed and each flow has infinite backlog to transfer. Therefore,
these control mechanisms aim at controlling the long-lived
Congestion control plays an important role in modern conflows and hoping that the short-lived flows may “fly” through
munication networks. It involves two complementary desigtie network with little delay or loss [9]. There was no strong
objectives, namelystability and fairness While the stability proof that these mechanisms would meet the stability and
prevents the delay from going beyond a tolerable level, tii@rness objectives when subjected to dynamic flows.
fairness is measured through a utility function that representsRecently, research has focused on networks with flows
the satisfaction of a flow on the assigned resource or trakat arrive and depart dynamically [1], [5] with the aim
mission rate. Neglecting either objective can result in a triviaf studying the stability issues related to the primal-dual
problem, because, for example, stability can be universaftamework. Bonald and L. Massoali[1] assume “middle-
achieved by always assigning zero rate to a flow. A wdived” flows: whose length is not infinite but long enough
designed congestion control scheme will maintain the netwaik allow the control algorithm to converge to its optimal
stability while optimizing a criterion based on the user utilitiesalue (also known as time-scale separation assumption). They
such as the total system utility. The seminal work of Kellyshow that the optimal rate allocation does guarantee network
Maulloo and Tan [3] provides a fundamental framework tetability if the utility function is chosen carefully. Lin and
solve such a global optimization problem in the context &hroff [5] remove the time-scale separation assumption and
wired networks with a fixed number of flows. The mosprove that the network stability can still be achieved given
important message conveyed by [3] is that the original globtie fact that the traffic intensity is within the network stability
optimization problem can be solved by a distributed iterativegion. They considered logarithmic utilities as in [12]. as well
algorithm. as a more general class of utility functions parametrized by
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a parametery that was introduced in [11] that is referred taand classes by, and S, respectively. The capacity of each
as fair bandwidth sharing in the literature. The advantagelisk [ € £ is R;. [A] is an L x S incidence or routing matrix
that this allows one to study a very large class of behavidiisat represents the routes of the flowt: = 1 if the flows of
corresponding to max-min fairness , proportional fairnesslasss € S uses linkl and A, = 0 otherwise! The arrival
and other points on the Pareto surface. The analysis wascess of the flows of any clasgs Poisson with raté; and
based on Poisson arrivals and exponential holding times tbe durations are of an arbitrary length distribution with mean
the flows. These results were extended to the case of marg!. Thus, the traffic intensity brought by flows of classs
general holding time distributions in [10] assuming timep;, = \;/us. We further assume that = [p,] is within the
scale separation and the effect of the utility functions wasability region defined by = {p] Zle Alps < R, VI
also presented suggesting that logarithmic utilities are moreFor each class;, let z,(¢) denote the rate allocated for
desirable. More recently [2] presents a fluid network approaelach flow at timet, and letUs(xs(t)) = logxs(t) be the
for general file size distributions for the fair bandwidth sharingtility received by the flow of class when the allocated
policy. transmission rate is(t). The utility function represents the
By now there have been a large number of extensions relatedel of satisfaction of a flow, and different utility functions
to the stability issue for both wireline and wireless networkwill achieve different fairness objectives. Heleg (-) function
when using primal-dual type algorithms [7] . However, one kewill ensure proportional fairnessWe assume that each flow
connection that has been missing is to relate the primal-dual ef-classs has a maximum transmission rafe,.
gorithms to the original optimization problem. In other words, Let ns(t),s = 1,2,...,S denote the number of flows
what criterion does the primal-dual mechanism optimize whexi class s that are present in the system, ant) =
flows are dynamic because if stability is the only consequenps (t), z2(t), .. ., 2s(t)] denote the rate vector at tineln our
then some simpler mechanisms might suffice. This is the focu®del, time is slotted and the length of each sldFiseconds.
of this paper. Flows arriving within a slot will start transmission at the
In this paper, we study the utility maximization problenbeginning of the next slot as shown in Fig.1. Thereforgt)
in networks with dynamic flows. We assume the flow lengtban be decomposed into two parts,(t) = n¥(t) + ni(t),
is random with finite second moment and we do not requitgheren’”(t) represent the flows waiting for transmission and
the time-scale separation assumption. The utility per flow ig (¢) represent the flows transmitting data. Therefore, the
defined as a function of the transmission rate allocated togibbal optimization problem can be formulated as:
and the total system utility is the sum over all flow utilities.

