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Abstract

In this paper we use the exit time theory for Lévy processes to derive new closed

form results for the busy period distribution of finite capacity fluid M/G/1

queues. Based on this result we then obtain the busy period distribution for

finite capacity queues with on-off inputs when the off times are exponentially

distributed.
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1. Introduction

In this paper, we derive the busy period characteristics for finite capacity M/G/1

queues by exploiting the exit time theory associated with spectrally negative Lévy

processes. The model under consideration is the traditional M/G/1 model except that

the capacity for unfinished work (also known as the workload) is finite, equal to V , and

that the workload is ”frozen” at level V in the case of overflow. In other words, when
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an overflow occurs due to the arrival of a customer, the amount of work brought by

this customer is only partially admitted in the buffer, up to the limit of the free buffer

space just before the arrival. This is the main difference with the usual finite capacity

M/G/1/K queue where the total amount of work brought by a customer causing an

overflow is rejected. These models are also referred to as M/G/1 dams. The model

considered in this paper is relevant for analyzing partial packet discard techniques in

telecommunication networks.

From a theoretical point of view, the workload process in the finite capacity M/G/1

queue as described above results in a spectrally positive Lévy process with reflections

at the origin and at the buffer limit. The advantage of this approach is that we obtain

an explicit characterization of the Laplace transform of the busy period distribution,

which to the best of our knowledge, has not been reported in the literature. Based on

this characterization we also explicitly obtain the busy period distribution for the case

of ON-OFF inputs with off periods being exponentially distributed.

The Laplace transform of the busy period duration in finite capacity M/M/1 queues

via martingale arguments has been obtained by Kinateder et al in [7]. In [8] the

authors consider further characteristics related to the time to overflow and the number

of overflows during a busy period of finite capacity M/M/1 queues. Related martingale

based approaches to the excursion analysis of M/G/1 and G/GI/1 queues with infinite

capacity can be found in [5] and [6], respectively.

In this paper, we show how the exit time theory associated with the exit from

a domain of spectrally negative Lévy processes can be used to obtain closed form

expressions for the Laplace transform of the busy period in finite capacity M/G/1

queues. In particular, we use the fact that a scale function can be defined for Lévy

processes. This scale function naturally appears when computing various transient

characteristics of the spectrally negative Lévy process. The existence of the scale

function has been established by Emery in [4] (see also [2] for an exhaustive treatment

of Lévy processes). The scale function has recently been used by Avram et al [1] in

the context of finance in connection with American and Canadian options.

The organization of this paper is as follows: In Section 2, some basic results

on spectrally negative Lévy processes are recalled and the scale function together

with related functions are introduced. In Section 3, we apply the basic results on
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Lévy processes to a finite capacity fluid M/G/1 queue and we derive an explicit

representation for the Laplace transform of the busy period; the results are then applied

to some special cases. The paper concludes with an application of the results to the

case of fluid queues with on-off inputs.

2. Lévy processes and preliminary results

Consider a Lévy process with negative jumps {Xt} and positive drift. Such a process

is also referred to as spectrally negative Lévy process in the technical literature. For

all θ ≥ 0, the moment generating function IE[eθXt ] exists and is such that

IE[eθXt ] = etψ(θ),

for some function ψ, referred to as Lévy exponent. The function ψ is defined for

<(θ) ≥ 0 and its restriction to the non negative real line is strictly convex and is such

that limθ→∞ ψ(θ) = ∞. In the following, we set for c ∈ <

ψc(θ) = ψ(c+ θ) − ψ(c). (2.1)

We now introduce the tool, which will be central in the following (see for instance

Bertoin [3]). Define for q ≥ 0, φc(q) the largest real root of the equation ψc(θ) = q,

which exists by the strict convexity of the function ψ and is non negative.

Definition 1. (Scale function.) For q ≥ 0, there exists a unique continuous function

W (q) : [0,∞) → [0,∞), called the q-scale function, such that∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ) − q
, θ > φ(q)

def
= φ0(q). (2.2)

In connection with the function W (q), let us also define the function Z(q)(x), called

the adjoint q-scale function, as follows.

