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End-to-end loss estimates in networks with GPS
servers handling many traffic streams

Ozcan Ozturk and Ravi R. Mazumdar

Abstract

We consider a network of servers with small buffers (in comparison to the speed) accessed by a large number of
stationary independent flows. The server is shared according to a Generalized Processor Sharing (GPS) discipline.
It is assumed that the route of each flow is acyclic but flows need not be independent inside the network. We prove
that a large deviations (LD) principle holds and find the large deviations rate functions for the buffer overflow at
each node in terms of the external input LD characteristics. We then use these results to obtain (asymptotic in the
number of flows) end-to-end packet loss for each flow. When each type of flow is supposed to have a Quality of
Service (QoS) defined in terms of packet loss we obtain the admissible region for sources which access the network
based on these QoS requirements. The efficacy of the analytical results are validated via simulations showing that
the estimates obtained are extremely accurate even when the number of flows is of the order of 100, a situation
that is not abnormal for flows in MPLS architectures or in the core of a network.

Index Terms

Generalized Processor Sharing (GPS), Large Deviation Principle, many sources asymptotics, small-buffer.

I. INTRODUCTION

Providing tight service differentiation to flows within a high speed network is quite difficult without
providing detailed state information about the flows. Going back to the INTSERV architecture, one way to
provide service differentiation is to provide minimum bandwidth guarantees that is easily implementable
via a Generalized Processor Sharing (GPS) scheme to share server bandwidth. This was first proposed by
Parekh and Gallager [21].

Generalized Processor Sharing is thus advocated for providing minimum bandwidth guarantees and
service differentiation to the traffic flows at a node. Its approximate packetized implementation Weighted
Fair Queueing (WFQ) is already implemented in most routers. A related discipline, the discriminatory
processor sharing (DPS), is also natural as a model of TCP bandwidth sharing. GPS is a work conserving
discipline in which each flow is assigned a weight that determines the amount of service capacity it can
get. At any time, capacity is distributed to the active flows in proportion to their weights. This way, the
choice of weight factors determines bandwidth allocation levels and provides service differentiation and
priority for different classes.

Most network applications have constraints on the packet loss and delay incurred by the bits as they
traverse the network from source to destination. These guarantees can be provided in deterministic or
statistical settings. Deterministic guarantees are hard guarantees and the analysis is usually based on a
worst-case scenario. Using network calculus techniques in [21] deterministic bounds on the delay at nodes
was provided. Since then network calculus techniques have been extended to more general convex traffic
envelopes and there has been a number of papers that have analyzed networks of GPS servers with infinite
buffers. The monographs of Le Boudec and Thiran [3] and Chang [4] provide a comprehensive treatment
of both deterministic and stochastic network calculus approaches. Deterministic bounds allow us to treat
the end-to-end problem but the results are quite conservative due to the fact that input sources are usually
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assumed to satisfy a deterministic envelope or a stochastic type of envelope referred to a exponentially
bounded burstiness (EBB) [24]. An analysis using the EBB approach can be found in [10].

Providing statistical QoS is much more efficient in terms of resource utilization (in this context being
able to support a larger number of flows) but the analysis is much more complicated. This is due to
the fact that traffic flows undergo changes in their statistics when “filtered” through queues and precise
characterization of the statistical behavior of flows within a network is possible only in a few simple
cases.

An exact stochastic analysis of GPS systems has been given only for the case of two buffers [12]. To the
best of our knowledge, there are no exact results in the literature for the case of more than two buffers or
general stationary inputs. However in most cases we are interested in designing networks where losses are
small that is often well captured by studying the overflow region of the queues that form. Mathematically
it leads us naturally to characterize the asymptotics of the buffer overflow or packet loss distributions.

There are basically two types of asymptotics of interest: 1) The large buffer asymptotic when there
are a few traffic flows which share a resource and a given flow can consume a significant amount of the
bandwidth, and 2) The many sources asymptotics when each source uses a small amount of the resources.
See [11] and [19] for a discussion of the two regimes.The latter many sources asymptotic is of interest
in applications involving the so-called statistical multiplexing and this is the scenario we will consider in
this paper.

Large buffer asymptotics for the GPS system have been considered in [25], [18]. Arrival traffic with
long range dependence or heavy tails were examined in [14], [2].

The many sources asymptotic is better suited when there are many flows arriving into a node and each
flow has a small bandwidth requirement when compared to the capacity. A large deviations framework
has been studied in a number of papers for FIFO queues in [6], [15], for HOL priority systems in [23],
[8]. In this framework the capacity and buffers are scaled in the same way as the number of sources, i.e.
by a scaling factor of O(N). The many independent flows scenario can also be approached via a Gaussian
framework by invoking a Central Limit Theorem (CLT) argument and this has been studied by a number
of researchers such as [5], [1] in the FIFO case and in [17] for the GPS case.