Since flows arrive and depart dynamically, an appropriate Customer arrives
objective would be to maximize the long-term expected system Transfer sterts
utility, under the link capacity constraints. Our analysis shows | / |

that, as long as the traffic intensity is within the network
stability region as has been assumed in the prior work on (k1T KT (k+D1)T
stability, we can achieve the stability and fairness objectives
independently i.e utility maximization becomes an open-loop
procedure. Moreover, we investigate the system steady-state

Fig. 1. Transmission Model

behavior in terms of delay. Finally, we study via simulations 1 oS
. . . t
the open-loop approach as well as algorithms in [1], [5]. The f(glea%(t) tlggo n / Zns(t)Us(fEs(t))dt Q)
results demonstrate that, while all these algorithms guarantee J1=0 =1
stability, the approach presented here maximizes the long-term 1 el L
expected utility. subject to lim - Agng(Dzs(t)dt < Ry, VI (2)
el t=0 3=1

The rest of the paper is structured as follows. In Section II,
we present the system model and problem formulation. Sé&) has an interpretation of maximizing expected long-term
tion 11l and Section IV obtain the principal result showing thasystem utility. The constraint (2) addresses stability require-
the stability and control issues can be decoupled. Sectionment.
provides an explanation on the results in Section Il through Suppose the queueing process at each source node is in
gueueing interpretation; we also discuss the possible file lengtiuilibrium and ergodic (we will justify this assumption in
distribution and issue of choosing the right utility functions ifsection V). Letv(7i*, ) denote the density (which we assume
this section. Section VI considers the steady-state behavioreiists without loss of generality) of the joint distribution of
terms of delay. We report our simulation results in Section Vfi* and # in equilibrium. Givenz, the stationary distribution
before finally conclude our paper in Section VIII. of 77 can be shown to be conditionally independent (follows

from a truncation of thé\//G /oo model). Letv(n!|Z) denote
II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe our system model and define ttheOur re_sults can be readily extended to the case where the link capacity is
jme-varying and the routes are not pre-defined.

aSSfOCiated optimization problem. We consider a network_ WltH]ZAs we will show later, we are not taking the log utility by chance. It seems
L links and S classes of flows. We denote the sets of link® be the only meaningful utility under dynamic flows.



the conditional density of flowe; given Z, thenv (7, Z) = This is because thag(Z) strictly increases until it reaches
[Hle v(nt|%)]p(Z), wherep(Z) denotes the joint density of the global maxima, and then strictly decreases on each of its
Z. dimension. In either case(%) is a Dirac delta function.

Then (1) can be written as the following problem: As a consequence, we can transfer the stochastic optimiza-

s tion problem (3) and (4) in to a deterministic one in the

e o] H .3

max [ 373 wiUevintf)| peas @ OO
¢ X s=1

nt=0 S
subject to max E[N!|x)Ug () (10)
’ s=1
S oS
! t t)2 N 7 S
/X ZlAs Zonsa:w(nslx) pEdEs B, VL (3) subject 0y ALE[N!|z]a, < R, VI (11)
= ne= s=1

where X' = {7z, € (0,M],s = 1,2,..., 5}. Therefore, the \yhere N* is a random variable representing the number of
maximization problem is essentially about finding an optimi;ss s flows in transmission when rate, is assigned. Let

joint densityp(7). Define DL denote the above optimization problem.