Definition 2. For q ≥ 0, let Z(q) : IR → [1,∞) be the function defined by

Z(q)(x) = 1 + q

∫ x

−∞
W (q)(z)dz. (2.3)

For fixed x, the functions W (q)(x) and Z(q)(x) in variable q may be analytically

continued to the whole of the complex plane (see [3] for details). Moreover, it is easily
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checked that for θ > φ(q),∫ ∞

0

e−θxZ(q)(x)dx =
ψ(θ)

θ(ψ(θ) − q)
.

Define for a < b the hitting times

T−
a = inf{t > 0 : Xt < a},
T+
b = inf{t > 0 : Xt > b}.

Then, we have the following result, which illustrates the importance of the scale

function for computing the Laplace transform of hitting times of the Lévy process

{Xt}. See [3, 1].

Proposition 1. Let x ∈ (a, b). Conditionally on X0 = x, the Laplace transforms of

T+
b and T−

a are given by: for q ≥ 0,

IEx
[
e−qT

+
b 1I{T+

b <T
−
a }
]

=
W (q)(x − a)
W (q)(b − a)

, (2.4)

IEx
[
e−qT

−
a 1I{T−

a <T
+
b }
]

= Z(q)(x− a) −W (q)(x − a)
Z(q)(b− a)
W (q)(b − a)

. (2.5)

Finally, let W (q)
c be the scale function associated with the Lévy process with expo-

nent ψc(θ) and let Z(q)
c be the corresponding function defined by equation (2.3), where

W (q) is replaced with W (q)
c . The function Z

(q)
v (x) is precisely defined by

Z(q)
v (x) = 1 + q

∫ x

−∞
W (q)
v (z)dz. (2.6)

for any q ≥ 0. Then, we have the following important result due to Emery [4].

Proposition 2. The Laplace transform of the couple (T−
a , XT−

a
), with the initial con-

dition X0 = x > a is given by: for u ≥ 0 and v such that ψ(v) <∞,

IEx
[
e
−uT−

a +vX
T

−
a

]
= eux

[
Z(p)
v (x− a) − W

(p)
v (x− a)p
φv(p)

]
,

where p = u − ψ(v), W (u)(x) = evxW
(u−ψ(v))
v (x) and the function Z

(q)
v (x) is defined

by equation (2.6).

The above results are used in the next sections to compute different transient

characteristics of a fluid reservoir with finite capacity and fed with compound Poisson
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inputs as well as some characteristics of an M/G/1 queue. It is worth noting that the

relevance of doubly reflected spectrally negative Lévy processes in queueing theory has

already been investigated in the technical literature (see for instance Pistorius [9]).

3. Application to finite capacity fluid M/G/1 queues

Consider a buffer with finite capacity V and fed with fluid inputs arriving according

to a Poisson with intensity λ; the drain rate from the buffer is taken equal to unity. The

ith input brings a random amount of fluid equal to ξi into the buffer and we assume

that the random variables ξi are independent and identically distributed, with general

distribution F . In the following, we assume that the distribution F has a Laplace

transform F ∗ defined for <(θ) ≥ 0 by

F ∗(θ) =
∫ ∞

0

e−θxF (dx).

Finally, let {X̃t} be the process defined by:

X̃t = X̃0 +
At∑
i=1

ξi − t,

where {At} is a Poisson process with intensity λ.

We assume that a busy period starts at time 0 and we are interested in the busy

period duration τ , formally defined by

τ = inf{s > 0 : Zs = 0},

where {Zt} is the process describing the amount of fluid in the system at time t, given

by

Zt = X̃t − max
(

0, sup
0<s<t

X̃s − V

)
.

{Zt} corresponds to the process {X̃t} reflected on the boundaries x = 0 and x = V .

Note that X̃0 has distribution F on [0, V ) and has a mass at point V with probability

1 − F (V ).

The process {−X̃t ≡ Xt} is a spectrally negative Lévy process. By using the results

on Lévy processes recalled in the previous section, we can prove the following result.
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Proposition 3. The Laplace transform of the busy period duration τ of the finite

capacity M/G/1 queue is given for q ≥ 0 by

IE
[
e−qτ

]
=

1
Z(q)(V )

∫ V

0

Z(q)(V − x)F (dx) + (1 − F (V ))
1

Z(q)(V )
, (3.1)

where Z(q) is the function associated with the scale function of the spectrally negative

process {Xt} according to equation (2.3).

