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ABSTRACT
We consider the problem of throughput-optimal scheduling
in wireless networks subject to interference constraints. We
model the interference using a family of K-hop interference
models. We define a K-hop interference model as one for
which no two links within K hops can successfully trans-
mit at the same time (Note that IEEE 802.11 DCF cor-
responds to a 2-hop interference model). For a given K,
a throughput-optimal scheduler needs to solve a maximum
weighted matching problem subject to the K-hop interfer-
ence constraints. For K = 1, the resulting problem is the
classical Maximum Weighted Matching problem (MWMP),
which can be solved in polynomial time. However, we show
that for K > 1, the resulting problems are NP-Hard and
cannot be approximated within a factor that grows poly-
nomially with the number of nodes in the network. Inter-
estingly, we show that for specific kinds of graphs, which
can be used to model the underlying connectivity graph of a
wide range of wireless networks, the resulting problems ad-
mit polynomial time approximation schemes. We also show
that a simple greedy matching algorithm provides a con-
stant factor approximation to the scheduling problem for all
K in this case. We then show that under a setting with
single-hop traffic and no rate control, the maximal schedul-
ing policy considered in recent related works can achieve a
constant fraction of the capacity region for networks whose
connectivity graph can be represented using one of the above
classes of graphs. These results are encouraging as they sug-
gest that one can develop distributed algorithms to achieve
near optimal throughput in case of a wide range of wireless
networks.
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1. INTRODUCTION
Scheduling link transmissions in a wireless network so as

to optimize one or more of the performance objectives (e.g.
throughput, delay, or energy) has been the topic of much in-
terest over the past several decades. In their seminal work,
Tassiulas and Ephremides [32] characterized the capacity
region of constrained queuing systems, such as a wireless
network. They developed a queue length based scheduling
scheme that is throughput-optimal, i.e. it stabilizes the net-
work if the user rates fall within the capacity region of the
network. Unlike wireline networks, where all links have fixed
capacities, the capacity of a wireless link can be influenced
by channel variation due to fading, changes in power alloca-
tion or routing, changes in network topology etc. Thus, the
capacity region of a wireless network can vary due to changes
in power allocation or routing. To efficiently utilize the wire-
less resources, one must therefore develop algorithms that
can perform jointly optimal routing, link scheduling, and
power control under possibly varying channel conditions and
network topology. This has spurred recent interest in devel-
oping cross-layer optimization algorithms (see, for example,
[36, 26, 25, 31, 7]).

Motivated by the works on fair resource allocation in wire-
line networks [17, 28, 22, 3, 37], researchers have also incor-
porated congestion control into the cross-layer optimization
framework [4, 21, 20, 24, 35, 30, 38, 27]. The congestion
control component controls the rate at which users inject
data into the network so as to ensure that the user rates fall
within the capacity region of the network.

Most of the above cross-layer optimization problems have
been shown to exhibit a nice decoupling property (see, for
example, [36, 21]). More precisely, a cross-layer optimization
problem can often be decomposed into multiple subprob-
lems, where each subproblem corresponds to optimization
across a single layer. The subproblems are coupled through
parameters that correspond to congestion prices or queue
lengths at the individual links.



The main component of all these cross-layer optimization
schemes is the optimal scheduler that solves a very difficult
global optimization problem of the form:

maximize
X

l∈L

plrl (1)

subject to r ∈ ∆

where L denotes the set of wireless links; r is the vector of
link rates rl, l ∈ L; pl, l ∈ L, is the congestion price or
possibly some function of queue length at link l; and ∆ is
the capacity region of the network.

The main difficulty in solving the above optimization prob-
lem is that the capacity region ∆ depends on the complete
network topology and, in general, has no easy representation
in terms of the power constraints at the individual links or
nodes. The above optimization problem is, in general, NP-
Complete and Non-Approximable.

In this paper, we consider a wide class of scheduling prob-
lems that we term Maximum Weighted K-Valid Matching
Problems (MWKVMPs). These problems arise as simpli-
fications to the scheduling problem specified by (1). The
basic idea is to limit the interference to only K hops, where
K is a positive integer. By varying K, one can capture
the interference characteristics of a broad range of wireless
networks.

The rest of the paper is organized as follows. The model,
problem formulation, related works, and main contributions
of this work are presented in the next section. Some hard-
ness and approximability results for the class of scheduling
problems we consider are presented in Section 3. We then
restrict our attention to specific graphs that naturally model
the connectivity graph of wireless networks in Section 4. We
develop some approximation algorithms and schemes for our
scheduling problems restricted to these specific graphs. We
complement our analytical results with some numerical re-
sults in Section 5. Finally, we provide some concluding re-
marks in Section 6.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

We consider a set V of wireless nodes, each communi-
cating over a single wireless interface. We assume that all
transmissions are carried out over the same wireless channel,
and therefore interfere with each other. We assume that all
transmissions from a node are carried out at the same power
level (which can be different for different nodes). We con-
nect two nodes with an (undirected) edge if each of them
can successfully receive from the other, provided no other
node in the network transmits at the same time. The set
of (undirected) edges so formed is denoted by E. Note that
the existence of an edge between two nodes depends on the
power allocated to the nodes, noise variances at the nodes,
as well as coding and modulation schemes used at the nodes.
Our emphasis on bidirectional edges stems from the fact that
most network and transport layer protocols assume bidirec-
tional edges between the nodes. Our main results as well
as algorithms we develop can easily be extended to settings
where directed edges are allowed between the nodes.

We next introduce the class of scheduling problems we
consider in this paper. We first need to introduce some no-
tation. Let G = (V, E) be an undirected graph (connectivity

graph of a wireless network, in our case) having V as the set
of nodes and E as the set of edges. A matching is a set
of edges no two of which share a common vertex. We now
generalize this concept of matching to K-Valid matchings
for K = 1, 2, ...

Let dS(x, y) denote the shortest distance (in terms of the
number of edges) between nodes x, y ∈ V . Define a function
d : (E, E) → N

1 as follows: For eu = u1u2, ev = v1v2 ∈ E,
let

d(eu, ev) = min
i,j∈{1,2}

dS(ui, vj).

