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Abstract

This paper presents a stopping theoretic framework for the detection of traÆc anomalies in

networks. In particular we consider the case when only aggregate traÆc 
ows can be measured.

Under the assumption that the traÆc changes are sudden and take place at a random time, we

show that it is possible to de�ne stopping rule which yields decisions on anomalies with minimum

average detection delay in the class of all decisions based on the available information subject

to a bound on the false alarm rate. We demonstrate the behavior of the detection scheme via

simulations in both the case with perfect prior knowledge of the 
ow characteristics as well as in

the robust case where only membership of classes is known. The approach is via optimal stopping

theory.

1 Introduction

The most common reason for dramatic deterioration in o�ered network performance is due to traÆc
congestion. TraÆc congestion can arise due to many causes, a network hotspot, failure of network
components which can involve short term re-routing of traÆc through a particular part of the network
(or a particular router), and malicious users who wish to 
ood a particular node or site (or even a
sub-net). Hence there is a need to provide network monitoring mechanisms which can detect sudden
traÆc overloads and react quickly to them.

Part of the diÆculty is that we must be able to di�erentiate between statistical 
uctuations, which are
normal and for which the network is properly dimensioned, and genuine anomalies. Simple statistical
measures such as computing mean rates are far too ineÆcient and too slow to provide any level of
con�dence. Indeed the amount of data needed (or the duration before which a decision can be made)
for achieving a high level of con�dence is usually too large so that the negative e�ects of congestion
will have already set in. In the case of malicious users a server or even subnet could be brought down.
Hence there is clearly a need to develop more sophisticated methods which can also be distributed
across the network.

Most papers in the literature have focused on fault detection where faults could arise as a result
of link failures, software failures or network errors. There are two broad based approaches in the
literature, one is by template matching i.e. looking for signatures of the anomalies de�ned in terms
of low, high and moderate packet rates where measurements are averages over a given window[4] and

�IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA. Email: pdube@us.ibm.com
yRavi Mazumdar is with Dept. Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 79406.

E-mail:mazum@ecn.purdue.edu



the second approach is via rule based approach for fault localization via the correlation of alarms
[5, 7]. These are essentially logical procedures based on knowing exactly the fault scenarios and then
correlating the alarms to locate the faults.

As mentioned above simple statistical tests of measuring averages over a given window can lead to
a high false alarm rate and increasing the window size can lead to excessive delay as a result of which
it may be too late to react. This has led a number of authors to seek more robust and sophisticated
methods based on traÆc measurements to monitor network conditions. In [6] the authors propose the
use of the variance of the cumulative traÆc over a �xed time interval and show that if suÆcient long
measurements are available then anomalies in VoIP traÆc can eÆciently detected. A similar traÆc
based statistical scheme using mean and variance estimates is presented in [9]. More recently in [10],
the authors propose a Generalized Likelihood Ration (GLR) test [8] to detect traÆc anomalies. This
involves knowing the normal situation and the likely changes and computing the likelihood ratio based
on an AR (auto regressive) characterization and choosing non-overlapping windows over which the
sequences are assumed stationary using the method in [2]. The GLR is a widely known sequential
test. In the Gaussian case which the authors consider, in essence the procedure checks for changes in
the mean and variance. However there is no attempt at optimizing the detection delay since there is
a tradeo� between choosing the window lengths and the false alarms.

One of the principal goals of our work is to investigate the suitability of traÆc based methods to
monitor and detect network attacks. In this context, speed of detection is the essence. In this paper
we present a stopping theoretic framework for the use of traÆc measurements to detect anomalies
in network traÆc patterns with the aim of taking preventive measures as quickly as possible. Our
primary goal is to investigate the applicability and eÆciency of this framework. We assume that only
aggregate measures based on bu�er occupancy and aggregated 
ows are available. We show that
the theory of optimal stopping provides a very robust and elegant framework for devising quickest
detection algorithms. By quickest detection it is meant that the stopping time (or alarm) has the
minimum average delay amongst the class of stopping times which can be de�ned with respect to the
same available information and subject to the same constraints on the probability of false alarm. An
excellent account of the theory of optimal stopping can be found in [3, 1].

The organization of the rest of the paper is as follows: In Section 2 we formulate the problem and
present the background theory which we employ to characterize the optimal stopping time. In Section
3 we present two di�erent cases for fault (or change) detection at a node. In the �rst case the observed
process is the arrival rate to the queue and in the second case it is the bu�er occupancy at the queue at
arrival epochs. Simulation results for both the cases are presented. In Section 4 we propose a robust
algorithm for combined fault detection and parameter estimation for scenarios where we do not know
the value of the parameter before or after the change. We provide simulation results for our proposed
robust detection algorithm. We �nally discuss some related issues and give some further directions in
Section 5 .