In this paper, we analyze the GPS discipline in a network setting. We consider the many sources
regime where a large number of flows are involved between origin-destination pairs in a network with
fixed routing. Such a scenario occurs in the MPLS architecture where virtual pipes (Label Switched Paths
(LSP)) are established for connections which are identified by their “routes”. Superposition of a large
number of flows is also a natural assumption for modeling traffic in the core of a large network. We also
assume that the buffer sizes in the network are small in comparison to the server capacities. This small
buffer scenario is actually of much interest in today’s networks where the link bandwidths and traffic
loads are increasing much faster than the buffer memory sizes. This is also the essence of the so-called
rate envelope multiplexing in networks (see [22]) where small buffers are used just to absorb the local
fluctuations but essentially the network can be modeled by bufferless nodes. A large deviations analysis
in the many sources setting for networks with FIFO and small buffers servers can be found in [20]. This
paper is an application of these ideas to the case of GPS servers where the situation is more complex
because of bandwidth sharing.

We will show that when the buffers are small, only the instantaneous values of the total input rate
determine the overflow asymptotics under the many sources assumption. This has already been shown in
the FIFO context in [15], [16] for a single node. Then a large deviation principle will be derived for a
network with a fairly realistic routing policy in that we only require that the route for a given flow be
acyclic but otherwise flows can interact in an arbitrary manner within the network. We also only assume
that the flows are initially independent when they enter the network. We first find the overflow probability
asymptotics in terms of the large deviation rate functions of the inputs. We then define the packet loss rates
and find their LD rate functions along with the corresponding acceptance region. For regulated traffic, a
lower bound for the their LD rate functions (and hence an upper bound for the overflow probabilities)
can be easily calculated.
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The outline of this paper is as follows: In Section II, the network model and the GPS discipline are
introduced. In Section III, we obtain the LD asymptotics for the buffer occupancy. In Section IV, we
determine the asymptotics of the loss process and then determine the admissible region. An example of a
two node network is considered in Section V with numerical results. In Section VI, we discuss the results
and provide possible extensions and some approximations.

II. MODEL AND PRELIMINARIES

Consider a network composed of K nodes which is accessed by M types (or classes) of traffic flows
or sources (see Figure 1 below). The server at node k can serve at the rate of NCk and the arriving work
of type m ∈M = {1, . . . ,M} which cannot be served is queued in a buffer of size Bm

k (N). We assume
that Bk(N)

.
=
∑

mB
m
k (N) = o(N), i.e., Bk(N)/N → 0 as N →∞. This corresponds to a network with

(asymptotically) negligible buffers in relation to the capacity. The work which cannot be accommodated
in the buffer is lost.

The external arrivals into the network from different classes are assumed to be mutually independent.
We consider a discrete time fluid model where traffic arrivals and services take place in slots indexed by
t ∈ ZZ. Traffic is served under the Generalized Processor Service (GPS) discipline. Under GPS, each flow
m is assigned a weight 0 ≤ φm ≤ 1 such that

∑M
m=1 φm = 1. The server is work conserving, i.e., does

not idle when there is traffic to be sent. A flow is called backlogged when it has data in its buffer. For a
GPS server which operates at a fixed rate, let Cm(t1, t2) be the amount of flow m traffic served during
an interval (t1, t2]. Then for any flow m continuously backlogged during (t1, t2] and any other flow n, it
holds that

Cm(t1, t2)

Cn(t1, t2)
≥ φm
φn
.

We remark that GPS is an idealized model and in practice a packetized approximation such as Weighted
Fair Queueing must be implemented.

Let Xm,N
t , m = 1, . . . ,M , denote the aggregate amount of work due to the sources of type m which

are transmitting at time t. Here N is a scaling parameter and we will be interested in the situation when
N → ∞. The stochastic process Xm,N

t is assumed to be stationary and ergodic for each m and N .
Let ρNm = IE[Xm,N

t ]/N and Xm,N(t1, t2) =
∑t2−1

t=t1
Xm,N
t . We assume that ρNm → ρm as N → ∞ and

Xm,N(0, t)/N satisfies the following Large Deviation Principle (LDP) with good rate function IXm

t (x):

