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Abstract

In this paper we study the problem of optimal compression and signal reconstruction based
on distributed correlated observations of the signal. In the mean square estimation context this
involves finding the optimal signal representation based on multiple incomplete or only partial
observations which are correlated. In particular this leads to the study of finding the optimal
Karhunen-Loève basis based on the censored observations. We give a precise characterization of
the necessary conditions with or without side information. We also provide new insights into the
structure of the problem. In particular, we show that a recently proposed scheme provides estimates
that satisfy only necessary conditions for optimality and hence can be sub-optimal.
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1 Introduction

With the advent of wide area sensor networks with a large number of spatially distributed sensors,
the issue of compression, and reconstruction of signals from incomplete observations is coming into
importance. More concretely, consider a situation of spatially distributed sensors that can only sense
part of a given signal. The sensors are autonomous and have a limited energy supply. Furthermore,
communication between sensors should be minimized to reduce expenses, except to relay information
to some cluster node where the information is reconstructed from all the sensor observations.

In this paper we consider the problem where several groups of sensors are used to measure the
correlated components of a distributed signal, but in which the groups of sensors cannot communicate
with one another. Each group of sensors sends a compressed version of its measurement to a central
computer/decoder which then uses these compressed and distributed measurements to estimate the
true value of actual distributed signal. Our main concern is the issue of how the signals should be
compressed at the sensors so that one may produce an optimal linear estimate of the actual distributed
signal at the central computer/decoder.

This problem has been introduced in the information theory context by Wyner and Ziv in [11].
More recently, Gastpar, Dragotti, and Vetterli [5, 6, 4] have considered the natural setting of [11]
in the context of compression and reconstruction of second order signals. It is well known that in
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the mean square distortion context, the Karhunen-Loève transform (KLT), which allows us to obtain
the eigenvectors of the most significant eigenvalues of the covariance, is optimal from the point of
view of compression (representing a signal in terms of the energy constraint)[3, 8, 2]. To address the
distributed problem, Gastpar et al[5] introduce the concepts of partial, conditional, and combined
partial-conditional KLT based on the encoder/decoder information in the case of only one encoder and
one decoder. They then generalize their results to the multiple encoder/decoder case and present an
algorithm which they term the distributed Karhunen-Loève transform (DKLT). They provide numerical
results to show convergence.

In this paper we re-visit these ideas and put them in a new light by the introduction of an appropriate
Hilbert space framework (see [1, 9]). This allows us to pose the distributed compression and estimation
problem more precisely and exposes the underlying geometric structure very clearly. The framework
we offer here give more insight into the optimal choice of transformation matrices and provides us with
a characterization of the necessary conditions for optimality in the multiple encoder/decoder case. We
then prove the convergence of the DKLT in [5] to a solution that satisfies the necessary conditions.
However, we show that the conditions are not sufficient to guarantee convergence to a true optimum
and hence the DKLT can be sub-optimal.

The organization of this paper is as follows: In Section 2 we recall some basic facts from linear
estimation that will be used in the sequel, and define some operators of interest. In Section 3 we discuss
the single encoder-decoder case to show the basic structure of the problem. In Section 4 we consider
the general multiple encoder-decoder problem and derive necessary conditions for construction of an
optimal linear estimate at the decoder. We then provide an explicit proof of the convergence of the
DKLT algorithm in [5] and show why it can be sub-optimal. In Section 5 we offer some concluding
remarks.

2 Preliminaries and Basic Theory

In the following, we denote the covariance matrix of a random variable Z (which may be scalar or

vector valued) as ΣZ (i.e. ΣZ = IE
[

(Z − IE [Z]) (Z − IE [Z])>
]

) and the covariance matrix between X

and Y (i.e. IE
[

(X − IE [X]) (Y − IE [Y ])>
]

) as ΣXY . Note that by vector we mean a column vector.

All vectors and matrices are assumed to have real elements.

Definition 2.1 For any M × N matrix A and for any m < M , R(m, A) is defined as the matrix
consisting of the first m rows of A.

Definition 2.2 Let A be an n×n symmetric non-negative definite matrix. An m×n matrix C is said
to majorly diagonalize A if

CAC> = Diag(λ1, λ2, ..., λm)

and
λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0

Definition 2.3 Let X be an N−dimensional random vector having finite variance and let ΣX be the
covariance matrix of X. Then a unitary N × N matrix S such that SΣXS> majorly diagonalizes ΣX

is called a transposed eigenmatrix of ΣX .
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Definition 2.4 The set of all transposed eigenmatrices of a covariance matrix A is denoted by T(A).

Remark 2.1 Throughout the paper, the words “random variable” will often be abbreviated as r.v. and
“random variables” as r.vs.

Let H denote the set of second order scalar r.vs. (all r.vs. X satisfying Var(X) < ∞) and let H0

denote the set of elements of H of zero mean. It is well known that H0 is a Hilbert space[1, 10, 9]
and that given a pair of r.vs. (X, Y ) ∈ H0 × H0 with Var(X) > 0 then the best linear mean square
estimate f̂(·) of Y given X is

f̂(X) = P [Y |X]

= IE [Y X] Var(X)−1X

The r.v. P [Y |X] is simply the unique projection of Y onto the subspace spanned by X. It follows that
the minimum MSE is given by:

MSE = Var(Y − f̂(X))

= Var (Y ) − IE [Y X] Var(X)−1IE [Y X]

Definition 2.5 A finite-length vector r.v. X with elements belonging to H, is called a second order
vector r.v. or second order random vector.

Notation 2.1 Throughout this paper, for any second order random vector X, we denote Var(X) =
IE[(X − IE [X])> (X − IE [X])] = Tr(Cov(X)).