2 Model: A Markovian framework

Let fXtg be the process under observation ( for e.g., bu�er occupancy or the aggregate arrival rate)
and Xn be the observed value at the nth observation. We assume that the observed series fXng
forms a Markov chain. As we shall see later in Section 3, the Markovian assumption can capture the
dynamics of the observed process. We next proceed to formally de�ne our problem.

Assume that on a probability space (
;F ; P �;x) we are given random variables � with values in
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[0;1), and random variables fXn; n = 0; 1; 2; : : :g with values in D. With regards to our model Xn

is the observed series. We assume that P �;x(X0 = x) = 1. Also de�ne

P �;xf� = 0g = �;

P �;xf� = ig = (1� �)(1� p)i�1p; i = 1; 2; : : : (1)

where �,p and x(2 H) are known constants, 0 < p � 1, 0 � � � 1.

For each set A = f! : X1 = x1; : : : ; Xn = xng we have:

P �;x(A) = �P 1(X1 = x1jX0 = x)P 1(X2 = x2jX1 = x1) : : : P
1(Xn = xnjXn�1 = xn�1)

+(1� �)

nX
i=1

(1� p)
i�1

pP 0(X1 = x1jX0 = x)P 0(X2 = x2jX1 = x1) : : :

P 0(Xi = xijXi�1 = xi�1)� P 1(Xi+1 = xi+1jXi = xi) : : : P
1(Xn = xnjXn�1 = xn�1)

+(1� �)(1� p)
n
P 0(X1 = x1jX0 = x)P 0(X2 = x2jX1 = x1) : : :

: : : P 0(Xn = xnjXn�1 = xn�1) (2)

where P 1 and P 0 are probability measures on (
;FX), FX = �f! : X1; X2; : : :g, independent of �.
Let for i = 0; 1, M i be a Markov chain on the probability space (
;FX ; P i).

The conditions given by (1) and (2) means that if � = 0 , we observe a sequence of Markov ran-
dom variables X1; X2; : : : with joint probability P 1(X1 = x1jX0)P

1(X2 = x2jX1 = x1) : : : P
1(Xn =

xnjXn�1 = xn�1) (as P
�;x(X0 = x) = 1). If � = i, X1; : : : ; Xi�1; Xi; : : : are again Markov random

variables, with joint probability P 0(X1 = x1jX0 = x)P 0(X2 = x2jX1 = x1) : : : P
0(Xi = xijXi�1 =

xi�1)P
1(Xi+1 = xi+1jXi = xi) : : : P

1(Xn = xnjXn�1 = xn�1), i.e., till observation Xi the state
transitions are governed by Markov chain M0 and from Xi onwards the state transitions are governed
by M1, where M1 is the disturbed chain. Thus � = �(!) is the instant of change (resulting in a
faulty/abnormal behavior of the system).

Let � be a stopping time with respect to the system of �-algebras FX = fFX
n g; n � 0) where

FX
0 = f�;
g and FX

n = �f! : X1; : : : ; Xng. For our problem � can be interpreted as the time at
which the alarm is sounded to signal the change in the distribution based on an observed process
which is represented by the �-algebra. It is clearly desirable to choose � as close as possible to the
time � (alternatively to have the least detection delay). Also we need to avoid false alarms. We note
that there is a tradeo� between least detection delay and avoiding false alarms. Thus as the variable
characterizing the risk associated with � we consider (c > 0) a risk function given by:

��;x(�) = P �;xf� < �g+ cE�;xmaxf� � �; 0g (3)

where P �;xf� < �g can be interpreted as the probability of false alarm and E�;xmaxf� � �; 0g as the
average delay of detecting the occurrence of disruption correctly (detection delay), i.e., when � � � 1

and c is a control parameter. We next de�ne a (�; x)-Bayes time as:

De�nition 1 For a given � 2 [0; 1] and x 2 D we call the stopping time ��� a (�; x)�Bayes time if

��;x(���) = inf ��;x(�);

where inf is taken over the class of all stopping times � 2M[FX ](with respect to the system FX).
1For a particular realization �(!) is the index of the observed epoch at which the fault is detected and hence an

\alarm" is sounded and �(!) is the true epoch at which fault occurs
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We next proceed to obtain an explicit expression for evaluating ��� . The problem formulation and
the solution approach is inspired from [1]. The di�erence being that in [1] Sec. 4.3, the observation
process fXng was a series of mutually independent random variables whereas in our problem it is
a series of Markov random variables. Thus the characterization of optimal stopping times is more
technical in our case.