5 oo We can further deduce the optimal joint distributipti)
g(T) = Z Z ntUq(z4)v(n| %) by setting the following equality:

s=1nt=0

s - / p(#)di = / p(@)di = 1 (12)
= Y log(as) Y nlu(nl)@) X X

s=1 nt=0 where X is the set ofZ that solve problem (10) and (11).

s The solution is straightforwards(z) can be any distribution
= Zlog (z4)E[NE|7) as long as (12) is met. §(Z) has an unique maxima oN,

s=1 X = {Z*} is a singleton and thus(z) = §(& — &*) whered

s is the Dirac delta function.
= Zlog (ws)ps/s (5) Note that the constraint given in (11) refers to long-term
s=1 congestion avoidance. If instantaneous congestion avoidance

To evaluateZ[N!|Z], we have applied Little’s law in the aboveis required, (11) will be replaced by

derivation. It is easy to see that the expected service time s
excluding the waiting time id /(usxs) in equilibrium. Thus, ZAlsnixs <R, Vlas. (13)
by Little's law, E[Nf|zs] = As/(1szs) = ps/zs. Substitute —

(5) into (3), we have Let DS denote this modified problem. In later sections, we

max/ 9(@)p(7)dz (6) will show the trade-off between these two problem formula-
r Jx tions. Intuitively, problemD S has a more stringent constraint,
which implies that its performance might be worse than that
Iof the problemDL.

x

Now, we are going to investigate the propertiesg¢f) to
obtain the structure of(Z). The first order and second orde

partial derivative ofy() are given by I1l. DISTRIBUTED ALGORITHM AND STABILITY ANALYSIS
09(2) _  ps(1—log(zs)) (7)  This section presents the derivation of the distributed control
Oz Ts algorithm and its stability analysis for problem/L. The stan-
?g(x)  ps(2log(xs) —3) ®) dard primal-dual technique is employed to find the solution.
or2 a3 Note that the objective function does not have the convex
d%¢(7) property and there will be a duality gap. We will ignore this
DLy = 0, s#¢t (9 issue now since we will show that the duality gap actually

disappears naturally in our problem. The Lagrangian function

From (7), it is easy to see thai(#) has a unique global jccociated with problem L is

maxima atz? = e for all s. In addition, from (8) and (9), we

can conclude thay(z) is strictly concave if0 < z, < e*/2 . s ,
and strictly convex ifz, > ¢3/2 for all s. Within the convex L(¢,%) = Y E[N!a|log(z,)
region, the minima occurs at, = co, which can be inferred S:1L ;
from (7). z .
To maximize (6),p(Z) should put all its mass at* if z* _;ql(z_; ASE[N|xs]es — Ri) - (14)

satisfies (4) and) < z! < M, for all s. This is because

9(33*) > g(Z) for all TFar Otherw_ise,p(a?) should put all " safhough the density functions/(n’|7) are still involved, they are
its mass at one of its boundary points of the solution spa@empletely specified by and the Poisson assumption on the arrivals.



where ¢ = (¢1,42,...,q1) are the Lagrangian multipliers, at each link must be finite. By Little’s law, we have
and they represent the level of congestion. Then, the dual of

problem DL is defined as E[Ni|zs] = E[N{lzs]+ E[N{|w], Vs
min F(§) (15) AT/2 4 psfes (20)
=0 where the tern¥’/2 comes from the fact that given a Poisson
where arrival occurs within interval0, T, the expected arrival time is
T/2. To have a bounded number of flows, must be strictly
F(q) = IfgéL(q’ z) (16) greater than zero and the mean of the file length must be

Let D denote the dual problem. To solve problef we finite. According to (18)x, > 0 is satisfied, ang, is finite

. ) ) - by definition. As a result, the first term withitim sup of
consider the problem in (16) first. For a givgnthe problem : .
Lo .. (19) converges to zero. Since the system is not lossy, the load
is separable ins, x(q‘) maximizes L(q,Z) if and only if

injected into the network ig; by each class in equilibrium.
#(q) = (21(9), 22(2), -, #5()), where Thus, the load imposed on each link¥s>_, Alp,. If 7€ ©
5(7) = arg max {E[N!|z,]log(x,) is satisfied, queues at each link will be bounded for all work
0<zs<Ms

conserving scheduling policies, and this fact provides the

. L . convergence of the second term in (19).
_E[N5|x5]x5 ZAbQI} (17)
=1 IV. DISTRIBUTED ALGORITHM FOR INSTANTANEOUS
Substitute E[Nt|z,] = A/ (uszs) = ps/xs into (17). Then, CONGESTIONCONTROL
the solution of (17) can be expressed as Let us now consider the problem where the allocations are
257 = arg max {log(z,)/zs} such th_at the m_stantaneous capacity qonstramts are not allowed
0<zs <M to be violated, i.e. we study the solution for the problémf,