Definition 2.6 If X, Y are two second order random vectors and ΣXY = 0 (a zero matrix of the
corresponding size) then we say that X and Y are uncorrelated or orthogonal and it is denoted by
X ⊥ Y .

For any two zero mean second order random vectors Y and X with ΣX > 0, the best linear mean
square estimate f̂(·) of Y given X is[1, 10, 9]

f̂(X) = P [Y |X]

= ΣY XΣ−1
X X

where the zero mean second order random vector P [Y |X] has elements which are the projection of the
corresponding elements of Y onto the linear subspace spanned by the elements of X. Furthermore, the
mean square estimation error is given by the formula:

MSE = Var(Y − f̂(X))

= Tr
(
ΣY − ΣY XΣ−1

X ΣXY

)

Remark 2.2 Note that if U = Y − P [Y |X] then U ⊥ X, meaning that every component of U is
orthogonal to every component of X.

Definition 2.7 Let P [Y |X] = AX. Then A is denoted as AY |X .
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A useful concept associated with the theory of zero mean second order random vectors is that of
the so-called Karhunen-Loève transform (KLT)[3, 8, 2], also known as principal component analysis
(PCA)[7]. Given a zero mean second order random vector X of length n, and a positive integer
m < rank (ΣX) ≤ n, a zero mean second order random vector Z of length m is said to be a (standard)
m-dimensional KLT of X if it can be written as:

Z = R(m, S)X

for some S ∈ T(ΣX). The elements of Z are mutually orthogonal and they span an m-dimensional
subspace of H0. We have already mentioned a property of the KLT in the introduction, but this
property can be interpreted in way which will be particularly useful for our purpose. This interpretation
is as follows. Given any m-dimensional subspace of H0, one has a projection of X onto that subspace.
The subspace spanned by the elements of a KLT of X has the special property that when X is projected
onto that subspace then the mean square difference between X and the projection is minimum (see
[3]). In other words, the elements of an m-dimensional KLT span an optimal m-dimensional subspace.
This is an important fact and will be used in the proofs of some of our results.

Definition 2.8 For n ≤ dim (X), MKLT (n, X) = {A ∈ R
n×dim(X) : ∃S ∈ T (ΣX) s.t. A = R(n, S)}.

Any element of MKLT (n, X) is called an n−dimensional Karhunen Loève transform (KLT) matrix of
X.

Definition 2.9 For n ≤ dim (X), KLT (n, X) = {Y is a zero mean second order random vector: ∃A ∈
MKLT (n, X) s.t. Y = AX}. Any element of KLT (n, X) is said to be an n−dimensional KLT of X.

3 Single Encoder Scenarios

Let X = (X1, X2, ..., XN )> be the random vector being sensed where X has a known covariance matrix
ΣX > 0. The encoder senses a portion of X which we denote as Xs = (X1, X2, ..., XM )> with M < N .
The section of X not being sensed, called the hidden part, is denoted as Xsc = (XM+1, XM+2, ..., XN )>.

Note that X = (X>
s , X>

sc)> and obviously ΣX =

[
ΣXs

ΣXsXsc

Σ>
XsXsc

ΣXsc

]

. The encoder’s function is to

code the data vector Xs (of length M) into a smaller vector Zs (of length m < M). The information
from the encoder (i.e. Zs) is then sent to a decoder which uses it to construct X̂ = (X̂1, X̂2, ..., X̂N )> =
(X̂>

s , X̂>
sc)> as an estimate of X.

The problem we consider is how to construct Zs such that X̂ is optimal in a mean square sense
under various scenarios.

Remark 3.1 Throughout the paper we assume that IE [X] = 0 and ΣX > 0. However, the results here
also apply to the case where IE [X] 6= 0 by applying them to the zero mean random vector X0 = X−IE [X]
instead of X. Hence there will be no loss of generality.

We shall consider the cases which are referred to as partial KLT, conditional KLT and combined partial-
conditional KLT in [5], and show that, from a purely mathematical viewpoint, they can be subsumed
into a single estimation framework.

3.1 Single encoder with no side information

In this particular scenario, the encoder senses Xs and produces Zs. The decoder receives Zs and
produces X̂, without further additional information. We formally state the problem below:
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Problem 3.1 Given a zero mean second order random vector X with ΣX > 0, find a second order
random vector Zs of length m < M with ΣZs

> 0 and linearly related to Xs (i.e. Zs = DXs for some
full row rank matrix D ∈ R

m×M ) such that the quantity:

Var (P [X|Xs] − P [X|Zs])

is minimized.

Remark 3.2 It can easily be seen that if there is a solution to Problem 3.1 then it is not unique. This
is because if Zs is a solution then AZs is also a solution since both random vectors span the same
subspace of H0.

We now start to provide a solution to the above problem. The optimal linear mean square estimate
of X given Xs, which we denote by Ys, is given by

Ys = P [X|Xs]

=

[
IM×M

AXsc |Xs

]

Xs

and we may write X as

X = Ys + V

=

[
IM×M

AXsc |Xs

]

Xs + V

where V = X − P [X|Xs] and V ⊥ Xs. The encoder knows what Xs is, but for optimal linear recon-
struction of P [X|Xs] at the decoder, it should encode Ys (since P [X|Xs] = Ys) into an m−dimensional
vector. Thus we may choose Zs to be a standard m−dimensional KLT of Ys, which is a linear trans-
formation of Ys. More concretely, we have the following:

Theorem 3.1 Problem 3.1 has base solutions of the form:

Zsb = C̄Xs

where C̄ = R(m, C) and C = R(M, S)AX|Xs
for some S ∈ T(ΣP [X|Xs]). Every other solution is given

by:
Zs = AZsb

where A is any arbitrary invertible m × m matrix.