Theorem 1 Let c > 0, p > 0, and let

��;xn = P �;xf� � njFX
n g

be the posteriori probability of disruption occurring before time n; ��;x0 = �. Then the time

���;x = inffn � 0 : ��;xn � A�g

where A�, a constant, is a (�; x)-Bayes time.

Proof: The proof is along the same lines as that in [1] and is deferred to the Appendix.

For the �xed false alarm formulation, let � 2 [0; 1); p 2 (0; 1]. We shall denote by MX(�;�; x) the
class of stopping times � 2M[FX ] for which

P �;xf� < �g � �

It can be shown that the optimal stopping time from the classMX(�;�; x) can be estimated by ~� :

~� � inffn � 0 : ��;xn � 1� �g:

Remark 1 Observe that in (1) we are taking geometrical distribution for � which is a memoryless
distribution having in�nite support. This makes � totally unpredictable apriori. Also choice of � and p
will determine the performance of the algorithms but we have seen by simulations that the algorithms
are robust to the values of p and �.

3 The Observed Process

We consider two di�erent scenarios for the observed process: (i) when the observed process is the
arrival rate to a queue; (ii) when the observed process is the bu�er occupancy at a queue.

3.1 Case 1: Monitoring the Aggregate Arrival Rate to a Queue

We consider a discrete time framework. Consider a simple case where the arrival rate, fXng to the
queue is modeled as a two state Markov chain, with states 0 and 1. When the state is 0 (1) then the
arrival rate is R1 (R2). The disturbance occurs at time N . For n = 1 : : :N , fXng is governed by a
transition matrixM0 and for n = N+1 : : : transitions are governed by a di�erent (disturbed) transition
matrix M1. We next apply the results developed in the previous section for optimal detection of the
disturbance epoch in this case and provide some simulation results.

We work with � = 0:1, � = 0:001, x = 0 and p = 0:3. Thus we are looking for optimal stopping
time in that class of stopping times where the probability of false alarm is less than 0:001. We shall
next consider three example with di�erent structures of the disturbed Markov chain M1.
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Figure 1: The posterior probability ��;xn as a function of n for di�erent N , with � = 0:001, p = 0:3
and � = 0:1.

Example 1:

M0 =

�
0:6 0:4
0:8 0:2

�
M1 =

�
0:4 0:6
0:2 0:8

�

Observe that this example corresponds to the interchange of columns in the modulating chain after
disturbance. We plot the posterior probabilities ��;xn as function of n and for di�erent N in Figure 1.
Example 2:

M0 =

�
0:6 0:4
0:8 0:2

�
M1 =

�
0:001 0:999
0:01 0:99

�

This example captures the case when the Markov chain is in state 1 most of the times after distur-
bance. If R2 >> R1, then this means a sudden 
ood of packets enter the queue after the fault. We
plot the posterior probabilities ��;xn as function of n and for di�erent N in Figure 2. The convergence
is still very fast after N .
Example 3:

M0 =

�
0:6 0:4
0:8 0:2

�
M1 =

�
0:69 0:31
0:8 0:2

�

In this example we aim to detect a very little change in the transition probabilities. We plot the
posterior probabilities ��;xn as function of n, for di�erent Ns in Figure 3. We see false alarms for
N = 29, in the curve. This underlines the fact that in the absence of any actual fault or when there is
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Figure 2: The posterior probability ��;xn as a function of n for di�erent N , with � = 0:001, p = 0:3
and � = 0:1.

a long gap between the epoch the detection algorithm starts and the actual change occurs, a Bayesian
approach like ours may give a false alarm (as for the change epoch N = 29, the algorithm was started
at n = 1). This is because we assumed a geometrical distribution for priors (see (1)) which works �ne
if our algorithm is started at or close to the actual change epoch. However in the absence of any prior
information on the change epoch one can work with a uniform distribution for priors.

3.2 Case 2: Monitoring the Bu�er Occupancy in a Queue

In the previous case the observed process was the aggregate arrival rate at the queue. In this section
we consider a di�erent ��field of observations, namely the bu�er occupancy (queue length) at arrival
epochs of packets to the queue. We consider the case where we are monitoring the bu�er occupancy
in a GI=GI=1 2. Consider a discrete queueing system with An+1 being the interarrival time between
the nth and n + 1th packet, Sn being the size of the nth packet and cn being the server capacity
during An+1. Let Wn be the bu�er occupancy just before the nth arrival. We have:

Wn+1 = (Wn + Sn � cnAn)
+

Observe that if we assume that fSng and fAng are i.i.d., then Wn+1 is a Markov chain given cn. Let
before fault cn = c0 and after fault occurrence cn changes to c1. In this scenario we shall employ
optimal stopping algorithms to detect the change in the server capacity by monitoring the bu�er
occupancy at each packet arrival. Let fAng be i.i.d. with distribution FA(x) and fSng be i.i.d.
(independent from fAng) with distribution FS(x). We take both An and Sn to be discrete random
variables.