= min{argmax(log(xs)/zs), Ms}  (18) which provides instantaneous congestion avoidance. Again,

. . . . ) primal-dual method is applied. The Lagrangian function as-
Since the functionog(z)/x strictly increases first and theng ?mated with problenDs is

strictly decreases, the solution given in (18) is a global optima

solution. o s ,
An interesting observation is that the solution of is L(G%) = Y E[N!|z]log(,)
independentof the dual variableg;. In other words, the utility s=1
maximization is fully decoupled from the stability issue. This
implies that the algorithm does not require the feedback from - qu ZA ngts — Ri) (1)

the network in finding the optimal transmission rate, and the

duality gap does not affect the optimization at all. This resulthereq = (q1, ¢2, - . ., q1,) are the Lagrangian multipliers for

actually simplifies the implementation of the control algorithrtink capacity constraints. Then, the dual of probleén$ is

significantly. In classical literature about distributed utilitydefined as

maximization algorithm, the noise and delay associated with

the feedback of dual variable updates usually create non-trivial {glg F(q) (22)

difficulties. Although some recent works have demonstrated

that the algorithm will converge to the optimal solution, thehere

usually require assumptions such as the noise must be unbiased

and the variance of the noise must be bounded. The details can F(a) = gle%)((L(q’ 7) (23)

be found in [13] For a giveng, the problem is separable i Z(¢) maximizes
The role of the dual variable updates is to stabilize tf 73 if ang,onl " 9 where

network and thus prevent network congestion. However, o (@7 yifE(@) = (1(2), 22(d),. ., #5(2)),

the long-term average, this step is naturally achieved. If the

traffic intensityp, is strictly within the stability regior®, then ()

arg  max {E[N!|z ] log(xs) — n :ESZAZ a}

we can show via a standard Lyapunov argument based on the 1=1
conditional drifts that the network is stable, where the network Ds logxs
stability criterion is given by = arg max {7 — ngx, Z Alg}  (24)
1 t
hirisolip / Lisss e )+Ef:1ql(t)>M}dt — 0 Th(:hdgall_hprobletmlij sph;ed cli)fyﬂu?n'g gradient projection
as M — oo (19) method. The partial derivative di(q, %) is
s
where n, denotes the number of flows in class In other 9 (g7 =R, — ZAl ntz, (25)

words, the number of flows at each source node and the queues oq o



Thus, ¢; is updated through proved by looking at the expected one-step drift of the queues:

S S
a(k+1) = [qk) +yO_ Alnlz, - R)T, VI (26) Bla(k+1) —qk)] =) Ale E[N!]] - R, 27)
s=1

s=1

where v is the step-size. To ensure the convergence of théerez; is given by (18). In fact,E[N!] should be written
algorithm, we sety = 1/k. Sincen is randomz* andg, will  as E[N{|z,] becauseV is a function of the control strategy.
converge converge as processes. As the result of the projecfi@m the previous discussioii[N{|x,] = ps/z,. Substitute
operation[-]*, E[g] > 0 and the second term in (24) will bethlg expression into the right hand side of (27) to obtain
non-negativevt. Therefore,z* will be always be dominated > o1 Atps — Ri < 0, which indicates that the expected one-
by the solution given in (18), anfl[z?] < e. Sinceg(7) is a Step drift is non-positive.