The corresponding optimal estimate of P [X|Xs] is given by:

X̂opt = S>

[
C̄Xs

0N−m

]

= P [X|Zs]

and the approximation error incurred is:

IE

[∥
∥
∥X − X̂opt

∥
∥
∥

2
]

=

M∑

i=m+1

λi + V ar(V )

where V = X −P [X|Xs], V ⊥ Xs, while λi, i ≥ m+1 are the M −m smallest eigenvalues of ΣP [X|Xs]

after N − M zero eigenvalues have been discarded.
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Proof. We continue the argument prior to the statement of the theorem. Note that by the definition
of S, C and C̄, Zs = C̄Xs is just a standard Karhunen Loéve transform of Ys. From this we can
optimally reconstruct P [X|Xs] (in a mean square sense) at the decoder as[3, 8, 2]:

X̂opt = S>

[
C̄Xs

0N−m

]

All that remains to be done is to verify that

X̂opt = P [X|Zsb]

where Zsb = C̄Xs. To this end, note that:

SP
[
X|C̄Xs

]
= SΣXXs

C̄>(C̄ΣXs
C̄>)−1C̄Xs

and that C̄ΣXs
C̄> is diagonal with positive entries (since Zsb = C̄Xs has non-zero mutually orthogonal

elements). Thus we write:

C̄ΣXs
C̄> = Diag(d1, . . . , dm)−1

= Diag(
1

d1
, . . . ,

1

dm
)

where d1, . . . , dm > 0. It follows that:

P
[
X|C̄Xs

]
= ΣXXs

C̄> Diag(
1

d1
, . . . ,

1

dm
)C̄Xs

Let Ã = AX|Xs
= ΣXXs

Σ−1
Xs

. Since C̄ = R(m, S)Ã =
[

Im×m 0m×(N−m)

]
SÃ we have:

SP
[
X|C̄Xs

]
= S

(
ΣXXs

Σ−1
Xs

)
ΣXs

C̄> Diag(
1

d1
, . . . ,

1

dm
)C̄Xs

= S
(
ΣXXs

Σ−1
Xs

)
ΣXs

([
Im×m 0m×(N−m)

]
SÃ

)>
Diag(

1

d1
, . . . ,

1

dm
)C̄Xs

=
(

SÃΣXs
Ã>S>

)[
Im×m

0(N−m)×m

]

Diag(
1

d1
, . . . ,

1

dm
)C̄Xs

=
(

SΣE[X|Xs]S
>
) [

Im×m

0(N−m)×m

]

Diag(
1

d1
, . . . ,

1

dm
)C̄Xs

= Diag(d1, d2, . . . , dM , 0, . . . , 0
︸ ︷︷ ︸

N−M times

)

[
Im×m

0(N−m)×m

]

Diag(
1

d1
, . . . ,

1

dm
)C̄Xs

=

[
C̄Xs

0(N−m)×m

]

Thus

SP
[
X|C̄Xs

]
=

[
C̄Xs

0(N−m)×m

]

or equivalently

P
[
X|C̄Xs

]
= S−1

[
C̄Xs

0(N−m)×m

]

= S>

[
C̄Xs

0(N−m)×m

]
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Hence
X̂opt = P [X|Zsb]

Finally, Zs = AZsb for any m × m invertible matrix A is also a solution since

P [X|AZsb] = P [X|Zsb]

and in this case one simply constructs X̂opt as:

X̂opt = S>

[
A−1 0m×(N−m)

0(N−m)×m 0(N−m)×(N−m)

] [
Zs

0N−m

]

We have now exhausted all possible linear solutions since at the key step of optimal linear compression
of Ys the only choices are precisely C̄Ys ∈ KLT (m, Ys) or AC̄Ys for any m × m invertible matrix
A 6= Im×m. This is because these choices correspond precisely to all zero mean second order random
vectors whose elements span the same optimal subspace as the elements of C̄Ys (see Section 2 on the
KLT).

Remark 3.3 Note that the term
M∑

i=m+1
λi is the additional error due to compression of Xs into Zs

while V ar(V ) is the estimation error when Xs is known perfectly.

Remark 3.4 One can check that the solution proposed in the theorem coincides with the solution
obtained by the idea of partial KLT introduced in [5].

3.2 Single encoder scenario with side information

The encoder can only sense Xs as in the previous scenario. However, in the present setup, the decoder
has access to side information Ysc = HXsc , where H is a full row rank matrix. The aim once again is
to determine Zs such that X can be reconstructed optimally at the decoder.

Remark 3.5 By the properties of H it follows that ΣYsc > 0 if ΣXsc > 0.

This scenario was treated in [5] by the introduction of the conditional KLT for the case where H

has N −M rows and the combined partial-conditional KLT for the case where H has less than N −M

rows. In this section we show that there is a single concept which allows us to treat this scenario for
all cases (without having to split the analysis by considering two special cases). First we give a formal
definition of the problem:

Problem 3.2 Given a zero mean second order random vector X with ΣX > 0 and side information
vector Ysc, find a second order random vector Zs of length m < M with ΣZs

> 0 and linearly dependent
on Xs (i.e. Zs = DXs for some full row rank matrix D ∈ R

m×M ) such that the quantity

Var (P [X|Xs, Ysc ] − P [X|Zs, Ysc ])

is minimized.