2general and identical distribution for packet interarrival times, general and identical distribution for packet service
times and a single server queue
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Figure 3: The posterior probability ��;xn as a function of n for di�erent N , with � = 0:001, p = 0:3
and � = 0:1.

Remark 2 Observe that the framework assumes that the changes in cn occurs at packet arrival epochs.
It is true that the server capacity may change during the interarrival times. This is a modeling as-
sumption and it can be shown that this should not cause a signi�cant di�erence in the characterization
of optimal stopping times.

Let us assume that we are given �; p and the initial value of the workload, w. Our ���led of
observations is fWng. We assume that the capacity cn remains constant for An+1. Let � be the
instant of change 3 in the value of cn. Thus before �, cn = c0 and after �, cn = c1. We next write the
transition probability of the Markov chain modulating fWng, before and after the change. We have:

P cn(Wn+1 = ijWn = j) =

�
P (j + Sn � cnAn = i) if i > 0
P (j + Sn � cnAn � 0) if i = 0

We can express the expression for P cn(Wn+1 = ijWn = j) in term of the distribution functions of
fAng and fSng. Thus

P cn(Wn+1 = ijWn = j) =

� P1
a=1 P (Sn = i� j + cna)FA(a) =

P1
a=1 FS(i� j + cna)FA(a) if i > 0P1

a=1 P (Sn � cna� j)FA(a) =
P1

a=1

Pcna�j
s=1 FS(s)FA(a) if i � 0

(4)

De�ning �n as in (5) we can write by Bayes formulation,

��;wn+1 =
��;wn P c1(Wn+1jWn) + (1� ��;wn )pP c0(Wn+1jWn)

��;wn P c1(Wn+1jWn) + (1� ��;wn )pP c0(Wn+1jWn) + (1� ��;wn )(1� p)P c0(Wn+1jWn)

It can be established that fT �;x
n = (Wn; �

�;w
n )g is a system of transitive statistics (by Lemma 1

in Appendix) and ���;w = inffn � 0 : ��;wn � A�g is an optimal stopping time. We next present
simulation results for this scenario.

3� is the index of the arriving packet at which change in cn occurs
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We next demonstrate the working of the proposed algorithm for the case of a Geo=Geo=1 queueing
system with FA(:) and FS(:) being geometrically distributed with parameters � and � respectively.
Thus:

FA(a) = P (A = a) = �(1� �)
a�1

for a = 1; 2; 3; 4; : : :

Fs(s) = P (S = s) = �(1� �)
s�1

for s = 1; 2; 3; 4; : : :

Then we can write from (4)

P cn(Wn+1 = ijWn = j) =

8<
:

��
P1

a=max
�
d
(1�i+j)

cn
e;1
� (1� �)

i�j+cna�1(1� �)
a�1

if i > 0

��
P1

a=max (d 1+jcn
e;1)

Pcna�j
s=1 (1� �)

s�1
(1� �)

a�1
if i � 0

Which can be explicitly written as (with k1 = max
�
d (1�i+j)

cn
e; 1
�
and k2 = max

�
d 1+j
cn
e; 1
�
):

P cn(Wn+1 = ijWn = j) =

8<
:

��(1��)i�j+cnk1�1(1��)k1�1

1�(1��)cn (1��) if i > 0

(1� �)
k�1

�
1� �(1��)cnk2�j

1�(1��)cn (1��)

�
if i � 0

For the simulations we took c0 = 2, c1 = 1, � = 0:2, � = 0:3, p = 0:1, � = 0:1, � = 0:0001 and
w = 1000. We plot the posteriors ��;wn as a function of n for di�erent N (the true change epoch) in
Fig. 4. We observe that for N = 100; 300 and 500, the detection algorithm stops at n = 225; 365 and
n = 639 respectively. Next keeping all other parameters constant we reduce � = 0:01 and plotted the
curve Fig 5. We observe that for N = 100; 300 and 500, the detection algorithm stops at n = 142; 428
and n = 326 respectively. Thus on increasing the error probability we get a false alarm for the case
of N = 500 portraying the tradeo� between detection delay and probability of false alarms.