We call a set of edges M a “K-valid matching” if for all
e1, e2 ∈ M with e1 6= e2, we have d(e1, e2) ≥ K. Observe
that the concept of matching discussed before is equivalent
to the concept of 1-Valid matching in this new terminology.
Let SK denote the set of K-Valid matchings of the graph G.
We consider the following scheduling problems:

maximize
X

l∈M

wl (2)

subject to M ∈ SK

where wl, l ∈ L, denotes the weight of edge l. Note that the
weight of each edge l is a positive, but otherwise arbitrary,
number that can possibly depend on many factors (e.g., con-
gestion price, supported rate, queue length). The above
class of problems will henceforth be referred to as Maxi-
mum Weighted K-Valid Matching Problems (MWKVMPs).
When all edge weights are set to unity, we obtain the fol-
lowing class of problems:

maximize |M | (3)

subject to M ∈ SK

where |M | denotes the cardinality of the set M . In the
sequel, we refer to these problems as Maximum K-Valid
Matching Problems (MKVMPs).

We note that the scheduling problems specified by (2) are
natural simplifications of the complex scheduling problem
specified by (1). This is because for a given K, by satisfying
the K-hop interference constraint one can guarantee a cer-
tain fixed data rate at a given edge. The weight of each edge
can then be determined as some function of the rate it sup-
ports and the congestion price at the edge. The scheduling
problem specified by (1) then corresponds to MWKVMP for
that particular value of K. For simplicity of notation, we
did not explicitly show the dependence of edge weights on
K in (2).

From the above discussion, it is not surprising to see that
MWKVMPs can represent the scheduling problem specified
by (1) under a wide variety of interference models. Below
we discuss two widely used interference models that can be
obtained as special cases of the interference constraints in
(2).

Node Exclusive Interference Model: This is a commonly
used model for Bluetooth and FH-CDMA networks [23, 2,
12]. The only constraint on the set of edges scheduled to
transmit in this case is that it must constitute a match-
ing. The scheduling problems specified by (2) and (3) cor-
respond to the classical Maximum Weighted Matching and
Maximum Matching, respectively, in this case. Both these
problems can be solved in polynomial time [8].

1
N denotes the set of non-negative integers.
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Figure 1: The 2-hop interference set of a given edge
for RTS/CTS based communication model of IEEE
802.11 DCF - K = 2 case.

IEEE 802.11 Based Interference Model: This is a com-
monly used model for IEEE 802.11 based wireless networks
[11, 35]. Under this model, the chosen set of edges must con-
stitute a 2-Valid matching. This models the communication
under the RTS/CTS based scheme of IEEE 802.11 DCF.
Note that the exchange of RTS and CTS messages between
the sender and the receiver ensures that nodes within one
hop of the sender or the receiver cannot participate in a
communication, which is equivalent to saying that the cho-
sen set of node pairs must constitute a 2-Valid matching (see
Figure 1).

2.1 Related Work
The node exclusive interference model has been studied

in many different contexts due to its simplicity [12, 2, 5, 21,
4, 32, 31, 27]). In [12], the authors developed a polynomial
time link scheduling algorithm under the node exclusive in-
terference model. The works in [21, 4, 5] have developed
distributed schemes that guarantee a throughput within a
constant factor of the optimal.

In [35], the performance of a greedy scheduling scheme
(referred to as “maximal scheduling scheme” in [5]) is stud-
ied under the IEEE 802.11 based interference model (K =
2 case). It is shown that the greedy scheduling scheme
achieves a throughput within a factor of Nǫ of the optimal,
where

Nǫ = max
(i,j)∈E

deg(i) + deg(j) − 1.

In [5], the maximal scheduling scheme is shown to achieve a
throughput within a factor of K(N) of the optimal, where
K(N) is the interference degree of the connectivity graph.
We refer the reader to [5] for a definition of the interference
degree of a graph.

The MKVMP for K = 2 is more commonly known as the
induced matching problem. In [29], it is shown to be NP-
Hard. The work in [11] is closest in spirit to our work. The
authors consider the induced matching problem (they refer
to it as distance-2 matching problem) from the perspective
of carrying out maximum number of simultaneous trans-
missions in an IEEE 802.11 based wireless network. They
study the approximability of the induced matching problem
for general as well as specific kinds of graphs. They also de-
velop PTAS and distributed constant factor polynomial time
approximation algorithm for the induced matching problem
restricted to unit disk graphs.

To the best of our knowledge, MWKVMP for K ≥ 2 has

not been considered in the literature. We next highlight the
main contributions of this work.

2.2 Main Contributions
A main contribution of our work is the formulation of the

cross-layer scheduling problem as weighted matching prob-
lem under a wide class of K-hop interference models. Our
formulation generalizes and significantly extends the formu-
lations considered in recent related works [5, 21, 32, 4, 35].

From a theoretical perspective, we provide several results
on hardness and approximability of MWKVMP and MKVMP
for K > 1. Although, some of these results have previously
been obtained for K = 2, to the best of our knowledge no
prior work has studied MWKVMP or MKVMP for K > 2.
Since weighted matching problems arise in a variety of con-
texts, these results might find applications in other fields
(e.g., VLSI) as well.

From a wireless networking perspective, we develop a PTAS
for MWKVMP restricted to specific kind of graphs that
can be used to represent the connectivity graph of a wide
range of wireless networks. We also show that the “natu-
ral” greedy scheme yields a constant factor approximation
to MWKVMP in this case. Note that a γ-approximation
algorithm, when run over each slot separately, results in a
Sγ-scheduling policy in the terminology of [21]. Accord-
ing to the results in [21], such a policy is guaranteed to
achieve at least 1/γ of the capacity region under a K-hop
interference model. Thus, both greedy algorithm and PTAS
for MWKVMP can be used to construct scheduling poli-
cies that achieve a constant fraction of the capacity region
under K-hop interference models. The schemes mentioned
thus far require centralized control, and can therefore be
implemented in a limited class of wireless networks (e.g.,
wireless mesh networks). We complement these results by
showing that the maximal scheduling policy considered in
[5, 35] achieves a constant fraction of the capacity region.
Note that the maximal scheduling policy is amenable to dis-
tributed implementation. These results are encouraging as
they indicate that one can develop distributed algorithms to
achieve near optimal throughput in case of a wide range of
wireless networks.

Determining the optimal value of K for specific networks
is a challenging issue. We study this issue numerically in
case of IEEE 802.11 DSSS and EDGE networks. Our results
clearly show that the physical layer has a strong impact on
the optimal value of K (the optimal value was found to
vary between 1− 3 for the physical layers considered in our
experiments), and that the optimal value of K can in fact be
larger than 2. All earlier works have considered only K = 1
or 2.

3. HARDNESS AND APPROXIMABILITY
RESULTS

We now formulate the decision problems KVMP and WKVMP
corresponding to MKVMP and MWKVMP, respectively, and
prove that they are NP-Complete. We have the following
definitions:

Definition 1. KV MP = {< G, m >: G is a graph
with a K-valid matching of size m}.