Remark 3.6 Similar to the case of no side information (Remark 3.2), if there is a solution to Problem
3.2 then it is not unique.
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As in the previous section, we write

X = P [X|Xs, Ysc ] + V

= AXs + BYsc + V

for some matrices A and B and a r.v. V which is orthogonal to the space spanned by Xs and Ysc .
Define U = Xs − P [Xs|Ysc ] = Xs − ΣXsYsc Σ

−1
Ysc

Ysc , we call U the innovation of Xs. Note that U⊥Ysc .
Then we may write:

X = ÃU + B̃Ysc + V

where Ã = A and B̃ = B + AΣXsYsc Σ
−1
Ysc

. The key observation is that since U⊥Ysc and Ysc is known,

all that remains is to compress ÃU optimally in the mean square sense. To see this, let Ws denote
an m-dimensional zero mean second order random vector with ΣWs

> 0 and Ws ⊥ Ysc (thus Ws does
not repeat “linear estimation information” already carried by Ysc). Then the best linear estimate of
P [X|Xs, Ysc ] given Ws and Ysc is clearly:

P [P [X|Xs, Ysc ] |Ws, Ysc ]

= P
[

ÃU + B̃Ysc |Ws, Ysc

]

= P
[

ÃU |Ws, Ysc

]

+ P
[

B̃Ysc |Ws, Ysc

]

= P
[

ÃU |Ws

]

+ B̃Ysc since U⊥Ysc and Ws ⊥ Ysc .

and to minimize the quantity

Var (P [X|Xs, Ysc ] − P [P [X|Xs, Ysc ] |Ws, Ysc ])

= Var
(

ÃU − P
[

ÃU |Ws

])

we simply choose Ws to be an m-dimensional KLT of ÃU (see Section 2). Furthermore, with this choice
of Ws it automatically follows that V ⊥ span {Ws, Ys} due to Ws being a linear transformation of U .
To this end, let S ∈ T

(
ΣÃU

)
then S majorly diagonalizes ΣÃU . Let us also define C ′ = SÃ, obviously

C ′ majorly diagonalizes ΣU . However, we have the following:

Lemma 3.1 Let A be a nonnegative symmetric m×m matrix. If T is an n×m (n > m) matrix which
majorly diagonalizes A then the n − m smallest eigenvalues of TAT> are zero.

Proof. The result follows from the fact that dim(ker(T>)) ≥ n − m.

Corollary 3.1 Let ΣX be the covariance matrix of an m−dimensional zero mean random vector X

and let B be an arbitrary n × m (n > m) matrix. If S is an n × n matrix which majorly diagonalizes
BΣXB> and S̄ = R(m, S) then

SBX =

[
S̄BX

0n−m

]

and S̄ majorly diagonalizes BΣXB>.

8



Proof. By the previous lemma SBΣXB>S> = (SB)ΣX(SB)> is diagonal with zeros on the lower
n−m diagonal. This implies that the lower n−m elements of SBX are merely deterministic constants.
Furthermore since E [X] = 0 these constants are actually zero. Thus we may write

SBX =

[
S̄BX

0(n−m)×m

]

From the above it is clear that S̄ majorly diagonalizes BΣXB>.

Thus we may write

C ′U =

[
CU

0N−M

]

where C = R(M, C ′) and it is obvious that CU ∈ KLT (M, ÃU). If C̄ = R(m, C) then C̄U ∈
KLT (m, ÃU) and it is a linear transformation on U . Now recall that:

U = Xs − ΣXsYsc Σ
−1
Ysc

Ysc

hence
C̄U = C̄Xs − C̄ΣXsYsc Σ

−1
Ysc

Ysc

Since the second term on the right of the equality can be computed at the decoder (because Ysc is
known), the encoder only needs to send the remaining m−dimensional vector Zs = C̄Xs so that C̄U

can be reconstructed exactly. Once the decoder receives Zs, ÃU can be constructed approximately as
Ũ , which is defined as:

Ũ = S−1

[
C̄U

0N−m

]

= S>

[
C̄U

0N−m

]

It then follows that the optimal mean square estimate of P [X|Xs, Ys] is:

X̂opt = Ũ + P [X|Ysc ]

= Ũ + AX|Ysc Ysc

since Ysc ⊥ U and therefore Ysc ⊥ Ũ . The approximation error incurred is:

E

[∥
∥
∥X − X̂opt

∥
∥
∥

2
]

= Var(ÃU + AX|Ysc Ysc + V − Ũ − AX|Ysc Ysc)

= Var(ÃU − Ũ) + Var(V )

= Var(ÃU − S>

[
C̄U

0N−m

]

) + Var(V )

= Var(SÃU −

[
C̄U

0N−m

]

) + Var(V )

= Var(

[
CU

0N−M

]

−

[
C̄U

0N−m

]

) + Var(V )

=
M∑

i=m+1

λi + Var(V )

where λi, i ≥ m + 1 are the M − m smallest eigenvalues of ΣÃU after N − M zero eigenvalues have
been discarded. Thus we have almost shown:
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Theorem 3.2 Let U be the innovation of Xs. Then Problem 3.2 has base solutions of the form:

Zsb = C̄Xs

where C̄ = R(m, C) and C = R(M, S) · AX|U for some S ∈ MKLT (P [X|U ]). Every other solution Zs

is given by:
Zs = AZsb

where A is any arbitrary invertible m × m matrix.

The corresponding optimal estimate of P [X|Xs, Ysc ] is given by:

X̂opt = S>

[
C̄U

0N−m

]

+ AX|Ysc Ysc = P [X|Zs, Ysc ]

and the approximation error incurred is:

IE

[∥
∥
∥X − X̂opt

∥
∥
∥

2
]

=
M∑

i=m+1

λi + Var(V )

where V = X−P [X|Xs, Ys], V ⊥ span{Xs, Ys}, while λi, i ≥ m+1 are the M−m smallest eigenvalues
of ΣP [X|U ] after N − M zero eigenvalues have been discarded.