strictly increasing function until it reaches its global maxima, Our results hold for a large class of file length distribution
zs = e, the performance of the solution gi\/en by (24) and (zemcludlng even heavy tail distributions with finite mean; the

will be worse than that of the |ong-term Congestion avoidan@@rformance of the algorithm is insensitive to this distribution.
algorithm. In addition, a smaller transmission rate will inducklowever, the expected number of flows at each source node

a longer delay. and their sojourn time are linearly related to the mean of the

Thus, the trade-offs between instantaneous and long-tef#tribution.
congestion avoidance are utility and delay. If stability is the The utility function can be expressed in a more general form
only requirement, the long-term congestion control solutigks Well, and the convexity of(%) can be more complicated.
has much more advantages in terms of implementation ah@us, there may be multiple optimal solutions which maxi-
complexity. For this reason, all the discussion from this poifitizes (6). However, from the system utility maximization's
on will be focusing on the algorithm of problef L unless Point of view, the mass distribution over these points will not

explicit explanation is made. affect the total utility. This fact implies that the structure of
v(Z) can still be a delta function.
V. QUEUEING INTERPRETATION ANDDISCUSSION If the utility function is a linear function of the transmission

rate {/(z) = ~x), the system utility is constant and indepen-
We now provide intuitive explanation for the results dedent of transmission rate. A simple proof is
scribed in Section Ill. First of all, we will justify the fact
that the queuing process at each source node is ergodic as

mentioned in Section Il. In Fig. 2, we illustrate a simplified FeX s
version of the queueing systems under investigation. For the 5
= Ina —Yx
V(O =n (D), sex L,
y(O)=n()x(t) QD=9 5=
p=A/u, = Sy
AN ru(t)
However, from individual user’'s point of view, individual
Transport layer queue Network layer queue flow’s utility is maximized if z, = M.
7.0 In addition, if we take the general utility U,(z,) =

l1—a
Ty H .
Fig. 2. Relationship Between Transport Layer and Network Layer QueugiléS l—-a mtro_duced by Mo and Walrand [11]’ then the optlmal
solution is given by

Mg, if aa>1
S (28)
0,if 0<a<l1

ease of exposition, we concatenate the two queues that hold
bothn? (waiting queue) ana’ (transmission queue) into one

transport layer queue. Since the first queue is a pure delay
block, n’(t) is stationary. Moreover, the second queue is @r o £ 1 and alls. The solution can be obtained by checking

G/M /oo type because the service rate is scaled witlt). As  the first order partial derivative of(Z)
a result, this queue is “self-stabilizing” and stationary, i.e., it

is always stable no matter what intensity is. Consequently, . 5 P
ns(t) = n¥(t) + ni(t) is also a stationary process. Note 9(¥) = ) Us(ws)E[N7]
that the arrival process of the second queue is in the form s=1

of periodic bursts with varying number of customers. _ iw x> Ps
Secondly, the network achieves the largest stability region pot 1-ax,
without the time-scale separation assumption. Given the fact WsPs _q
that o € O, stabilizing the network layer queue is straight- - 1 _a"
forward: a normal FIFO policy would work [4]. Indeed, any 0 QW Ps

— o —a—1
work conserving policy will ensure stability. This fact can be 3%9(1) T -1



Note thatg(Z) is either a strictly increasing or strictly de-A. Operation of Algorithm B
creasing function depending en Consequently, the optimal

solution is one of the two boundary points. This solution showl_fi
that the generafv utility (apart from the log utility that we t

With time-scale separation assumption, algoritBnsolves
e following optimization problem at the beginning of each

have taken) is not suitable in the case of dynamic flows e slot.
zs = 0 is not a feasible solution. s
VI. DELAY ANALYSIS ggzns log(z) (34)
s=1
In this section, we present the transport layer delay analysis s
of our algorithm. The queueing model is shown in Fig. 2. Let subject tOZAinsfvs < RVl (35)
D¢¢ denote the end-to-end delay of clasdlows. Then we =1

have D¢ = D! + D?, where D! and D? are the queueing
de'ay at transport |ayer and W|th|n the network (along the pa‘fvherexs denote the individual flow transmission rate of class
towards destination), respectively. The evaluation of netwofk andn; is the number of class flows in the system. The
queueing delay is out of the scope of our paper. Here we fodi@drangian is given by
on Dt.