Remark 3 In the two example scenarios studied in this section we looked at the traÆc anomalies at
a single queue in the network. This can be justi�ed because attacks are known to be localized (creating
hotspots). Also the algorithms can be independently implemented at di�erent network nodes.

4 Optimal Stopping Rules for Robust Fault Detection and

Parameter Estimation

In the problems discussed so far we have looked at cases where we know the actual value of the
changed parameter before and after the change. We now consider the case where we do not know the
value of the parameter, call � (the change in the value of which is a fault) either before or after the
change. However we do know that before the change the parameter belongs to a certain set say B1

and after the change to a set B2. The observed process (or the true world) is from a system for which
� has a value from B1 before change and takes a value from B2 after change. For each set of values
fi; jg; i 2 B1; j 2 B2 we assume that the set of modulating Markov chains (M i;M j) is known. The
observed process is the random variable fXng and is a Markov chain. We assume that for each of the
pairs (i; j : i 2 B1; j 2 B2) we have the prior probability Pi;j and hence a prior probability matrix P.
We next formulate our problem and propose optimal stopping rules for combined fault detection and
estimation of true values of the parameter � before and after the change.

8



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

n----->

N=100
N=300
N=500

Figure 4: The posterior probability ��;xn as a function of n for di�erent N , with � = 0:0001, p = 0:1
and � = 0:1, � = 0:2, � = 0:3 and c0 = 2 and c1 = 1.
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Figure 5: The posterior probability ��;xn as a function of n for di�erent N , with � = 0:01, p = 0:1 and
� = 0:1, � = 0:2, � = 0:3 and c0 = 2 and c1 = 1.
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More formally, we shall assume that on a probability space (
;F ; P �;x;�) we are given random
variables � with values in [0;1), and random variables fXn; n = 0; 1; 2; : : :g with values in X . We
assume that P �;x;�(X0 = x) = 1. Also de�ne the joint probability

P �;x;�f� = 0; �1 = i; �2 = jg = �ij ;

P �;x;�f� = v; �1 = i; �2 = jg = (�ij � �ij)(1� pij)
v�1

pij ; v = 1; 2; : : :

and P �;xf�1 = i; �2 = jg = �ij , where � = (�ij), � = (�ij), pij , i 2 B1, j 2 B2, p and x(2 H � R)
are known constants, 0 < pij � 1, 0 � �ij � 1,

P
i2B1;j2B2

�ij = 1, 0 � � � 1. For each set
A = f! : X1 = x1; : : : ; Xn = xng. Also,

P �;x;�(A; �1 = i; �2 = j) =

�ijP
j(X1 = x1jX0 = x)P j(X2 = x2jX1 = x1) : : : P

j(Xn = xnjXn�1 = xn�1)

+(�ij � �ij)

nX
k=1

(1� pij)
k�1

pijP
i(X1 = x1jX0 = x) : : : P i(Xk = xkjXk�1 = xk�1)

�P j(Xk+1 = xk+1jXk = xk) : : : P
j(Xn = xnjXn�1 = xn�1)

+(�ij � �ij)(1� pij)
n
P i(X1 = x1jX0 = x) : : : P i(Xn = xnjXn�1 = xn�1)

where P i, i 2 B1 and P 0, j 2 B2 are probability measures on (
;FX), FX = �f! : X1; X2; : : :g,
independent of � and x.
Thus, if � = 0 and �1 = i; �2 = j , we observe a sequence of Markov random variable X1; X2; : : :
with joint probability P j(X1 = x1jX0)P

j(X2 = x2jX1 = x1) : : : P
j(Xn = xnjXn�1 = xn�1)(as

P �;x(X0 = x) = 1). If � = k, X1; : : : ; Xk�1; Xk; : : : are again Markov random variables, with joint
probability P i(X1 = x1jX0 = x)P i(X2 = x2jX1 = x1) : : : P

j(Xk = xk jXk�1 = xk�1)P
j(Xk+1 =

xk+1jXk = xk) : : : P
j(Xn = xnjXn�1 = xn�1), i.e., until observation Xk�1 the state transitions are

governed by chain M i and from Xk onwards the state transitions are governed by M j , where M j is
the disturbed chain. We work here with scalar change, i.e., change in the value of a single parameter of
the chain. The more complex case of multidimensional changes (i.e., changes in 2 or more parameters
simultaneously) will be dealt in our future work. Thus � is the instant of change.