− inf
x∈B◦

IX
m

t (x) ≤ lim
N→∞

1

N
log IP

{
Xm,N(0, t) ∈ NB

}
≤ lim

N→∞

1

N
log IP

{
Xm,N(0, t) ∈ NB

}
≤ − inf

x∈B̄
IX

m

t (x) (II.1)

where B ⊂ R is a Borel set with interior B◦ and closure B̄ and IXm

t : R→ [0,∞] is a continuous mapping
with compact level sets [9]. Only the ordinary topology will be used throughout this paper. In many cases
of practical interest, Xm,N

t results from the superposition of N independent, identically distributed (i.i.d.)
sources. In this case, assumption (II.1) follows from Cramer’s theorem [9]. However, it will be sufficient
for us to consider Xm,N

t just as a sequence of processes and use only the LD assumption (II.1) while
deriving the LD rate functions of overflow and total packet loss probabilities. Nevertheless, our motivation
comes from the case when Xm,N

t is the sum of N i.i.d. processes and we will impose this assumption
when we look at the finer asymptotics at the end of Proposition 3.1 and discuss the acceptance region in
Corollary 4.1.

It is assumed that the network has fixed routing. Type m flow has a fixed route without any loops
and its path is represented by the vector πm =

(
πm1 , . . . , π

m
lm

)
where πmi ∈ {1, . . . , K} and πmi 6= πmj

for i 6= j. Hence type m traffic traverses the nodes {πmi } by entering the network at node πm1 and
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leaving after node πmlm . Let the set Mk denote the types of traffic which pass through the node k, i.e.,
Mk = {m : πmi = k, 1 ≤ i ≤ lm}. It is assumed that:∑

m∈Mk

ρm < Ck (II.2)

This assumption is not needed to prove the results but otherwise there will be at least one flow whose
packet loss probability does not go to 0 as N →∞.
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Fig. 1. A typical network considered in the paper

We now present the dynamics of the GPS scheduling for a discrete time fluid system considered in this
paper.

Lemma 2.1: Consider a node with service capacity C and assume that its queue is empty at t = −1.
Let xm be the amount of type m = 1, . . . ,M traffic arriving to this node at t = 0. Choose a permutation
s on {1, . . . ,M} such that xs(1)/φs(1) ≤ xs(2)/φs(2) ≤ . . . ≤ xs(M)/φs(M) and define

n0 = arg max
n
{(C −

∑
i<n

xs(i))
φs(n)∑
i≥n φs(i)

≥ xs(n)} (II.3)

where
∑
∅ = 0 and 0 = arg maxn{} by assumption. Let c(m) be the service capacity used by type m

traffic at t = 0 and define A(x,C) = {s(1), . . . , s(n0)}. Then

c(m) =

{
xm m ∈ A(x,C)
(C −

∑
i<n0

xs(i))
φmP

i>n0
φs(i)

otherwise (II.4)

Proof: If n0 = 0, then xs(1) > Cφs(1) and since xs(1)/φs(1) ≤ xm/φm, we have xm > Cφm for all type
m. Thus all the flows are backlogged, i.e., each type m flow has more traffic than Cφm and therefore
it receives a capacity of Cφm. When n0 > 0, we will use induction. For n = 1, since xs(1) ≤ Cφs(1),
all of type s(1) traffic is served. Assume that this holds for all types s(n) with n < n0. A flow of type
{s(n + 1), . . . , s(M)} will share the remaining capacity C −

∑
i≤n xs(i) in proportion to its weight. But

since (C−
∑

i≤n xs(i))φm/
∑

i>n φs(i) ≥ xs(n+1), it follows that type n+1 is also served to the completion.
Now consider the types n > n0. Let C ′ = C−

∑
i≤n0

xs(i). By definition C ′φs(n0+1)/
∑

i>n0
φs(i) < xs(n0+1)

and thus for all n > n0 we have C ′φs(n)/
∑

i>n0
φs(i) < xs(n). Again, since the remaining capacity C ′ is
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distributed to the flows n > n0 according to their weights, they will all be backlogged and the capacity
each will get is given as in equation (II.4).

�

III. BUFFER OVERFLOW ASYMPTOTICS

Let Xm,N
k,t (Y m,N

k,t ) be the amount of input (output) traffic of type m at node k and time t. If node
k is not on the path of input m, set Xm,N

k,t = Y m,N
k,t = 0. Also define ZN

k,t = (X1,N
k,t , . . . , X

M,N
k,t ) and

ZN
t = (X1,N

t , . . . , XM,N
t ).

We will show that the buffer asymptotics are governed by the instantaneous rates of the inputs to the
node due to the assumption Bk(N) = o(N). Now we give the following principal result which relates
the LDP rate functions associated with instantaneous internal inputs and the overflow asymptotics at each
node to the LDP rate functions associated with the instantaneous external inputs into the network.