Proof. Assume that X̃0 = x and define T̃0,V = inf{s > 0 : X̃s∈/ (0, V ]}. Further

define the hitting times for the process {X̃t}:

T̃−
0 = inf{t > 0 : X̃t ≤ 0}, (3.2)

T̃+
V = inf{t > 0 : X̃t > V }. (3.3)

We clearly have

τ = T̃−
0 1I{T̃−

0 <T̃
+
V } + (T̃+

V + τ ◦ Θ(V ))1I{T̃+
V <T̃

−
0 } (3.4)

where Θ(V ) denotes the shift operator for which (X̃ ◦ Θ(V ))0 = V . By taking into

account the memoryless property of the exponential distribution, the Laplace transform

of τ conditioned on X̃0 = x satisfies

IEx
[
e−qτ

]
= IEx

[
e−qT̃

−
0 1I{T̃−

0 <T̃
+
V }
]

+ IEx
[
e−qT̃

+
V 1I{T̃+

V <T̃
−
0 }
]
IEV

[
e−qτ

]
. (3.5)

To compute the intermediate Laplace transforms appearing in (3.5), we use the

results of Section 2 for the spectrally negative process {Xt}. The Lévy exponent of

this process is

ψ(θ) = θ − λ+ λ

∫ ∞

0

e−θxF (dx). (3.6)

Observe that

IEx
[
e−qT̃

−
0 I{T̃−

0 <T̃
+
V }
]

= IE−x
[
e−qT

+
0 I{T+

0 <T
−
−V }

]
, (3.7)

IEx
[
e−qT̃

+
V I{T̃+

V <T̃
−
0 }
]

= IE−x
[
e−qT

−
−V I{T−

−V <T
+
0 }
]
. (3.8)

By using (2.4), (2.5), (3.7) and (3.8), we have

IEx
[
e−qT̃

−
0 I{T̃−

0 <T̃
+
V }
]

=
W (q)(V − x)
W (q)(V )

, (3.9)

IEx
[
e−qT̃

+
V 1{T̃+

V <T̃
−
0 }
]

= Z(q)(V − x) −W (q)(V − x)
Z(q)(V )
W (q)(V )

, (3.10)
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where W (q) is the scale function of the process {Xt} and Z(q) is the function defined

by equation (2.3). Hence, we have from equations (3.5), (3.9) and (3.10)

IEx
[
e−qτ

]
=
W (q)(V − x)
W (q)(V )

+
[
Z(q)(V − x) −W (q)(V − x)

Z(q)(V )
W (q)(V )

]
IEV

[
e−qτ

]
.

(3.11)

By the Initial Value Theorem, we have

lim
θ→+∞

θ

∫ ∞

0

e−θxW (q)(x)dx = W (q)(0)

From Definition 2.2 of the scale function and the definition of ψ, we have W (q)(0) = 1.

Moreover, from the definition of the function Z(q), we have Z(q)(0) = 1. Hence, from

(3.11), we obtain

IEV
[
e−qτ

]
=

1
W (q)(V )

+
[
1 − Z(q)(V )

W (q)(V )

]
IEV

[
e−qτ

]
,

which entails

IEV
[
e−qτ

]
=

1
Z(q)(V )

and then

IEx
[
e−qτ

]
=
Z(q)(V − x)
Z(q)(V )

. (3.12)

Equation (3.1) is obtained by deconditioning upon x.

In the proof given above, we have used the fact thatW (q)(0) = 1, which is intimately

related to the fact that the Lévy process under consideration is of bounded variation

and that the drift of the process is equal to 1. Unfortunately, this situation does

not hold for a Lévy process of unbounded variation. However, it has been proved by

Pistorius [10] that the basic identity

IE
[
e−qσa | X0 −X0 = x

]
=
Z(q)(x)
Z(q)(a)

,

holds for a general Lévy process X , with a running infimum Xt = inf0≤s≤t(Xs ∧ 0)

where σa = inf{t ≥ 0 : Xt −Xt > a}. This identity is similar to equation (3.12). This

indicates that the result of Proposition 3 can be extended to general Lévy processes.