Let for v � 0, i 2 B1; j 2 B2, �
�;x;�
n (i; j) = P �;x;�f� � n; �1 = i; �2 = jjFX

n g, be the posteriori

probability of disruption occurring before time n; ��;x;�0 (i; j) = �i;j and �1 = i; �2 = j. Then by the
Bayes formula, 8i 2 B1; j 2 B2, we can write for n = 1:

��;x;�1 (i; j)

=
��;x;�0 (i; j)P j(X1=X0 = x) + (�ij � ��;x;�0 (i; j))pijP

i(X1=X0)P
i2B1;j2B2

��;x;�0 (i; j)P j(X1=X0) +
P

i2B1;j2B2
(�ij � ��;x;�0 (i; j))P i(X1=X0)

Also de�ne the posteriors, ��;x;�n (i; j) = P �;x;�(�1 = i; �2 = jjFX
n ) with ��;x;�0 (i; j) = �ij . Observe

that ��;x;�n (i; j) = ��;x;�n (i; j) + ���;x;�n (i; j), where ���;x;�n (i; j) = P �;x;�(� > n; �1 = i; �2 = jjFX
n ) We

have

���;a;�1 =
(�ij � ��;x;�0 (i; j))(1� pij)P

i(X1=X0)P
i2B1;j2B2

��;x;�0 (i; j)P j(X1=X0) +
P

i2B1;j2B2
(�ij � ��;x;�0 (i; j))P i(X1=X0)

and thus

��;x;�1 (i; j) =
��;x;�0 (i; j)P j(X1=X0 = x) + (�ij � ��;x;�0 (i; j))P i(X1=X0)P

i2B1;j2B2
��;x;�0 (i; j)P j(X1=X0) +

P
i2B1;j2B2

(�ij � ��;x;�0 (i; j))P i(X1=X0)

10



Below we enumerate the steps for sequential updation of posteriors ��;x;�n (i; j) and ��;x;�n (i; j).

4.1 Steps for Sequential Updating of Posteriors

1. Take ��;x;�0 (i; j) = �ij and ��;x;�0 (i; j) = �ij , 8i 2 B1; j 2 B2.

2. At the n+ 1th observation, Xn+1, update the posteriors �
�;x;�
n+1 (i; j) and ��;x;�n+1 (i; j) as follows

��;x;�n+1 (i; j) =
��;x;�n (i; j)P j(Xn+1=Xn) + (��;x;�n (i; j)� ��;x;�n (i; j))pijP

i(Xn+1=Xn)P
i2B1;j2B2

��;x;�n (i; j)P j(X1=X0) +
P

i2B1;j2B2
(��;x;�n (i; j)� ��;x;�n (i; j))P i(X1=X0)

��;x;�n+1 (i; j) =
��;x;�n (i; j)P j(Xn+1=Xn) + (��;x;�n (i; j)� ��;x;�n (i; j))P i(Xn+1=Xn)P

i2B1;j2B2
��;x;�n (i; j)P j(X1=X0) +

P
i2B1;j2B2

(��;x;�n (i; j)� ��;x;�n (i; j))P i(X1=X0)

4.2 Robust Algorithm

Since we do not know the true value of parameters before and after the change we propose the following
optimal stopping algorithm. Let (i�n; j

�
n) be the estimated value of the parameters (�1; �2) (the true

world) and ��n be the value of the posterior P �;x;�(� � n; �1 = i�; �2 = j�jFX
n ) at the nth observation.

Algorithm

1. At n = 0, let i�0; j
�
0 be (i�0; j

�
0 ) = Argmaxi2B1;j2B2

�ij and ��0 = �i�
0
;j�
0
.

2. At the n + 1th observation update ��;x;�n+1 (i; j) and ��;x;�n+1 (i; j) by the procedure listed in Sec-

tion (4.1). Also update (i�n+1; j
�
n+1) as (i

�
n+1; j

�
n+1) = Argmaxi2B1;j2B2

��;x;�n+1 (i; j) and ��n+1 =

��;x;�n+1 (i�n+1; j
�
n+1).

3. If ��n+1 � 1� �, stop.

Thus at the n+1th observation, the estimated values of parameters �1 and �2 is that set that maximize
the combined probability P �;x;�(� � n+ 1; �1 = i; �2 = jjFn+1) and the value of ��n+1 is the value of

��;x;�n+1 corresponding to this set.

Remark 4 A formal proof of the optimality of the proposed robust algorithm shall be done based on
the theory of optimal stopping in our immediate future work.