The transport layer delay for classflows D! consists of . & L 5 !
the waiting time and the transmission time. L&t be the L, i) = ;ns log(,) - Z“l(z; Asnszs — i) (36)
random variable denoting the waiting time add be the = =t
random variable denoting the file length of classSince the wherej = {p1, 2, ..., ur }. FOr a giveng, the solution ofz;
arrival process is Poisson, given that an arrival occdfshas s
an uniform distribution in the interval0, T]. The transport
layer delay can be written as

where the second term/zs is an exponential distribution Suppose thatM, is a very large number, them, =

with rate z,u,. Since the arrival time is independent of thq—/(Zszl Aly,). Substitute this expression into the comple-
file length, the distribution of)! is given by the convolution menta?y slackness equation, we have

of the distribution ofi¥ with the distribution ofF;/z,.

S L
fpe(d) = / fwld =T)fr. /e, (T)dT (30) (> Alng/ (O Alw) — Ry) =0,V (38)
s=1 =1

L
Ts = min{l/(z Algu), M} (37)
=1

FL—etend)if0<d<T The explicit expression gf; depends on the routing structure.
fpi(d) = L mds T _ (31) Suppose the network is a one-hop network and only class
ge Mttt —1),if d > T flows cross linki, then the explicit expression fqr; is
VII. NUMERICAL RESULTS

n
In this section, we will compare our proposed algorithm p(——Ry) =0
with current works for networks with random arrivals and a N
departures to demonstrate the superiority of our scheme. To — M= R (39)

facilitate our discussion, led denote our proposed algorithm.

Let B andC denote the algorithms with time-scale separatiowheren, denote the number of clagsflows crossing link.
assumption and the one proposed by Lin and Shroff withoBubstitute (39) into the primal solution, we get
time-scale separation assumption respectively. We will con-

sider both one-hop and multi-hop network configurations in Ty = B (40)
simulation. The following two objectives will be compared. N
1 St . Equation (40) provides us the optimal solution to which the
}EEO t Z/O ng(O)Us (as(1))dt (32) primal-dual algorithm will converge in equilibrium.
=t ; Suppose that the number of flows is dynamic and the primal-
lim 1 nt(t)x,(t)dt, Vs (33) dual algorithm employed converges on a much faster scale
t—oo t Jo than the dynamic ofi;. In the extreme case, we assume that

(32) is the average system utility and (33) is the averagiee algorithm converges instantly, and the transmission rate is
throughput for each class. Before we demonstrate the simypdated with equation (40) at the beginning of each time slot
lation results, we will present a brief description about thier one-hop network topology. This rate update mechanism
operations of algorithmsB and C. All algorithms run in adopts the time-scale separation assumption and describes the
discrete time and time is slotted with lendth operation of algorithmB.



A TABLE I
class1 class2 TIME AVERAGE THROUGHPUTCOMPARISON FORONE-HOP NETWORK
VN N >

\/ / T T C
A B class 1| 8.108 | 8.02 | 8.06
class 2| 8.54 | 8.46 | 8.53

class 3 class 3| 9.01 | 9.03 9

< () () class 4| 943 | 954 | 95

D class4 I C AL Ak

class 1 1 class2
Fig. 3. One-Hop Network Topology ] >

A B
TABLE | §

TIME AVERAGE UTILITY COMPARISON FORONE-HOP NETWORK

A (% improvement) B C (baseline)
class 1| 2.983 (+58.67%) | 1.29 1.88 7 1 M Class3
class 2| 3.14 (+53.92%) | 0.0055 2.04 Q ) ( \C)
class 3 3.32 (+46.26%) -4.4764 2.27
class 4| 3.47 (+29.96%) | -19.7793 2.67 class4

Fig. 4. Multi-Hop Network Topology
B. Operation of Algorithm C

The detailed derivation of this algorithm can be found if?- Performance Comparison in Multi-hop Network