Definition 2. WKV MP = {< G, m >: G is a graph
with a K-valid matching of size m and total weight WM}.



We start by showing that WKVMP ∈ NP; which implies
that KVMP ∈ NP.

Theorem 1. WKVMP ∈ NP for all K.

Proof. Given a certificate in the form of a list of edges,
it can easily be verified in polynomial time whether that list
corresponds to a set of m edges that are at a distance of
K or more from each other and have a total weight of WM

or not. Thus, whether the set of edges constitute a K-valid
matching of size m with a total weight of WM can be verified
in polynomial time. Hence, WKVMP ∈ NP.

We next show that KVMP is NP-Hard; which implies that
the decision problem WKVMP is NP-Hard as well.

Theorem 2. KVMP is NP-Hard for K ≥ 2.

Proof. The proof uses a novel reduction from 3-CNF-
SAT problem to KVMP, and is omitted for brevity. In
Theorem 3, we provide a stronger result which shows that
MKVMP, and therefore MWKVMP, is Non-Approximable
for K ≥ 2.

We now analyze the approximability of MKVMP for K ≥
2. We have the following result:

Theorem 3. Let η be such that (|V |+ K|E|)η = Θ(|V |).
Then, MKVMP (and therefore, MWKVMP) for K ≥ 2 is

not approximable within |V |η/2−ǫ for any ǫ > 0, unless NP
= P. Further, it is not approximable within |V |η−ǫ for any
ǫ > 0, unless NP = ZPP.

Note that the complexity class ZPP denotes the class of
Zero-error Probabilistic Polynomial time problems. We refer
the reader to the original work of Gill [9] for a rigorous
definition of the complexity class ZPP.

Now, since K = O(V ) and E = O(V 2), the following
result follows from Theorem 3:

Corollary 1. MKVMP (and therefore, MWKVMP) for

K ≥ 2 is not approximable within |V |1/6−ǫ for any ǫ >
0, unless NP = P. Further, it is not approximable within
|V |1/3−ǫ for any ǫ > 0, unless NP = ZPP.

In order to prove Theorem 3, we need to introduce some
terminology. Consider a graph G = (V, E). A set of vertices
S ⊆ V is termed “independent” provided no two vertices
in S have an edge between them. The classical maximum
independent set problem (MISP) is to find an independent
set of vertices of maximum possible cardinality. Hastad [14]

has shown that MISP is not approximable within |V |1/2−ǫ

for any ǫ > 0, unless NP = P; and it is not approximable
within |V |1−ǫ for any ǫ > 0, unless NP = ZPP. We are now
ready to prove Theorem 3.

Proof. We show that given an instance of MISP, i.e., a
graph G = (V, E), we can construct a graph G′ = (V ′, E′)
in polynomial time such that the graph G′ has a K-valid
matching of cardinality no smaller than the cardinality of a
maximum independent set of G. Both |V ′| and |E′| will be
shown to be Θ(|V | + K|E|) = O(|V ||E|). Further, we will
show that given a K-valid matching in G′, one can obtain an
independent set of vertices in G with the same cardinality
in polynomial time.

Suppose MKVMP admits a polynomial time ρ-approximation
scheme (PTAS). Given an instance G of the MISP, one can
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Figure 2: A graph G along with the graph G′ con-
structed as specified in the proof of Theorem 3 for
K = 4.

construct the corresponding graph G′ in polynomial time;
use the PTAS for MKVMP to obtain a K-valid matching
of size at least 1/ρ times the cardinality of any maximum
independent set of G in polynomial time; an then map it
back to an independent set of vertices in G with the same
cardinality, in polynomial time. This would then result in
a ρ-approximation scheme for MISP, which, in view of the
results in [14], would imply Theorem 3.

We next discuss how to construct the graph G′ from G
in polynomial time. We first consider even K. For each
vertex v in V , we add a pair of vertices vf , vb in G′, and
connect them with an edge. For each edge uv in E, we
connect the vertices uf , vf through a sequence of K/2 edges
and (K − 2)/2 vertices. Let the vertices be numbered

Vu,v(1), ..., Vu,v((k − 2)/2),

with Vu,v(1) being the vertex adjacent to vertex u. Figure 2
shows a graph G along with the graph G′ constructed using
the above procedure for K = 4. It is straightforward to see
that the graph G′ can be constructed in polynomial (in |V |
and |E|) time. Also, note that

|V ′| = 2|V | +

„

K − 2

2

«

|E| = O(|E||V |),

|E′| = |V | +

„

K

2

«

|E| = O(|E||V |).

Now, suppose {v1, v2, ..., vm} constitutes an independent set
of vertices in G. It is then clear that {vi

bv
i
f}i=1,2,...,m con-

stitutes a K-valid matching in G′. To see this, observe that
since {v1, v2, ..., vm} constitutes an independent set of ver-
tices in G, we have dS(vi, vj) ≥ 2 for all i, j ∈ {1, 2, ..., m}
with i 6= j. Hence, for i 6= j, we have d(vi

bv
i
f , vj

bv
j
f ) ≥

2
`

K
2

´

= K. Therefore, it follows that the graph G′ has a
K-valid matching of cardinality no smaller than the cardi-
nality of the maximum independent set of G.

It remains to show that given a K-valid matching in G′,
one can, in polynomial time, obtain an independent set of
vertices in G with the same cardinality. Consider the algo-
rithm given in Table 1. It is easy to see that the running time
of the above algorithm is bounded above by a polynomial
in |V | and |E|. Now, suppose v, u are two arbitrary vertices
in L. Then, we claim that dS(u, v) ≥ 2; which implies that
L is an independent set in G. For if not, then dS(u, v) = 1.
It then follows that there must exist edges e1, e2 ∈ M such
that d(e1, e2) ≤

K
2

+ 2
`

K−2
4

´

< K; contradicting our initial
hypothesis, namely, M is a K-valid matching.

Next, we discuss how to construct the graph G′ for K ≥ 5
and odd. There are only minor differences in the construc-
tion of the graph in this case: (i) instead of adding a pair of



Table 1: Algorithm for constructing independent set
for even K.