Before proceeding to complete the proof of the theorem we first introduce the following definition:

Definition 3.1 An m×M matrix C̄ in Theorem 3.2 corresponding to a particular S ∈ MKLT (ΣP [X|U ])
is defined as the optimal m-dimensional transformation matrix associated with S and is denoted as
C̄ = OTM(m, S). If no reference is made to S then we call C̄ simply as an m-dimensional optimal
transformation matrix (m-OTM).

Proof. This proof continues the argument prior to the statement of the theorem. First of all, since
U⊥Ysc , V ⊥U , it is clear that ÃU = P [X|U ]. Next we show an important relation between an m−OTM
C̄ and X̂opt. Observe that in a similar way to proving that

P
[
X|C̄Xs

]
= S>

[
C̄Xs

0(N−m)×m

]

in Theorem 3.1, but replacing Xs with U everywhere and using the corresponding definition of C̄, we
can prove that:

P
[
X|C̄U

]
= S>

[
C̄U

0(N−m)×m

]

Hence

X̂opt = S>

[
C̄U

0(N−m)×m

]

+ AX|Ysc Ysc

= P
[
X|C̄U

]
+ P [X|Ysc ]

= P
[
X|C̄U, Ysc

]
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It is clear that there is a bijective linear relation between
(
C̄Xs, Ysc

)
and

(
C̄U, Ysc

)
(i.e.

(
C̄Xs, Ysc

)

can be retrieved from
(
C̄U, Ysc

)
and vice-versa) and that they both span the same subspace of H0.

Hence we have the desired result:

X̂opt = P
[
X|C̄U, Ysc

]

= P
[
X|C̄Xs, Ysc

]

= P [X|Zsb, Ysc ]

Finally, Zs = AZsb for any m × m invertible matrix A is also a solution since

P [X|AZsb, Ysc ] = P [X|Zsb, Ysc ]

and in this case one simply constructs Ũ as:

Ũ = S>

[
A−1 0m×(N−m)

0(N−m)×m 0(N−m)×(N−m)

] [
AC̄U

0N−m

]

We have now exhausted all possible linear solutions since at the key step of optimal linear compression
of ÃU the only choices are precisely C̄U ∈ KLT (m, ÃU) or AC̄U for any m × m invertible matrix
A 6= Im×m. This is because these choices correspond precisely to all zero mean second order random
vectors whose elements span the same optimal subspace as the elements of C̄U (see Section 2 on the
KLT).

Remark 3.7 Note that the term
M∑

i=m+1
λi is the additional error due to compression of Xs into Zs

while V ar(V ) is the estimation error when Xs is also known perfectly (besides Ysc).

Remark 3.8 From the above theorem it readily follows that the innovation approach encompassess
both the conditional and partial-conditional approach of [5] without making a distinction between the
two.

We may reformulate Problem 3.2 as the following equivalent problem:

Problem 3.3 Let Dm×M denote the space of m × M (m < M) full row rank matrices. For any
D ∈ Dm×M , define X̂D(Xs, Ysc) = P [X|DXs, Ysc ]. Given a zero mean second order random vector X

with ΣX > 0, find an element D ∈ Dm×M which minimizes

Var
(

P [X|Xs, Ysc ] − X̂D(Xs, Ysc)
)

Thus it is clear that the solutions to the above problem are the matrices AC̄ given in Theorem 3.2
and this is formally stated in the next lemma.

Lemma 3.2 The solutions of Problem 3.3 are precisely the matrices AC̄ defined in Theorem 3.2.

Remark 3.9 The equivalent formulation will be particularly relevant for studying the multiple encoders
problem in the section to follow (Problem 4.1).
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3.3 Unifying Theorem for Single Encoder Systems

If we take the convention that

1. P [X|Z] = 0 if Z = 0.

2. P [X|Y, Z] = P [X|Y ] if Z = 0.

then we may trivially combine Theorems 3.1 and 3.2 as one theorem that solves both Problems 3.1 and
3.2. We give this theorem below:

Theorem 3.3 Let the innovation U be defined as:

U = Xs − P [Xs|Ysc ] .

Then Problems 3.1 (where Ysc = 0) and 3.2 (where Ysc 6= 0) have base solutions of the form:

Zsb = C̄Xs

where C̄ = R(m, C) and C = R(M, S) · AX|U for some S ∈ MKLT (P [X|U ]). Every other solution Zs

is given by:
Zs = AZsb

where A is any arbitrary invertible m × m matrix.

The corresponding optimal estimate of P [X|Xs, Ysc ] is given by:

X̂opt = S>

[
C̄U

0N−m

]

+ AX|Ysc Ysc = P [X|Zs, Ysc ]

and the approximation error incurred is:

IE

[∥
∥
∥X − X̂opt

∥
∥
∥

2
]

=
M∑

i=m+1

λi + Var(V )

where V = X−P [X|Xs, Ys], V ⊥ span{Xs, Ys}, while λi, i ≥ m+1 are the M−m smallest eigenvalues
of ΣP [X|U ] after N − M zero eigenvalues have been discarded.

Proof. Follows directly from Theorems 3.1 and 3.2 and the convention outlined at the beginning of
this section.

The unifying theorem shows there is no intrinsic difference between the partial, conditional and
combined partial-conditional approach of [5]. They are all special cases of the estimation framework
that we have developed here. We end this section with some numerical examples.