4.3 Simulation Results

We next study the eÆciency of our proposed algorithm for combined fault detection and parameter
estimation through the �rst simulation scenario that we studied in Sec. (3). For Case I in Sec. (3) where
we observe the arrival rate to a queue we consider a case where B1 = (�a1; �a2) and B2 = (�b1; �b2).
The arrival rate process fXng is a two state (states 1 and 0) Markov chain parameterized by some
�1 2 B1 before fault and some �2 2 B2 after fault. We assume that we know the Markov chains
modulating the arrival process for all the pair of parameter values fi; j; i 2 B1; j 2 B2g. For the
simulations we take

M�a1 =

�
0:2 0:8
0:9 0:1

�
; M�a2 =

�
0:10 0:90
0:01 0:99

�
;
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Figure 6: The posterior probability ��;x;�n (i; j) as a function of n for di�erent i; j, i 2 B1; j 2 B2 with
(i)N = 50, �a = �a2; �b = �b1, (ii) N = 25, �a = �a2; �b = �b2.

M�b1 =

�
0:99 0:01
0:90 0:10

�
; M�b2 =

�
0:9 0:1
0:3 0:7

�
;

�ij = 0:05; �ij = 0:25; �ij = 0:018i; j, � = 0:001 and x = 0. Let N be the epoch at which fault occurs.
We next present the results using our proposed algorithm for optimal fault detection and parameter
estimation for two di�erent examples.

� Case 1: �1 = �a2, �2 = �b1, N = 50.
Fig. (6). The algorithm stops at iterate 84 with estimated values of �1 and �2 as �a2 and �b1.

� Case 2: �1 = �a2, �2 = �b2, N = 25.
Fig. (6). The algorithm stops at iterate 40 with estimated values of �1 and �2 as �a2 and �b2
respectively.
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5 Perspectives and Future Work

In real situations, our proposed detection/detection-estimation algorithms can be implemented at
network nodes. Since the posteriors are updated using Bayes formula if we run these algorithms for
suÆciently long time then there will be an alarm even when there is no actual change, thus giving
a false alarm. This is because as n ! 1, ��;xn ! 1 which is easy to see. Thus, in practice the
algorithms should be run for some �xed (or variable) time, say W and then restarted with the value
of ��;xn corresponding to the initial priors. Also the eÆciency of Bayesian method depends on the
value of priors. However, in the absence of any information about priors one can even take uniform
distribution for � on W which corresponds to the maximum ignorance case. It is however known
that the Bayes procedures are not very sensitive to priors if there are drastic changes. It is in this
context that we are naturally interested as for example during denial of service attacks. The eÆciency
of the detection algorithms depends on how drastic the changes are. This situation can be taken
into account within the robust framework presented earlier. The prior and post change sets need
to be chosen accordingly. Such algorithms can also be distributed across the network where only
partial observations are available (i.e. we cannot measure the occupancies directly but only through
secondary e�ects such as increase in delays in receiving acknowledgements). The key is to be able to
compute the change statistic with respect to the observed �-�eld or history.

We emphasize that the goal of this paper is to explore the potentials of stopping theory based
framework for formulating algorithms for optimal detection of traÆc anomalies in communication
networks. Our preliminary simulations of example scenarios highlight the potentials of this optimal
stopping theoretic framework. Our immediate challenge now is to demonstarte the eÆciency of our
proposed framework by doing experiments with live data with actual traÆc overloads by comparing
the performance of our approach with traditional statistical measures involving mean and variance
changes (e.g., the Cumulative SUM (CUSUM) tests). We would like to remark that the threshold in
our tests depend on apriori given distribution. But in CUSUM the threshold depends on observed
statistics . If the observations are not Gaussian (as ours) then the calculated statistics is not mean
and variance but is ��;x. Of course, have the observations been Gaussian, ��;x can be related to
mean and variance.

In future work we will address how to use such schemes with other information not necessarily
directly connected with traÆc but other indicators such as acknowledgments and delays and to thus
come up with an end-to-end anomaly detection framework. Also, in our model and simulations we
assumed perfect knowledge of the observed process. In reality the observed � � field, for e.g., the
arrival rate, the bu�er occupancy etc. will be obtained by measurements and thus will be corrupted
with noise. We need to extend this framework to scenarios where noisy estimates of observed process
is available and to study the eÆciency of the proposed algorithms.

Appendix

We will �rst show that the problem of determining the (�; x)�Bayes stopping time can be reduced to
an optimal stopping problem for a Markov sequence.
By the Bayes formula, (P �;x � almost surely(a:s:)) we write,

��;xn+1 =
��;xn P 1(Xn+1jXn) + (1� ��;xn )pP 0(Xn+1jXn)

��;xn P 1(Xn+1jXn) + (1� ��;xn )pP 0(Xn+1jXn) + (1� ��;xn )(1� p)P 0(Xn+1jXn)
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We thus observe that ��;xn+1 for each n can be written as a function of ��;xn , Xn+1 and Xn. For each
n we de�ne a vector, T �;x

n = (Xn; �
�;x
n ). We further look at some standard de�nitions in the optimal

stopping theory 4.