Step Construct Independent Set K-Even
(G′ = (V ′, E′), M, L)

1 L := φ
2 while M 6= φ do
3 Pick and edge e ∈ M
4 if e is of the form vbvf

then L := L ∪ v
5 else if e is of the form uVu,v(1)

then L := L ∪ u
6 else if e is of the form Vu,v((K − 2)/2)v

then L := L ∪ v
7 else if e is of the form Vu,v(i)Vu,v(i + 1)

then
8 if i ≤ K−2

4
then L := L ∪ u

9 else L := L ∪ v
10 end
11 M := M − e
12 end
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Figure 3: A graph G along with the graph G′ con-
structed as specified in the proof of Theorem 3 for
K = 5.

vertices to G′ for each vertex v ∈ V , we now add a triplet
of vertices vf , vb, vr to G′ (see Figure 3); (ii) for each edge
uv ∈ E, we now connect the vertices uf , vf through a se-
quence of (K − 1)/2 edges and (K − 3)/2 vertices. For each
v ∈ V , we connect the pairs of vertices vf , vb and vb, vr with
an edge. We now have

|V ′| = 3|V | +

„

K − 3

2

«

|E| = O(|E||V |),

|E′| = 2|V | +

„

K − 1

2

«

|E| = O(|E||V |).

Suppose {v1, v2, ..., vm} constitutes an independent set of
vertices in G. It is then clear that {vi

bv
i
r}i=1,2,...,m consti-

tutes a K-valid matching in G′. To see this, observe that
since {v1, v2, ..., vm} constitutes an independent set of ver-
tices in G, we have dS(vi, vj) ≥ 2 for all i, j ∈ {1, 2, ..., m}
with i 6= j. Hence, for i 6= j, we have d(vi

bv
i
r, v

j
bv

j
r) ≥

2 + 2
`

K−1
2

´

= K + 1 > K. Therefore, it follows that the
graph G′ has a K-valid matching of cardinality no smaller
than the cardinality of the maximum independent set of G.

It remains to show that given a K-valid matching in G′,
one can, in polynomial time, obtain an independent set of
vertices in G with the same cardinality. Consider the algo-
rithm given in Table 2, which is a simple modification of the
algorithm given in Table 1.

Table 2: Algorithm for constructing independent set
for odd K.

Step Construct Independent Set K-Odd
(G′ = (V ′, E′), M, L)

1 L := φ
2 while M 6= φ do
3 Pick and edge e ∈ M
4 if e is of the form vbvf , vrvb

then L := L ∪ v
5 else if e is of the form uVu,v(1)

then L := L ∪ u
6 else if e is of the form Vu,v((K − 3)/2)v

then L := L ∪ v
7 else if e is of the form Vu,v(i)Vu,v(i + 1)

then
8 if i ≤ K−3

4
then L := L ∪ u

9 else L := L ∪ v
10 end
11 M := M − e
12 end

It is easy to see that the running time of the above al-
gorithm is bounded above by a polynomial in |V | and |E|.
Now, suppose v, u be any two arbitrary vertices in L. Then,
we claim that dS(u, v) ≥ 2, which implies that L is an in-
dependent set in G. For if not, then dS(u, v) = 1. It then
follows that there must exist edges e1, e2 ∈ M such that

d(e1, e2) ≤ max

„

K − 1

2
+ 2

„

K − 3

4

«

,
K − 1

2
+ 2

«

= max

„

K − 2,
K + 3

2

«

≤ K − 1 < K

for K ≥ 5; contradicting our initial hypothesis, namely, M
is a K-valid matching.

The construction of the graph G′ and proof of the related
results for K = 3 is similar to the K = 4 case, and therefore
omitted.

Theorem 3 gives a lower bound on the approximation
ratio of any polynomial time approximation algorithm for
MWKVMP or MWKVMP. The next result we have is op-
posite in flavor: it shows that there exists a polynomial time
algorithm which for MWKVMP which has an approximation

ratio no worse than Θ
“

|E|

(log |E|)2

”

.

Theorem 4. MWKVMP can be approximated within a

factor of Θ
“

|E|

(log |E|)2

”

.

The following Corollary is an immediate consequence of
Theorem 4:

Corollary 2. MKVMP can be approximated within a

factor of Θ
“

|E|

(log |E|)2

”

.

The following terminology will be useful in the proof of
Theorem 4. Consider a graph G = (V, E). The vertex
weighted maximum independent set problem (VWMISP)
is a variation of the maximum independent set problem
(MISP), in which the vertices are weighted. Let w(v) de-
note the weight of vertex v. The goal of VWMISP is to find



an independent set of vertices S that maximizes
P

v∈S w(v).
In [13], it is shown that VWMISP is approximable within

Θ
“

|V |

(log |V |)2

”

. We are now ready to prove Theorem 4.

Proof. Given an instance of MWKVMP, i.e., a graph
G = (V, E), construct the graph G′ = (V ′, E′) as follows:
For each edge e ∈ E, add a vertex ve to V ′ with weight
w(ve) = w(e). For two edges e1, e2 ∈ E with d(e1, e2) ≤ K−
1, connect the corresponding vertices ve1

, ve2
with an edge.

Clearly, the graph G′ can be constructed in polynomial time.
Observe that |V ′| = |E|.

The way graph G′ is constructed it follows that for a K-
valid matching in G there exists an independent set of ver-
tices in G′, having the same weight, and vice versa. To
see this, suppose {e1, ...., em} be a K-valid matching in G.
Then, for all i, j ∈ {1, 2, ..., m} with i 6= j, we have d(ei, ej) ≥
K > K − 1. And therefore, vei

and vej
do not have an edge

between them in G′. Thus, {ve1
, ..., vem} constitutes an in-

dependent set of vertices in G′. Further, since w(vei
) =

w(ei), we have
Pm

i=1 w(ei) =
Pm

i=1 w(vei
). Similarly, it can

be shown that for an independent set of vertices in G′ there
exists a K-valid matching in G, having the same weight.
Observe that the weight of an optimal K-valid matching in
G is the same as the weight of an optimal independent set
in G′.

Now, given an instance of MWKVMP, we can construct
an instance of V WMISP in polynomial time. From the re-
sults in [13], an independent set in G′ with weight at least

Θ
“

(log |V ′|)2

|V ′|

”

= Θ
“

(log |E|)2

|E|

”

times the weight of an opti-

mal independent set can then be found in polynomial time;
from which a K-valid matching in G with weight at least

Θ
“

(log |E|)2

|E|

”

times the weight of an optimal K-valid match-

ing can be found in polynomial time.

4. MWKVMP FOR SPECIFIC GRAPHS
In this section, we consider MWKVMP restricted to cer-

tain specific graphs. In particular, we consider the following
graphs:

Geometric graphs: The vertices are placed on a plane and
two vertices are connected if and only if the distance between
them is ≤ r, for some r > 0.