Example 3.1 We use Example 3 in [5]. Let X = (X1, X2, X3, X4) with

ΣX =







0.1 0 0.1 0.1
0 0.1 0.25 0

0.1 0.25 1 0.25
0.1 0 0.25 1






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Xs,1 = (X1, X2) and Xs,2 = (X3, X4). ΣX > 0 and has the positive eigenvalues

{0.0244, 0.0900, 0.7914, 1.2942}.

The side information is just Xs,2, i.e. H = I2×2. We would like to produce a 1-dimensional approxi-
mation of X. Using Theorem 3.2 we get the following optimal (base) transformation matrices:

C =

[
0.9447 −0.3280
0.3280 0.9447

]

C̄ =
[

0.9447 −0.3280
]

which is the same as the matrices reported in [5] except for the difference in sign, however as stated in
Theorem 3.2 this difference is inconsequential. The optimal MSE that is computed is:

MSEopt = 0.0264

which agrees with the value reported in [5].

Example 3.2 Let X = (X1, X2, X3, X4, X5, X6) with

ΣX =











1.3446 −0.2448 −0.2160 −0.0114 −0.6456 0.7368
−0.2448 2.7902 −0.6461 0.3244 0.1772 −1.2198
−0.2160 −0.6461 2.0656 −0.3812 0.2969 −0.4943
−0.0114 0.3244 −0.3812 1.2775 −0.3034 0.0331
−0.6456 0.1772 0.2969 −0.3034 1.4644 −0.4189
0.7368 −1.2198 −0.4943 0.0331 −0.4189 2.0577











Xs,1 = (X1, X2, X3) and Xs,2 = (X4, X5, X6). ΣX > 0 and has the positive eigenvalues

{0.5, 0.8, 1.2, 1.5, 3.0, 4.0}.

The side information is Ys = HXs,2 with H =

[
1 0 0
0 1 0

]

. We would like to produce a 2−dimensional

approximation of X. Again using Theorem 3.2 we get the following (base) optimal matrices:

C =





0.3027 −1.0746 0.0864
−0.4673 0.1893 1.0041
0.9330 0.2207 0.3189





C̄ =

[
0.3027 −1.0746 0.0864
−0.4673 0.1893 1.0041

]

The optimal MSE that is computed is:
MSEopt = 2.0202

4 Multiple encoder scenarios

In this section we formulate the general distributed approximation problem with n-encoders (n > 1) and
connect it with previous work that has been done on this problem in [5]. To this end, let E1, E2, . . . , En

be n encoders which sense the vectors Xs,1, Xs,2, . . . , Xs,n, respectively. Let dim(Xs,i) = Mi. Then

Xs =
(
X>

s,1, X
>
s,2, . . . , X

>
s,n

)>
. Let the hidden part be Xsc and the side information Ysc be defined
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as before and let the output of E1, E2, . . . , En be denoted by Zs,1, Zs,2, . . . , Zs,n, respectively, with
dim(Zs,i) = mi < Mi. For mathematical tractability, let us assume that Zs,i is linearly related to Xs,i

and focus on the issue of finding an optimal linear solution (what is meant by optimal will be made
clear in the formulation of Problem 4.1).

In the spirit of Problem 3.3 for the single encoder case, we formulate the following optimization
problem:

Problem 4.1 Let I = {1, 2, . . . , n}. For any i ∈ I, let Dmi×Mi
denote the space of mi×Mi (mi < Mi)

full row rank matrices. For any (D1, D2, . . . , Dn) ∈ Dm1×M1
× Dm2×M2

× . . . × Dmn×Mn
define:

X̂D1,D2,...,Dn
(Xs,1, Xs,2, . . . , Xs,n, Ysc) = P [X|D1Xs,1, D2Xs,2, . . . , DnXs,n, Ysc ]

Find (D1, D2, . . . , Dn) ∈ Dm1×M1
×Dm2×M2

× . . .×Dmn×Mn
which minimizes the estimation error

defined by:

Err (D1, D2, . . . , Dn) = Var(P [X|Xs, Ysc ] − X̂D1,D2,...,Dn
(Xs,1, Xs,2, . . . , Xs,n, Ysc))

A solution to the above problem is called an optimal linear solution to the n-encoders distributed
approximation problem.

Remark 4.1 In the formulation of Problem 4.1, we have explicitly assumed that there is side informa-
tion Ysc available, we shall keep this assumption in our treatment of the problem. However, the case of
no side information can be treated in an analogous manner simply by dropping the term Ysc wherever
it is found.

An intuitive approach to solve Problem 4.1 is to set D2, . . . , Dn arbitrarily, then proceeding to
minimize Err one matrix at a time starting from D1 and then D2, . . . , Dn and starting over from
D1 until Err becomes relatively constant (i.e. the iteration has converged). This is the basically the
idea proposed in [5], by an algorithm called the DKLT (for distributed Karhunen-Loève transform)
algorithm. However, it was proposed without an explicit formulation of the optimization problem as
we have done here. As we show in this section, the explicit problem formulation is particularly useful
since it allows us to better understand the multiple encoders scenario. We also show that an execution
of the DKLT algorithm can result in a sub-optimal solution. Before continuing, we first describe the
DKLT algorithm:

Algorithm 4.1 (DKLT)

1. Choose (D2,0, D3,0, . . . , Dn,0) arbitrarily from Dm2×M2
×Dm3×M3

× . . .×Dmn×Mn
and let Z

(0)
s,i =

Di,0Xs,i for ∀i ∈ I\{1}.