In addition, we have so far assumed that the Lévy measure takes the form λF (dx),

where F is a probability distribution with a well defined Laplace transform. But, from a

theoretical point of view, we may consider a general Lévy process of bounded variation
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with Lévy measure Π(dx) such that
∫∞
0

(1 ∧ x)Π(dx) < ∞ without guaranteeing that∫∞
0

Π(dx) < ∞. In that case, we have a system, where inputs arrive according to a

Poisson process with rate λ and in a small interval dt, inputs which bring an amount

of work lying in (x, x + dx) arrive with rate λΠ(dx). If
∫∞
0

Π(dx) = ∞, the measure

Π is no more a probability measure as in the M/G/1 queue but an unbounded Radon

measure. We thus obtain a generalization of the M/G/1 queue, that we denote, for

short, by M/Π/1. Such a system can be seen as a storage model fed with objects,

which are such that those of small size arrive a high rate. The noteworthy point is that

even for this more complicated system, the result of Proposition 3 still pertains.

Finally, before proceeding to the analysis of some special cases, let us note that

when V → ∞ and the load ρ of the queue, defined by

ρ = λ

∫ ∞

0

xF (dx),

is less than one, reflections at level V rarely occur in a busy period. The reflection

condition at level V thus becomes moot and the busy period duration τ should be

close to that of the stable infinite capacity M/G/1 queue. For Laplace transforms, this

means that we should have IE[e−qτ ] ∼ B∗(q), where B∗(q) is the Laplace transform

of the busy period of the infinite capacity M/G/1 queue with mean input rate λ and

service time distribution F . This is readily verified by noting that φ(q) is the pole with

the largest real part of the function Z(q) as shown by the following lemma.

Lemma 1. The non negative real number φ(q) is the solution with the greatest real

part to the equation ψ(θ) = q.

Proof. The result is proved by using standard techniques, in particular Rouché’s

theorem: If the functions f(z) and g(z) of the complex argument z are analytic inside

a closed contour C and if also |f(z)| < |g(z)| on C, then f(z) and f(z)+ g(z) have the

same number of zeros inside C. We precisely show that unique solution of the equation

ψ(z) = ψ(φ(q)) in the domain {z : <(z) ≥ φ(q)} is φ(q).

We consider the functions

g(z) = z − φ(q) and f(z) = λ

∫ ∞

0

(
e−zx − e−φ(q)x

)
F (dx).

Let R > 0 and ε > 0. Consider the closed contour C composed of the semi-circles
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{φ(q) + Reiθ : θ ∈ [−π/2, π/2]} and {φ(q) + εeiθ : θ ∈ [−π/2, π/2]}, and the segments

[φ(q) + iε, φ(q) + iR] and [φ(q) − iR, φ(q) − iε] of the imaginary axis <(z) = φ(q).

For sufficiently large R, |f(z)| < |g(z)| when z = φ(q) +Reiθ with θ ∈ [−π/2, π/2].

When z = φ(q) + yi with y ∈ [−R, ε] ∪ [ε,R],

|f(z)| ≤ λ

∫ ∞

0

e−φ(q)x
∣∣e−ixy − 1

∣∣F (dx) ≤ λ

∫ ∞

0

e−φ(q)x2
∣∣∣sin(yx

2

)∣∣∣F (dx) ≤ ρ|y|,

where we have used the fact that | sin(x)| ≤ |x| and φ(q) ≥ 0 in the last step. Since

ρ < 1, we have |f(z)| <√φ(q)2 + y2 = |g(z)|.
When z = φ(q) + εeiθ with θ ∈ [−π/2, π/2], we have for small ε

f(z) = −λ(z − φ(q))
∫ ∞

0

xe−φ(q)xF (dx) + o(ε)

and then |f(z)| ≤ ρε+ o(ε). It follows that for sufficiently small ε, |f(z)| < ε = |g(z)|.
As a consequence, for all z ∈ C, |f(z)| < |g(z)| when R is sufficiently large and ε is

sufficiently small. Since g(z) has no zeros inside C, we deduce that the unique solution

of the equation ψ(z) = ψ(φ(q)) in {z : <(z) ≥ φ(q)} is φ(q).