Disk graphs: The vertices are placed on a plane and a disk
of radius D(v) is placed around each vertex v. The vertices
u and v are connected if and only if the distance between
them is ≤ min{D(u), D(v)}.

(r,s)-civilized graphs: Graphs whose vertices can be mapped
to points on the plane such that the length of each edge is
≤ r and distance between any two points is ≥ s.

The above graphs have been used quite extensively in the
literature for modeling the connectivity graph of wireless
networks [10, 18, 33]. In the next subsection, we show that
MWKVMP can be approximated within a constant factor in
case of geometric graphs. Due to space limitations, similar
results for other graphs will be presented in a companion
paper. We note that the results we derive in the sequel can
also be extended to quasi unit disk graphs [19].

4.1 Greedy Approach for MWKVMP
We first study the performance of the following greedy

approach:

Greedy Weighted K-Valid Matching

Algorithm(G = (V, E), w : E → R, M)

1. M := φ and i := 1.

2. Arrange edges of E in descending order of weight,
starting with e1, e2, ....

3. If M ∪ ei is a valid K-valid matching, then M :=
M ∪ ei. i := i + 1.

4. Repeat Step 3 for all edges in E.

It is well known that the above greedy approach yields a
2-approximation algorithm for MWMP (K = 1 case). In-
terestingly, for K ≥ 2, the performance of the above greedy
approach can be much worse. We now show that in this case
the performance of the greedy approach depends on certain
properties of the graph G; and can be arbitrarily bad for
certain graphs. Finally, we show that the greedy approach
performs quite well in case of geometric graphs. The follow-
ing definitions are now in order:

Definition 3. The K-hop interference set of an edge e ∈
E, denoted by IK(e), is the set of edges u ∈ E such that
d(e, u) ≤ K.

We call a subset S of IK(e) “K-maximal” if no other edge
u ∈ IK(e) can be added to S such that we have d(u, v) > K
for all v ∈ IK(e).

Definition 4. The K-hop interference degree of an edge
e ∈ E, denoted by dK(e), is defined as

dK(e) = max
S⊆IK(e):S is K−maximal

|S|.

Definition 5. The K-hop interference degree of the graph
G = (V, E), denoted by dK(G), is defined as

dK(G) = max
e∈E

dK(e).

We are now ready to show the main result of this subsection:

Theorem 5. The weight of the matching returned by the
greedy algorithm is always within a factor dK(G) of the
weight of an optimal matching. Further, there exists a graph
G for which the above ratio is exactly dK(G).

Proof. Let e1 be the edge added to the matching dur-
ing the first step by the greedy algorithm. Then, we have
w(e1) ≥ w(e) for all e ∈ E. Now, the optimal matching can
contain at most dK(G) edges belonging to IK(e1), each with
a weight no larger than w(e1). Let e2 be the edge added to
the matching during the second step by the greedy algo-
rithm. Then, we have w(e2) ≥ w(e) for all e ∈ E\IK(e),
where A\B denotes the set consisting of elements of A that
are not in B. Moreover, the optimal matching can contain
at most dK(G) edges belonging to IK(e2)\IK(e1), each with
a weight no larger than w(e2).

For i ≥ 1, let LK(ei) = IK(e1) ∪ · · · ∪ IK(ei). Arguing as
above, it can be shown that during the ith step the greedy
algorithm adds an edge ei to the matching that satisfies:

w(ei) = max
e∈E\LK(ei−1)

w(e),

and the optimal matching contains no more than dK(G)
edges belonging to IK(ei)\LK(ei−1). Let em be the last edge
added to the matching by the greedy algorithm. Observe
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Figure 4: A graph for which the greedy approach
does not perform well: (a) A possible matching re-
turned by the greedy algorithm (shown in dark); (b)
An optimal matching (shown in dark).
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Figure 5: The disks D1, D2 and D3 used in the proof
of Theorem 6.

that, we have E = LK(em). From the above discussion, it
is clear that for 1 ≤ i ≤ m, we have

X

e∈O∩IK(ei)\LK(ei−1)

w(e) ≤ dK(G)w(ei),

where O is an optimal matching. Note that by convention
IK(e0) = φ. Summing over i, we obtain

X

e∈O

w(e) ≤ dK(G)

m
X

i=1

w(ei),

proving our first claim in the statement of Theorem 5.
To prove the second claim, consider the graph G shown in

Figure 4. Observe that, we have dK(G) = dK(e) = 2n. One
possible matching obtained using the greedy algorithm is
shown in Figure 4(a). Note that the weight of this matching
is 1; whereas, the weight of an optimal matching, as shown in
Figure 4(b), is 2n. Thus, we see that the greedy algorithm
can at times return a matching whose weight is off by a
factor of dK(G) in comparison to the optimal matching.

As the graph in Figure 4 clearly shows, dK(G) can be of
the order of |E|; and correspondingly, the performance of
the above greedy algorithm can be far from optimal. We
next show that dK(G) is bounded by a constant in case of
geometric graphs.

Theorem 6. The weight of the matching returned by the
greedy algorithm is always within a factor of 49 of the weight
of an optimal matching in case of geometric graphs.

Proof. In view of Theorem 5, we only need to show that
dK(G) ≤ 49 for all geometric graphs G. Without loss of

generality, we may restrict our attention to geometric graphs
with r = 1. Consider any arbitrary edge e ∈ E; in the
sequel, we will show that dK(e) ≤ 49. Since the edge e ∈ E
is arbitrary, it will follow that dK(G) ≤ 49.

Let S ⊆ IK(e) be K −maximal and consider any two ar-
bitrary edges e1, e2 ∈ S with e1 6= e2. If there does not exist
such a pair of edges, then dK(e) ≤ 1 and we are done. Oth-
erwise, it is easy to see that disks D1, D2 of radius 1

2
⌊K/2⌋,

centered at the mid-points of e1 and e2, respectively, are
disjoint (see Figure 5). To see this, first consider K = 2.
In this case, any two edges that are at a distance of two
or more hops from each other, must be at a Euclidean dis-
tance of more than 1 from each other. For if not, then there
will be an edge connecting the two, contradicting our initial
hypothesis that the edges are at a distance of two or more
hops from each other. A repeated use of such an argument
shows that any two edges that are at a distance of K or more
hops, must be at a Euclidean distance of at least ⌊K/2⌋ from
each other. Thus, disks of radius 1

2
⌊K/2⌋ centered at their

mid-points must be disjoint.
Now, clearly the disks D1, D2 will both be contained in-

side disk D3 of radius K+ 1
2
⌊K/2⌋, centered at the mid-point

of edge e (see Figure 5). Thus, S contains no more than

π
`

K + 1
2
⌊K/2⌋

´2

π
4

¨

K
2

˝2 ≤ 49

such edges, for all K ≥ 2. Hence, dK(e) ≤ 49.