[5]. Here, we will only present the algorithm To further emphasize the advantages of our algorithm, we
also investigate its performance in a multi-hop network shown
25(q) = min{—F—— M} (41) inFig. 4. The network parameters are identical to the previous
=1 @ H] example except the routing and arrival rates. In this example,
S (k+1)T the arrival rates are 1, 2, 3 and 3.5 flows/second for class 1
alk+1) = [qk)+ ’n(z Hﬁxs(k)/ ni(t)dt  to class 4. Therefore, the load on liokB, BC, CD and DA
s=1 kT are 1, 3, 6 and 9.5 units/second. Since the performance of
~TR))]" (42) algorithm B is not comparable with that of algorithd and

C, only A and C's simulation results are shown in Table IlI
where~y, is the step-size. The main result claimed in [5] is thaind IV.

x5(t) andng(t) will converge to stationary processes and the

network can achieve the largest stability region provided E. Simulation Results Discussion

the step-size is small enough. According to the simulation results, algorithrh performs
much better than the other two algorithms and maintains the

C. Performance Comparison in One-hop Network

The network topology is shown in Fig. 3. This network has TABLE Il
four |inkS: AB, BC, CD and DA Each |Ink has a Capacity TIME AVERAGE UTILITY COMPARISON FORMULTI-HOP NETWORK
of 10 units/second. There are four classes of flows whose
file lengthes are exponentially distributed with a mean of 1
unit/flow. The arrival rates are 8, 8.5, 9 and 9.5 flows/second
for class 1 to class 4. Thus, the loads brought by each class are
8, 8.5, 9 and 9.5 units/second. Each time slot is 10ms seconds
long. The simulation results are shown in Table | and Il. Note
that Table | also includes the relative performance comparison TABLE IV
between algorithmA and C' with algorithm C’s performance Tiue AvERAGE THROUGHPUTCOMPARISON FORMULTI-HOP NETWORK
as the baseline. Since algorithRis performance is very low,

A (% improvement)| C (baseline)
class 1| 0.3572 (+29.84%) 0.2751
class 2| 0.7372 (+31.93%) 0.5588
class 3| 1.1042 (+31.72%) 0.8383
class 4| 1.2922 (+33.84%) 0.9655

its relative performance with respect to that of algoritbis A c
not included. class 1| 0.9712 | 0.99
Note that each class’s throughput should be the same for all class2| 2 1.99
algorithms theoretically. The discrepancy appears in Table Il class 3| 3 3
is due to simulation. class 4| 3.51 | 3.49




throughput at the same time. This result can be explained frofm
two different prospectives.

First, we analyze the algorithm from the stability’s point[g]
of view. In classical literatures, utility maximization problem
usually considers networks with fixed number flows. In addi-
tion, each flow is assumed to have infinite backlog to transfel’!
Therefore, the dual variable must be employed to regulate
the flows to enure stability. However, when flow’s arrival ané°l
departure are random, stability is not an issug & © is met 11]
and the transmission rate is strictly greater than zero. For this
reason, the dual variable is not required to regulate the floW?]
and each flow will receive more utility. In some sense, it is a
trade-off between stability and utility. If we know the systenu3]
is operating within the stable region, we should not penalize
the flows to ensure stability anymore.

Secondly, from the prospective of solution space, we can
also verify the advantage of open-loop control. The constraints
associated with these algorithms specify different solution
space. For algorithmd, the solution is selected from a space
which ensures long-term stability. For algorithBhandC', the
solutions are chosen from spaces which ensure instantaneous
and short-term congestion avoidance. If we rank these spaces
according to their sizesA O C D B. As the result, the
performance of our algorithm should be at least as good as that
of B and C. This analysis is consistent with the simulation
results.

VIIl. CONCLUDING REMARKS

In this work, we have shown that if we seek to maximize
the long-term system utility subject to long-term stability in
networks where random dynamic arrivals and departures are
present then the control and stability issues are decoupled
when the arriving sessions lie within the stability region.
Our analysis shows that such an optimal control scheme is
independent of the queues in the network, and the stability of
the network is independent of the utility maximization prob-
lem. One way of interpreting these results is that primal-dual
based congestion control schemes should be used for long-
lived flows to prevent short-term congestion while short lived
sessions need not be controlled provided they do not bring
excessive work. Such an approach will maximize network
utility.
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