By using the above lemma, we deduce that

Z(q)(x) ∼ − q

φ(q)ψ′(φ(q))
eφ(q)x

when x → ∞. From equation (3.1), it is easily checked, by using
∫∞
0 F (dx) = 1, that

when V → ∞,

IE
[
e−qτ

]→ F ∗(φ(q)),

where F ∗ is the Laplace transform of the service time distribution F . Since ψ(θ) =

θ − λ + λF ∗(θ) and ψ(φ(q)) = q, we deduce that F ∗(φ(q)) is the (unique) root with

module less than 1 to the equation z = F ∗(q+λ−λz), which characterizes the Laplace

transform of the busy period of the M/G/1 queue.

To conclude this section, let us consider two cases, namely when service times are

exponentially distributed and constant.

Corollary 1. Assume that service times are exponentially distributed with mean 1/µ

and that a busy period starts from level x ∈ [0, V ]. Then, the Laplace transform of the

busy period τ of the reservoir with finite capacity V is given by

IEx
[
e−qτ

]
=

(q − θ−(q))e(V−x)θ+(q) − (q − θ+(q))e(V−x)θ−(q)

(q − θ−(q))eV θ+(q) − (q − θ+(q))eV θ−(q)
, (3.13)
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where

θ±(q) =
−µ+ λ+ q ±

√
(−µ+ λ+ q)2 + 4µq

2
. (3.14)

Proof. In the case of exponential service times with mean 1/µ, the Lévy exponent

of the spectrally negative process {−Xt} is given by

ψ(θ) = θ − λ+
λµ

(µ+ θ)
.

The function Z(q) is such that∫ ∞

0

e−θxZ(q)(x)dx =
θ + µ− λ

θ2 − θ(λ + q − µ) − qµ
.

By partial fraction decomposition, we can write the right hand side of the above

equation as

1
(θ+(q) − θ−(q))

(
θ+(q) + µ− λ

θ − θ+(q)
− θ−(q) + µ− λ

θ − θ−(q)

)
,

where θ±(q) is defined by equation (3.14). Via Laplace inversion, we obtain

Z(q)(x) =
1

θ+(q) − θ−(q)

[
(θ+(q) + µ− λ)exθ+(q) − (θ−(q) + µ− λ)exθ−(q)

]
.

Thus, from equation (3.12), we have

IEx
[
e−qτ

]
=

(θ+(q) + µ− λ)e(V−x)θ+(q) − (θ−(q) + µ− λ)e(V−x)θ−(q)

(θ+(q) + µ− λ)eV θ+(q) − (θ−(q) + µ− λ)eV θ−(q)
.

Observing that θ+(q) + θ−(q) = λ + q − µ and θ+(q)θ−(q) = −qµ, equation (3.13)

follows.

Remark 1. By replacing µ by µ−1 and denoting Fi = −θi, equation (3.13) gives the

central result in [7] (see Theorem 1).

Let us finally consider the deterministic case, that is, when the amount of fluid

brought into the system by inputs is constant equal to some d > 0.

Corollary 2. In the case when inputs are constant and equal to d, the Laplace trans-

form of the busy period of the fluid reservoir with finite capacity V is given by equa-

tion (3.1), where the function Z(q)(x) is given by

Z(q)(x) = 1 + q

∞∑
n=0

∫ (x−nd)+

0

(−λt)n
n!

e(λ+q)tdt (3.15)

with the notation (x− a)+ = max{0, x− a}.
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Proof. In the deterministic input case, the Lévy exponent is given by

ψ(θ) = θ − λ+ λe−dθ

and the function Z(q) is such that∫ ∞

0

e−θxZ(q)(x)dx =
θ − λ+ λ−dθ

θ(θ − λ+ λe−dθ − q)
=

1
θ

+
q

θ(θ − λ− q + λ−dθ)
.