It is worth noting that the above proof is valid even for
graphs that are disconnected. In which case, all edges in
IK(e) are part of the connected component of G that con-
tains the edge e. The above proof carries forward by con-
sidering only those edges that are contained in the same
connected component as e.

4.1.1 PTAS for MWKVMP
Several NP-complete problems are known to admit PTAS

when restricted to planar or geometric graphs. In [1], PTASs
are developed for various NP-complete problems restricted
to planar graphs. NC-approximation schemes for various
NP-Hard and PSPACE-Hard problems restricted to geomet-
ric graphs are developed in [16]. Following the approach in
[16], we now show that MWKVMP and, therefore, MKVMP
admits a constant factor PTAS when restricted to geometric
graphs.

Consider a geometric graph G = (V, E) with r = 1; spec-
ified using the coordinates of its vertices in the plane. We
now present an algorithm that yields a K-valid matching
with weight at least (1 + ǫ)−1 times the weight of an opti-
mal K-valid matching in polynomial time, where ǫ > 0 is a
constant, and can be chosen to be arbitrarily small.

The basic technique is the following: Given any ǫ > 0, we

calculate the smallest possible m that satisfies
`

m+1
m

´2
≤

1 + ǫ. We divide the plane into horizontal strips of width
K + 2. For each i ∈ {0, 1, ..., m}, we partition the set of
edges E into si ≥ 1 disjoint sets Ei,1, ..., Ei,si

by removing
each edge that connects a pair of vertices that lie within a
strip congruent with i mod (m+1). Each strip is left (top)
closed and right (bottom) open. For 1 ≤ j ≤ si, let Vi,j be
the smallest subset of V such that all edges in Ei,j are of
the form uv for some u, v ∈ Vi,j . Also, let Gi,j = (Vi,j , Ei,j),
1 ≤ j ≤ si. For each subgraph Gj , we find a K-valid match-
ing of size at least m

m+1
times the size of the optimal K-valid



matching in Gi,j . Observe that the above choice of the width
of the strips ensures that the union of K-valid matchings for
subgraphs Gi,1, ..., Gi,si

is a K-valid matching for the graph
G. Using arguments similar to [16, 15], we then show that
the iteration in which the partition yields a K-valid match-
ing of maximum possible weight returns a K-valid matching

with weight at least
“

m
m+1

”2

times the weight of an optimal

K-valid matching in G. Our algorithm is described in detail
in Table 3.

We next show that our algorithm returns a K-valid match-

ing with weight at least
“

m
m+1

”2

times the weight of an op-

timal K-valid matching. For each subgraph G′ of G, let
O(G′) be an optimal K-valid matching in G′. We start by
showing that at least one out of the m + 1 iterations for
i has the property that the aggregate weight of the edges
not considered in the K-valid matching computation during
that iteration is a small fraction of w(O(G)).

Lemma 1. We have

max
0≤i≤m

w(O(Gi)) ≥
m

m + 1
w(O(G)).

Proof. For i ∈ {0, 1, ..., m}, let Si , E\Ei. Observe
that Si, i ∈ {0, 1, ..., m}, is the set of edges that are not con-
sidered in the computation of the K-valid matching during
iteration i, and satisfy:

Si ∩ Sj = φ for 0 ≤ i, j ≤ m, i 6= j; and ∪m
i=0Si ⊆ E.

For i ∈ {0, 1, ..., m}, let Mi , Si ∩ O(G). From the above
set of equations it is clear that

m
X

i=0

w(Mi) ≤ w(O(G)),

and therefore,

min
0≤i≤m

w(Mi) ≤
w(O(G))

m + 1
.

Thus, we have

max
0≤i≤m

w(O(Gi)) ≥ w(O(G)) − min
0≤i≤m

w(Mi) ≥
m

m + 1
w(O(G)).

We next show that the weight of a K-valid matching re-
turned by the above algorithm (denoted by KV M(G)) is

within a factor
“

m
m+1

”2

of an optimal K-valid matching.

Theorem 7. We have

w(KV M(G)) ≥

„

m

m + 1

«2

w(O(G)).

Proof. We first claim that

w(KV M(Gi,j)) ≥
m

m + 1
w(O(Gi,j)).

To see this, observe that by applying Lemma 1 to Gi,j we
have that there exists a p ∈ {0, 1, ..., m} such that

w(O(Gp
i,j)) ≥

m

m + 1
w(O(Gi,j)).

Therefore, we have

w(KV M(Gi,j)) = max
0≤p≤m

w(KV M(Gp
i,j))

= max
0≤p≤m

si,j
X

l=1

w(KV M(Gp,l
i,j))

= max
0≤p≤m

si,j
X

l=1

w(O(Gp,l
i,j))

= max
0≤p≤m

w(O(Gp
i,j))

≥
m

m + 1
w(O(Gi,j)).

We now chose an i ∈ {0, 1, ..., m} such that w(O(Gi)) ≥
“

m
m+1

”

w(O(G)). The existence of such an i follows from

Lemma 1. Now, we have

w(KV M(G)) = max
0≤i≤m

w(KV M(Gi))

= max
0≤i≤m

si
X

j=1

w(KV M(Gi,j))

≥

„

m

m + 1

«

max
0≤i≤m

si
X

j=1

w(O(Gi,j))

=

„

m

m + 1

«

max
0≤i≤m

w(O(Gi))

≥

„

m

m + 1

«2

w(O(G)),

proving the claim.

We now analyze the running time of the above algorithm.
First, we claim that the cardinality of any K-valid matching
of the graph Gp,l

i,j , i, p ∈ {0, 1, ..., m}, j ∈ {1, 2, ..., si}, l ∈

{1, 2, ..., si,j}, is O(m2) for all K ≥ 2. This follows easily

by observing that (i) the vertices inside Gp,l
i,j are contained

inside a square of size (K + 2)m + 2; and (ii) for any two
edges e1 = u1u2 and e2 = v1v2 that are part of a K-valid
matching, we must have

min
i,j=1,2

η(ui, vj) ≥ ⌊K/2⌋,

where η(u, v) denotes the Euclidean distance between u and
v. The time required to obtain the K-valid matching of Gi,j

is therefore nO(m2). And since the outer loop is executed

m + 1 times, the overall running time is nO(m2).