2. Set k = 1.

3. Let i = (k − 1)mod n + 1. Choose an mi-OTM D∗
i,k for Ei (see Definition 3.1) by regarding the

collection of vectors {Z
(k−1)
s,j , j ∈ I\{i}} and Ysc as side information (using Theorem 3.2). Set

Di,k = D∗
i,k

Dj,k = Dj,k−1 ∀j ∈ I\{i}

and
Z

(k)
s,j = Dj,kXs,j ∀j ∈ I
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4. Repeat the proceduce of step 3 sequentially for k = 2, 3, . . . , until the iterated transformation
matrices remain constant after some iteration (the subscript k denotes iteration number) or if
the transformation matrices are judged as no longer changing significantly.

Going back to Problem 4.1, we can state the following result:

Theorem 4.1 (Necessity) If D∗
1, . . . , D

∗
n is a solution to Problem 4.1, then necessarily each en-

coder Ei, i = 1, 2, . . . , n, must be linearly optimal as a single encoder system with side information{{

D∗
j Xs,j , j ∈ I\{i}

}

, Ysc

}

.

Proof. Since (D∗
1, . . . , D

∗
i , . . . , D

∗
n) is a solution to Problem 4.1, it is clear that:

Err (D∗
1, D

∗
2, D

∗
3 . . . , D∗

n) ≤ Err (D1, D
∗
2, D

∗
3 . . . , D∗

n) ∀D1 ∈ Dm1×M1

Err (D∗
1, D

∗
2, D

∗
3 . . . , D∗

n) ≤ Err
(
D∗

1, . . . , D
∗
i−1, Di, D

∗
i+1, . . . , D

∗
n

)
∀Di ∈ Dmi×Mi

, i ∈ I\{1, n}

Err (D∗
1, . . . , D

∗
i , . . . , D

∗
n) ≤ Err

(
D∗

1, . . . , D
∗
n−1, Dn

)
∀Dn ∈ Dmn×Mn

implying that

D∗
1 = arg min

D1∈Dm1×M1

Err (D1, D
∗
2, D

∗
3 . . . , D∗

n)

D∗
i = arg min

Di∈Dmi×Mi

Err
(
D∗

1, . . . , D
∗
i−1, Di, D

∗
i+1, . . . , D

∗
n

)
∀i ∈ I\{1, n}

D∗
n = arg min

Dn∈Dmn×Mn

Err
(
D∗

1, . . . , D
∗
n−1, Dn

)







(4.1)

By the relation

Err (D1, . . . , Dn) = Var (P [X|Xs, Ysc ] − P [X|Xs,i, {DjXs,j , j ∈ I\{i}} , Ysc ])+

Var (P [X|Xs,i, {DjXs,j , j ∈ I\{i}} , Ysc ] − P [X|DiXs,i, {DjXs,j , j ∈ I\{i}} , Ysc ]) i ∈ I, (4.2)

Problem 3.3, and Lemma 3.2, it follows from (4.1) that Ei (i = 1, 2, . . . , n) must be a linearly optimal

single encoder having
{

D∗
j Xs,j , j ∈ I\{i}

}

and Ysc as side information.

Now it is quite clear that the DKLT algorithm is a natural approach for obtaining transforma-
tion matrices satisfying the conditions of Theorem 4.1. However, we cannot conclude that a solution
obtained by this method is globally optimal since the conditions are only necessary, i.e. the DKLT
algorithm merely provides us with one set of transformation matrices which satisfy the necessary con-
ditions. Sufficiency of the conditions of Theorem 4.1 have not been established. This is not easy since it
is a nonlinear optimization problem in operator space with no readily usable convexity property. Thus,
there is a gap in the assertion made in [5] of the optimality of a solution obtained with the DKLT
algorithm. Additionally, in light of Theorem 3.3 and Lemma 3.2, we can give a direct proof of the
convergence of the DKLT algorithm. In the remaining parts of this paper we provide this proof and
show that the DKLT algorithm does not guarantee global optimality via an example.

Lemma 4.1 (Convergence of the DKLT algorithm) At consecutive iterations of Algorithm 4.1,
the estimation error cannot increase, i.e.

Err(D1,k+1, . . . , Dn,k+1) ≤ Err (D1,k, . . . , Dn,k)

for all k ≥ 0. Furthermore, the algorithm has converged at iteration k (i.e. Err (D1,m, . . . , Dn,m) =
Err (D1,k, . . . , Dn,k) ∀m > k) if and only if D1,k, . . . , Dn,k satisfy the conditions of Theorem 4.1. In
particular, if convergence has not been achieved at iteration k then a decrease in the estimation error
always follows in the next n − 1 iterations, ensuring the convergence of the DKLT algorithm.
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Proof. Let us consider some iteration step k ≥ 1 and let i = (k − 1)modn + 1. Let us also regard the

collection of random vectors {Z
(k−1)
s,j , j ∈ I\{i}} along with Ysc as side information for the encoder Ei.

Since Di,k = D∗
i,k by Theorem 3.2 (with X̂k,opt corresponding to X̂opt in the theorem) we have:

X̂k,opt = P
[

X|Di,kXs,i, {Z
(k−1)
s,j , j ∈ I\{i}}, Ysc

]

Next let r = k modn + 1. Since Dr,k+1 = D∗
r,k+1, we analogously have:

X̂k+1,opt = P
[

X|Dr,k+1Xs,r, {Z
(k)
s,j , j ∈ I\{r}}, Ysc

]

By equation (4.2) and Lemma 3.2, changing the transformation matrix of Er from Dr,k to D∗
r,k+1 at

iteration k + 1 while keeping all other matrices fixed (in particular, Di,k+1 = D∗
i,k ) cannot result in a

higher estimation error since D∗
r,k+1 is a solution to Problem 3.3 with Er being the associated encoder.