We have the power series expansion

q

θ − λ− q + λ−dθ
= −q

∞∑
n=0

λn

(λ+ q − θ)n+1
e−ndθ

The function θ → 1/(λ+ q − θ)n+1 is the Laplace transform of the function

fn : x→ (−1)n+1xn

n!
e(λ+q)x.

It follows that the term e−ndθ/(λ+q−θ)n+1 is the Laplace transform of the convolution

fn ∗ δnd, where δnd is the Dirac mass at point nd. This convolution is given by

fn ∗ δnd(x) =
∫ x

0

fn(t)δnd(x− t)dt = (−1)n+1 [(x − nd)+]n

n!
e(λ+q)(x−nd).

Since the Laplace inverse of the function θ → 1/θ is the unit step function, the function

θ → e−ndθ/(θ(λ+ q − θ)n+1) is the Laplace transform of the function

x→ (−1)n+1

∫ x

0

[(t− nd)+]n

n!
e(λ+q)(t−nd)dt.

The function Z(q)(x) is then given by

Z(q)(x) = 1 + q
∞∑
n=0

∫ x

0

(−λ(t− nd)+)n

n!
e(λ+q)(t−nd)dt,

which completes the proof of equation (3.15).

To conclude this section, note that if d ≥ V then we deduce from equation (3.15)

that the Laplace transform of the busy period is equal to

IE[e−qτ ] =
λ+ q

λ+ qe(λ+q)V
,

since

Z(q)(V ) =
λ

λ+ q
+

q

λ+ q
e(λ+q)V .

This relation readily follows from the fact that

τ
d= V 1I{Eλ>V } + (τ + Eλ)1I{Eλ<V },

where Eλ is an exponential random variable independent of τ .
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4. Application to queues with fluid on-off inputs

We investigate in this section how results for the M/G/1 queue can be exploited

to study finite capacity buffers with fluid On-Off inputs when the Off periods are

exponentially distributed. Consider a fluid buffer with finite capacity V , fed with an

On-Off type arrival process and drained at constant rate c. The On period has a

general distribution G while the distribution of Off periods is exponential. During the

On period the fluid arrives at a constant rate h.

Let us consider a busy period with length τf in this fluid queue for some initial level

x. Consider an M/G/1 queue with constrained workload V , with inter-arrival times

having the same distribution as the Off periods in the fluid model, and the service time

distribution F related to G as

F (v) = G

(
v

h− c

)
.

Let τ be the busy period in this M/G/1 queue and {X̃t} be defined as before for

this queue. From the analysis in the previous section we have the Laplace transform

of τ conditioned on X̃0 = x. Then, the busy period in the original fluid buffer is given

by τ plus the sum of length of the On periods in this busy period. Observe that the

sum of the On periods is cτ−x
h−c plus the length of the time the workload stays at level V

during the busy period. To calculate this period we shall look at the joint distribution

of T−
−V and XT−

−V
for the process {Xt}. This is because inf{t > 0 : X̃t ≥ V } ≡ inf{t >

0 : −Xt ≥ V } ≡ inf{t > 0 : Xt ≤ −V }. The Lévy process {Xt} has the exponent

ψ(θ) = cθ − λ

∫ ∞

0

(1 − e−θx)dG(x) = cθ − λ

∫ ∞

0

(1 − e−θ(h−c)x)dF (x).

We have the following result (see [3]).

Lemma 2. For u ≥ 0 and v such that ψ(v) < ∞ the joint Laplace transform of T−
−V

and XT−
−V

is given by (with X0 = −x):

IE−x

[
e
−uT−

−V +vX
T

−
−V 1I{T−

−V <T
+
0 }

]

= e−vx
[
Z(p)
v (V − x) −W (p)

v (V − x)
Z

(p)
v (V )

W
(p)
v (V )

]
, (4.1)

where p = u− ψ(v)
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Observe that τf in terms of the stopping times T̃−
0 and T̃+

V of the process {X̃t} can

be written as

τf =

(
cT̃−

0 − x

h− c
1I{T̃−

0 <T̃
+
V }

)
+

[(
cT̃+
V − x

h− c
+
XT̃+

V
− V

h− c
+ τf ◦ Θ(V )

)
1I{T̃+

V <T̃
−
0 }

]
,

(4.2)

where Θ is the shift operator defined as in equation (3.4). In equation (4.2), the

quantity (XT̃+
V
− V )/(h− c) is the fraction of time when the buffer level stays at level

V during the On period in which the buffer level reaches V . By using equation (4.2),

we can prove the following result.