Remark 1. Using a dynamic programming approach, it
is possible to improve both the running time as well the per-
formance guarantee of the above algorithm. In particular, by
solving the MWKV MP for each graph Gi,j optimally us-
ing the dynamic programming approach one can reduce the

running time from nO(m2) to nO(m), and at the same time
improve the performance guarantee to m

m+1
. For more dis-

cussion on such techniques and their analysis, we refer the
reader to [16].

4.2 Throughput Guarantees using Maximal
Scheduling Policy

As discussed in Section 2.2, the greedy algorithm and
PTAS developed in earlier subsections can both be used to



Table 3: A (1+ǫ)-Approximation Scheme for MWKVMP

Step (1 + ǫ)-Approximation Scheme for MWKVMP(G′ = (V, E), M)

1 Find the smallest m such that
`

m+1
m

´2
≤ 1 + ǫ.

2 Divide the plane into horizontal strips of width K + 2.
3 Divide each horizontal strip into vertical strips of width K + 2.
4 for each i ∈ {0, 1, ..., m} do

5
Partition the set of edges into si ≥ 1 disjoint sets Ei,1, ..., Ei,si

by removing each edge that connects a pair
of vertices within a horizontal strip congruent with i mod (m + 1). Let Gi,j = (Vi,j , Ei,j), j ∈ {1, 2, ..., si},
be the subgraph induced by the set of edges Ei,j (see the above discussion).

6 Ei := ∪1≤j≤si
Ei,j . Let Gi = (Vi, Ei) be the subgraph induced by the set of edges Ei.

7 for each j ∈ {1, ..., si} do
8 for each p ∈ {0, 1, ..., m} do

9

Partition the set of edges Ei,j into si,j disjoint sets Ep,1
i,j , ..., E

p,si,j

i,j by removing each edge that connects a pair

of vertices within a vertical strip congruent with p mod (m + 1). Let Gp,l
i,j = (V p,l

i,j , Ep,l
i,j ), l ∈ {1, 2, ..., si,j},

be the subgraph induced by the set of edges Ep,l
i,j .

10 Ep
i,j := ∪1≤l≤si,j

Ep,l
i,j . Let Gp

i,j = (V p
i,j , E

p
i,j) be the subgraph induced by the set of edges Ep

i,j .

11 For each Gp,l
i,j , l ∈ {1, 2, ..., si,j}, obtain an optimal K-valid matching KV M(Gp,l

i,j).

12 KV M(Gp
i.j) := ∪1≤l≤si,j

KV M(Gp,l
i,j).

13 end
14 KV M(Gi.j) := Gp

i,j , where p = arg max0≤p≤m w(KV M(Gp
i,j)).

15 end
16 KV M(Gi) := ∪1≤j≤li KV M(Gi,j).
17 KV M(G) := Gi, where i = arg max0≤i≤m w(KV M(Gi)). M := KV M(G).
18 end

construct scheduling policies that achieve a constant frac-
tion of the capacity region under K-hop interference mod-
els. However, they both require centralized control, and can
therefore be implemented in a limited class of wireless net-
works (e.g., wireless mesh networks).

In this section, we focus on wireless networks in which
all transmissions are carried out at certain fixed rate (i.e.,
rate control is not exercised), and show that the maximal
scheduling policy considered in [5, 28, 21]2 achieves a con-
stant fraction of the capacity region for such networks. The
main motivation for looking at the maximal scheduling pol-
icy is that it is a simple scheduling scheme and is amenable
to distributed implementation. We start with the definition
of the maximal scheduling policy.

Definition 6. A scheduling policy is said to be a maxi-
mal scheduling policy if it chooses a subset M of edges for
transmission (during each packet transmission slot) in such
a way that for each edge e = uv ∈ E, one or more of the
following conditions are satisfied:

• IK(e) ∩ M 6= φ.

• quv +qvu = 0, where quv denotes the number of packets
waiting to be transmitted from node u to node v.

In words, the maximal scheduling policy ensures that if
there are any packets waiting to be transmitted over an edge,
then either that edge or one of the edges which interfere with
that edge must be scheduled to transmit. Now, consider a
network with one or more single-hop (MAC layer) sessions.

2In [35], authors refer to it as greedy scheduling and analyze
its performance for K = 2 case. In [21], the authors refer
to it as maximal matching and analyze its performance for
K = 1 case.

Let ∆ denote the capacity region of the network, i.e. the set
of session arrival rates for which the network can be stabi-
lized under some scheduling policy. It was shown in [5, The-
orem 1] that the maximal scheduling policy achieves at least
1/K(N) fraction of the capacity region, i.e. it stabilizes the
network for any set of arrival rates that are within ∆/K(N),
where K(N) is the interference degree of the graph (see [5,
Definition 13]). Under the K-hop interference model, the
interference degree of a graph as defined in [5], is the same
as the K-hop interference degree of the graph. We therefore
obtain the following result as a Corollary to Theorem 1 in
[5] and Theorem 6 in this paper.

Theorem 8. Consider a wireless network whose connec-
tivity graph can be modeled as a geometric graph and inter-
ference constraints can be modeled using a K-hop interfer-
ence model, for some value of K. If all transmissions are
carried out at some fixed rate then the maximal scheduling
policy stabilizes the network for any set of session arrival
rates within ∆/49.

The above result can be generalized to accommodate rate
control as well as multi-hop nature of the traffic in wireless
networks using techniques similar to the ones used in [21,
34]. The details will be presented in a companion paper.

5. EXPERIMENTAL RESULTS
We now present some experimental results to complement

our analytical results. The experiments had the following
goals:

• to study the aggregate capacity of wireless networks
for different values of K and demonstrate the effect of
physical layer on the optimal value of K;



• to study the effect of transmit power diversity on the
aggregate capacity of a wireless network under differ-
ent values of K;

• and to compare the performance of weighted and un-
weighted greedy matching.

All our experiments were performed with nodes placed ran-
domly and uniformly within a square of size 1km. Two
different sets of physical layer parameters corresponding to
IEEE 802.11 DSSS and EDGE networks were considered
(see Table 5). These parameter values were taken from [6].
The path loss model used in our experiments was also taken
from [6]. Unless otherwise specified, the transmit power
level of each node was set to -10dB (100mW). The commu-
nication range of each node was set equal to the distance at
which the SNR=SINR Threshold. A pair of nodes was con-
nected with an edge if and only if each of them was within
the communication range of the other. We refer the reader
to [6] for details of these calculations. We next describe our
results in detail. A transmission between a pair of nodes was
considered to be successful, if the SINR at both the nodes
was above the SINR Threshold.