In other words,
Var(P [X|Xs, Ysc ] − X̂k+1,opt) ≤ Var(P [X|Xs, Ysc ] − X̂k,opt)

However, since by definition

X̂k,opt = X̂D1,k,...,Dn,k
(Xs,1, . . . , Xs,n, Ysc)

and
X̂k+1,opt = X̂D1,k+1,...,Dn,k+1

(Xs,1, . . . , Xs,n, Ysc)

we conclude that
Err (D1,k+1, . . . , Dn,k+1) ≤ Err (D1,k, . . . , Dn,k)

for all k ≥ 0. If D1,k, . . . , Dn,k satisfy the conditions of Theorem 4.1 then each encoder Ei (i = 1, . . . , n)
is optimal as a single encoder system with side information {{DjXs,j , j ∈ I\{i}} , Ysc}. This im-
plies that no further sequential change of the transformation matrices can yield a lower estima-
tion error. Hence we may set Di,m = Di,k for i = 1, 2, . . . , n and ∀m > k, and we have that
Err (D1,m, . . . , Dn,m) = Err (D1,k, . . . , Dn,k) ∀m > k. Conversely, if D1,k, . . . , Dn,k do not satisfy
the conditions of Theorem 4.1 then at least one encoder, excluding the encoder that had just been
optimized at step k, is not optimal. Thus we may reduce the estimation error by optimizing the
first of those sub-optimal encoders to be encountered in iterations k + 1, k + 2, . . . , k + n − 1, i.e.
∃m ∈ {1, . . . , n − 1} such that Err(D1,k+m, . . . , Dn,k+m) < Err (D1,k, . . . , Dn,k). Therefore the al-
gorithm has not converged at step k and a decrease in the estimation error always follows in n − 1
iterations after k.

Finally, since Err is bounded from below by 0, it is clear that the decreasing property of Err

whenever convergence has not been achieved guarantees that the DKLT algorithm always converges.

As we had argued earlier, based on Problem 4.1, it seems clear that in general, the necessary
conditions need not be sufficient for optimality. The following example affirms this fact:

Example 4.1 Let X be as given in Example 3.2. Encoder 1 senses Xs,1 while encoder 2 senses Xs,2.
We would like to produce an optimal linear approximation of X under the constraint that each encoder
may only send a 2−dimensional vector.

Let us first apply the DKLT algorithm by setting

D2,0 =

[
1 0 0
0 1 0

]

(4.3)
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Figure 1: Convergence of the DKLT algorithm with D2,0 as given in (4.3)

The result of the applying the DKLT algorithm is shown in Fig. 1. At convergence the transformation
matrices obtained are the following:

D∗
1 =

[
−0.2670 0.9004 −0.4632
−0.8597 0.2906 0.6917

]

D∗
2 =

[
−0.6661 0.7489 0.0753
−0.4824 −0.3828 −0.8368

]

and the approximation error that is computed based on Theorem 3.2 (after 30 iterations) is:

Var
(

X − X̂D∗

1
,D∗

2
(Xs,1, Xs,2)

)

= 1.9746

Now, let us apply the DKLT once again but this time with a different initial condition. Thus let:

D2,0 =

[
2 3 0
0 −4 3

]

(4.4)

The result of the applying the DKLT algorithm with this new initial condition is shown in Fig. 2. At
convergence the transformation matrices obtained are the following:

D∗
1 =

[
−0.0603 0.7269 −0.6849
−0.5863 0.5463 0.6430

]

D∗
2 =

[
0.0543 −0.6715 0.9847
0.7606 −0.4784 −0.4607

]

and the approximation error that is computed is:

Var
(

X − X̂D∗

1
,D∗

2
(Xs,1, Xs,2)

)

= 1.7567
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Figure 2: Convergence of the DKLT algorithm with D2,0 as given in (4.4)

Thus with the DKLT algorithm, with different initial conditions, one can arrive at different points
satisfying the necessary conditions of Theorem 4.1, but which result in different estimation errors. In
this example starting at

D2,0 =

[
2 3 0
0 −4 3

]

results in a lower estimation error than starting at:

D2,0 =

[
1 0 0
0 1 0

]

Therefore the DKLT algorithm will not necessarily give a global optimal solution to Problem 4.1. This
example demonstrates that the necessary conditions need not be sufficient to ensure global optimality.

The main significance of the formulation of Problem 4.1 is that it gives insight into what the DKLT
algorithm accomplishes and how it does not guarantee global optimality. The explicit formulation of
the objective function opens the possibility for finding or developing other optimization algorithms,
instead of the DKLT, which may be able to guarantee global or close to global minimality.

5 Concluding Remarks

In this paper we have shown in an explicit manner the geometric structure associated with the mul-
tiple encoder-decoder problem in the estimation of correlated second order r.v’s based in incomplete
observations by the different encoders and decoders. In the linear context this leads to a nice geometric
interpretation in terms of the innovations and results in a nice decoupling property for encoder-decoder
pairs. However, the conditions are only necessary and the derivation of sufficient conditions is ex-
tremely difficult. These results help us to better understand the results shown in [5] and in particular
that the there is no intrinsic difference between the conditional, partial, and conditional-partial KLTs
as defined in [5]. This geometric framework shows us why the DKLT algorithm proposed therein can
be sub-optimal.
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In future work we will pursue an optimal procedure based on the global optimization formulation
given in the paper and what simplifications can be obtained in the large number of encoder context. A
more general problem is one of combining estimation and LMS techniques to derive a pure distributed
signal estimation where only the covariances of the observed r.v’s are known (and the cross covariances
are unknown) and the idea is to combine covariance and state estimation within an adaptive framework.
These topics will be presented elsewhere.
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