De�nition 2 Let FX = fFX
n g, n = 0; 1; : : : ; where FX

n = �f! : X0; : : : ; Xng. The system of random
elements � = (�0; �1; : : :) with values in (Y;Y) is referred to as a system of transitive statistics(with
respect to FX), if:

1. �n is FX
n =Y-measurable, n = 0; 1; : : :;

2. For each n = 1; 2; : : : there exists a Y � X=Y-measurable function �n = �n(y; x) such that with
probability 1 �n(!) = �n(�n�1(!); Xn(!)).

De�nition 3 Let � = (�0; �1; : : :) be the system of transitive statistics(with respect to FX) with values
in (Y;Y). If, for each n = 0; 1; : : : with probability 1

PfXn+1 2 BjFX
n g = PfXn+1 2 Bj�ng; B 2 X ; (5)

then the elements (�n;F
X
n ; P ), n = 0; 1; : : :, form a Markov random function:

Pf�n+1 2 AjFX
n g = Pf�n+1 2 Aj�ng; A 2 Y : (6)

Thus we have the following Lemma:

Lemma 1 T = (T �;x
0 ; T �;x

1 ; : : :) with values in (R � D;B � X ) 5 is a system of transitive statistics
and the elements T �;x = (T �;x

n ;FX
n ; P �;x); n � 0 forms a Markov random function.

Proof: T �;x
n+1 is a function of T �;x

n and Xn+1; T
�;x
n is FX

n =(Y � X�) measurable. We will now show
that indeed the system T �;x = (T �;x

n ;FX
n ; P �;x); n � 0 forms a Markov random function (for a given

� and x). Using De�nition 3 we need only to verify (6) (with �n replaced by T �;x
n , n � 0), whose

validity is evident from the following chain of equations:

P �;xfXn+1 2 AjFX
n g = P �;xfXn+1 2 AjFX

n ; � � ng��;xn + P �;xfXn+1 2 AjFX
n ; � > ng(1� ��;xn )

= P �;xfXn+1 2 AjXn; � � ng��;xn + P �;xfXn+1 2 AjXn; � > ng(1� ��;xn )

= P �;xfXn+1 2 AjXn; �
�;x
n g = P �;xfXn+1 2 AjT �;x

n g

Thus, the family of Markov random functions fT �;x; 0 � � � 1; x 2 Xg can be associated with a two-
dimensional Markov process with discrete time, T = (Tn;Fn; P�;x); n � 0, having the same transition
probabilities as each Markov random function T �;x; � 2 [0; 1]; x 2 X . From [1] we can write the risk
function p�;x(��) (with E as expectation) as p�;x(�) = inf�2M[FX ] �

�;x(�) where,

��;x = inf
�2M[FX ]

E�;x

(
(1� ��;x� ) + c

��1X
k=0

��;xk

)

Thus [see Sec. 2.15 in [1]] to �nd the (�; x)� Bayes time ��� we need only to �nd the optimal stopping
time in the problem

�(�; x) = inf E(�;x)

"
(1� �� ) + c

��1X
k=0

�k

#
; (7)

4See also [1].
5R is the set of real numbers and B is the � � algebra of Borel subsets of R
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where inf is taken over the class of stopping times

M1(F ) =

(
� 2M(F ) : E(�;x)

��1X
k=0

�k <1; � 2 [0; 1]

)
:

Let g(�; x) = (1 � �) 6, and let Qg(�; x) = minfg(�; x); c� + Kg(�; x)g, where K is the operator
de�ned as Kg(�; x) = E�;xg(T1), where T1 = (�1; x1). By Theorem 2.23 [1], it can be shown that the
time,�0 = inffn � 0 : �(Tn) = g(Tn) = 1� �ng is an optimal stopping time.

Observe that g(�; x) and Qg(�; x) are concave and nonincreasing in �. Let A� = maxx2D A�(x)
where A�(x) is de�ned as

A�(x) = inffa 2 [0; 1] : c� +K�(�; x) � g(�; x)for� � ag

Then the time �0, such that �0 = inffn � 0 : �n � A�g is an optimal stopping time in the problem
posed by (7) and the time ���;x = inffn � 0 : ��;xn � A�g is (�; x)-Bayes for any � 2 [0; 1] and x 2 H
(in this case the threshold is independent of (�; x)) which establishes Theorem 1.
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