Table 4: Physical Layer Parameters
DSSS EDGE

Noise Spectral Density (dB/Hz) -204 -204
Channel BW (dB) 73 53
Noise Factor (dB) 5 5
Transmit Power (dB) -10, -20 -10
Shadowing Margin (dB) 8 8
Building Penetration (dB) 15 15
Path gain @ 100m (dB) -73 -73
Propagation exponent 3.5 3.5
SINR Threshold (dB) 0 10

The first set of experiments were performed on 802.11
DSSS networks. The goal was to study the aggregate ca-
pacity of these networks for different values of K and node
densities. All edge weights were set equal to 1 and the greedy
matching algorithm was used to obtain a K-valid matching.
The values reported in Figures 6(a) and 6(b) were aver-
aged across 100 random network realizations for each value
of node density. Further, for each network realization, the
greedy algorithm was run ten times and the matching of
maximum cardinality across those ten runs was taken as an
approximation to an optimal K-valid matching. The results
suggest that K = 2 is optimal for moderate and large node
densities, whereas K = 1 is optimal for small node densi-
ties. These results are consistent with the fact that at small
node densities the number of potential interferers is small
and therefore a small value of K suffices to limit the inter-
ference.

To study the impact of the physical layer on the optimal
value of K, our next set of experiments were performed on
EDGE networks. The most important distinguishing fea-
ture of these networks is that they have significantly higher
SINR Threshold than the 802.11 DSSS networks. One would
therefore expect that the optimal value of K for such net-
works must be higher than 802.11 DSSS networks. This is
indeed the case; results indicate that (see Figure 6(c)) for a

wide range of node densities K = 3 outperforms K = 2 in
case of EDGE networks.

To further study the impact of physical layer on the op-
timal value of K, we modified our earlier set up for 802.11
DSSS networks by setting the rate of transmission at each
edge to be

B log (1 + SINRmin),

(the Shannon rate, assuming Gaussian noise and interfer-
ence) where the SINRmin is the minimum of the SINR at
the receiver and the sender; and B is the channel band-
width. The results are shown in Figures 6(d) and 6(e). The
optimal value of K now becomes 2 and 1 for small and large
node densities, respectively. Intuitively, this happens be-
cause at small node densities the cost of decreased spatial
reuse caused by an increase in K is more than compensated
by the enhanced rate at each of the scheduled edges. How-
ever, as the node density increases the cost of decrease in
spatial reuse increases and therefore it becomes more ben-
eficial to simultaneously schedule a large number of edges,
each supporting a small rate.

From the above results, we conclude that physical layer
has a significant impact on the optimal value of K.

For the rest of the experiments, we only show the results
for 802.11 DSSS networks; the results for EDGE networks
are similar in flavor and therefore omitted.

The next set of experiments were performed to determine
whether transmit power diversity has an effect on the opti-
mal value of K. The transmit power of each node was set
to -10 dB (100mW) or -20 dB (10mW), each value being
equally likely. As shown in Figures 6(f) and 6(g), our re-
sults suggest that transmit power diversity does not have
any impact on the optimal value of K.

The next set of results compare the performance of weighted
and unweighted greedy matching. In the weighted case, the
weight of an edge was set in proportion to the SNR for that
edge. The idea was to give preference to node pairs that have
a higher chance of communicating successfully (in a SINR
threshold based setting) or transmitting at a higher rate
(in a setting with rate control). The results clearly indicate
(see Figures 6(h) and 6(i)) that the performance of weighted
greedy matching is much better than the unweighted one.

We conclude from the above results that the weighted
greedy matching performs much better in practice than the
unweighted greedy matching. Moreover, the edge weights
are quite simple to calculate as they can be locally deter-
mined at each edge (note that both SNR and congestion
price can be locally determined).

6. CONCLUDING REMARKS
We considered the problem of throughput-optimal schedul-

ing in wireless networks subject to interference constraints.
The interference constraints were modeled using a family
of K-hop interference models. Under the assumption that
each node transmits at a fixed power level (which can be
different for different nodes), the optimal scheduling prob-
lems were shown to be weighted matching problems with
constraints determined by the K-hop interference model.
These weighted matching problems were termed Maximum
Weighted K-Valid Matching problems (MWKVMPs).

For K = 1, MWKVMP corresponds to the well studied
Maximum Weighted Matching problem (MWMP) in the lit-
erature, which can be solved in polynomial time. Interest-
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Figure 6: The variation of aggregate capacity with the number of nodes is shown under different settings:
(a) and (b) are for 802.11 DSSS networks ; (c) is for EDGE networks; (d) and (e) are for 802.11 DSSS
networks with variable transmit power; (f) and (g) are for 802.11 DSSS type of networks with additional rate
control mechanism; and (h) and (i) compare the performance of weighted and unweighted greedy matching
algorithms for 802.11 DSSS networks.

ingly, we showed that KWKVMP is NP-Hard for K ≥ 2 and
provided upper and lower bounds on its approximability.

We then considered a restriction of MWKVMP to geo-
metric graphs and showed that it admits a PTAS. We also
showed that the “natural” greedy matching algorithm yields
a 49-approximation to MWKVMP restricted to geometric
graphs for all K . Note that a γ-approximation algorithm,
when run over each slot separately, results in a Sγ-scheduling
policy in the terminology of [21]. Using our results in con-
junction with the results in [21], it follows that both greedy
algorithm and PTAS can be used to construct scheduling
policies that achieve a constant fraction of the capacity re-
gion under K-hop interference models.

The schemes mentioned thus far required centralized con-
trol; we complemented these results by showing that for net-
works whose connectivity graph is a geometric graph, the
maximal scheduling policy achieves 1/49th fraction of the
capacity region under a setting with single-hop traffic and
fixed rate transmissions. The maximal scheduling policy is
amenable to distributed implementation; we plan to address
this issue in our future work. These results are encouraging

as they indicate that one can develop distributed polynomial
time algorithms to achieve near optimal throughput in case
of a wide range of wireless networks.

The problem of determining the optimal value of K for
specific networks is a challenging problem. We numeri-
cally studied this problem in case of IEEE 802.11 DSSS
and EDGE networks. Our results indicate that the opti-
mal value of K is strongly dependent on the physical layer
and may not necessarily be 1 or 2, which have been the only
cases studied in the literature. In our future work, we plan
to study this issue in more detail using both experimental
and analytical tools.
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