Proposition 4. The Laplace transform of τf conditioned on X̃0 = x can be expressed

as:

IEx
[
e−qτ

f
]

= e
qx

h−c
W (q1)(V − x)
W (q1)(V )

+

e
qV

h−c

[
Z

(p1)
q

h−c
(V − x) − e

qx
h−cW (q1)(V − x)

Z
(p1)

q
h−c

(V )

W (q1)(V )

]

e
qV

h−cZ
(p1)

q
h−c

(V ) − c(1 − e−
qV

h−c )W (q1)(V )
, (4.3)

where, q1 = qc
h−c and p1 = q1 − ψ( q

h−c).

Proof. From equation (4.2), the Laplace transform of τf conditioned on X̃0 = x

satisfies

IEx
[
e−qτf

]
= e

qx
h−c IEx

[
e−

qc
h−c T̃

−
0 1I{T̃−

0 <T̃
+
V }
]

+ e
q(x+V )

h−c IEx

[
e
− qc

h−c T̃
+
V − q

h−cXT̃
+
V 1I{T̃+

V <T̃
−
0 }

]
IEV

[
e−qτ

f
]
. (4.4)

The two conditional expectations on the right hand side of (4.4) can be written in

terms of the hitting times for the spectrally negative process {−Xt} as

IEx
[
e−qτf

]
= e

qx
h−c IE−x

[
e−

qc
h−c T̃

+
0 1I{T̃+

0 <T̃
−
−V }

]
+ e

q(x+V )
h−c IE−x

[
e
− qc

h−c T̃
−
−V + q

h−cXT̃−
−V 1I{T̃−

−V <T̃
+
0 }

]
IEV

[
e−qτ

f
]
. (4.5)

Substituting the expressions for the expectations in (4.5) from (2.4) and (4.1), we
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get

IEx
[
e−qτ

f
]

= e
qx

h−c
W (q1)(V − x)
W (q1)(V )

+ e
qV

h−c


Z(p1)

q
h−c

(V − x) −W
(p1)

q
h−c

(V − x)
Z

(p1)
q

h−c
(V )

W
(p1)

q
h−c

(V )


 IEV

[
e−qτ

f
]
. (4.6)

From [1, Remark 3], we have W (q1)(x) = e
qx

h−cW
(p1)

q
h−c

(x). From equation (4.6), we

obtain

IEx
[
e−qτ

f
]

= e
qx

h−c
W (q1)(V − x)
W (q1)(V )

+ e
qV

h−c


Z(p1)

q
h−c

(V − x) − e
qx

h−cW (q1)(V − x)
Z

(p1)
q

h−c
(V )

W (q1)(V )


 IEV

[
e−qτ

f
]
. (4.7)

By definition (see equation (2.6)), we have Z(p1)
q

h−c
(0) = 1 and W (q)(0) = 1/c. Thus,

from equation (4.7), we have

IEV
[
e−qτ

f
]

= e
qV

h−c
1

cW (q1)(V )
+ e

qV
h−c


1 − e

qV
h−c

Z
(p1)

q
h−c

(V )

cW (q1)(V )


 IEV

[
e−qτ

f
]
,

which implies

IEV
[
e−qτ

f
]

=
1

e
qV

h−cZ
(p1)

q
h−c

(V ) − c(1 − e−
qV

h−c )W (q1)(V )
(4.8)

From equations (4.7) and (4.8), we obtain (4.3).

To conclude this section, note that the quantity h(XT̃+
V
− V )/(h− c) appearing in

equation (4.2) is the amount of fluid lost during an overflow period. Computations

similar to those carried out for the derivation of the Laplace transform of the busy

period duration τf could be performed in order to establish a closed expression for the

Laplace transform of the total amount of fluid lost in a busy period.
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