Proposition 3.1: There exists a continuous function gmk : RM → R, relating the instantaneous input
rate at node k for type m flow to all of the instantaneous external input traffic rates such that

Xm,N
k,t /N = gmk (X1,N

t /N, . . . , XM,N
t /N) + o(1) (III.5)

Let Fmk = {overflow for type m at node k}. Then

lim
N→∞

1

N
log IP {Fmk }

.
= −Imk =

− inf{IX1 (x) : m 6∈ A(gk(x), Ck)} (III.6)

where A(., .) as defined in Lemma 2.1 ,IX1 (x)
.
=
∑M

m=1 I
Xm

1 (xm) for x = (xm) ∈ RM and gk(x) =
(g1
k(x), . . . , gMk (x)).

Proof:
We will first show the existence of functions gmk . To this end, let us first obtain the relation between

the instantaneous rates of inputs and outputs at a node. For n = 1, . . . ,M , we define the function
fn : RM+1 → R as follows: For a given x ∈ RM , consider the model in Lemma 2.1 with capacity y and
arriving traffic x. Then fn(x, y) is taken as the amount of capacity used by type n flow (denoted by c(n)
in the Lemma). If all the buffers of node j was empty at time t − 1, then the amount of capacity used
by type n flow at time t would be equal to fn(X1,N

j,t , . . . , X
M,N
j,t , NCj). If not, the buffered traffic before

time t will share the service capacity with the arriving traffic at t. By comparing these two cases (empty
and non-emtpy buffers at time t− 1), we can find the following upper and lower bounds for Y n,N

j,t , which
was defined as the amount of type n traffic served at time t:

Bn
j (N)−Bj(N) ≤ Y n,N

j,t − fn(ZN
j,t, NCj) ≤ Bn

j (N). (III.7)

Note that the upper bound is found under the scenario when all of the buffered type n traffic is served.
In the lower bound case, the capacity that the type n would receive if the backlogged traffic belonging
to other types at time t − 1 were served. Since all the buffers are of o(N) and fn is linear in N due to
the GPS dynamics given in Lemma 2.1, we can write

Y n,N
j,t /N = fn(X1,N

j,t /N, . . . , X
M,N
j,t /N,Cj) + o(1). (III.8)

We will now obtain the mapping between the instantaneous rates of traffic inside the network (Xm,N
k,t ) and

the external input traffic (Xn,N
t ). In a feedforward network this can be obtained via an induction argument

by starting at the peripheral nodes and working towards the inner nodes. But in the non-feedforward case
which we consider, the instantaneous rates cannot be directly obtained. Indeed, they depend on themselves
through a functional relationship. Therefore we need to define such a function and show that it has a
unique fixed point.
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Let us now describe the function whose fixed point will give the instantaneous traffic rates in the
network. Recall that the path of type m flow is represented by the vector πm =

(
πm1 , . . . , π

m
lm

)
. Let

q =
∑M

m=1 lm, s1 = 1, sm =
∑m−1

n=1 ln, 1 < m ≤M and define

Ω = {v ∈ Rq : vsm+j ∈ [0, Cπm
j

], m = 1, . . . ,M,

j = 1, . . . , lm − 1}
Let T : Ω→ Ω be a mapping such that

T (v)sm = vsm , T (v)sm+j+1 = fm(v̄, Cπm
j

) (III.9)

where v̄n = vsn+nj,m
for n ∈Mπm

j
with πnnj,m

= πmj and v̄n = 0 for n 6∈ Mπm
j

.
Here vector v corresponds to the instantaneous traffic rates and T expresses the input rates to a node

in terms of the output rates of the upstream nodes (ignoring the o(1) term). Since each input is either an
external flow or the output of another node, we must have the relation T (v) = v. Now we need to show
that this is indeed the case and for a fixed vector w with wm = vsm , i.e., for fixed values of the external
input rates, this solution is unique and a continuous function of w. It is easy to check that T (Ω) ⊂ Ω
since fn(., y) ≤ y. Let Tw be equal to T for a fixed w, i.e., Tw = T |Ωw with Ωw = {v ∈ Ω : vsm = wm}.
Now we will show that Tw has a unique fixed point denoted by v0(w). From an extension of Banach fixed
point theorem [7, p. 187], it is enough to show that Tw is a condensing map which means that for a given
metric d and for u, v ∈ Ωw, d(Tw(u), Tw(v)) < d(u, v). To prove that Tw is condensing, it is sufficient to
show that the transformation at each node between input and output instantaneous rates is a condensing
mapping. Indeed Tw can be written as a disjoint sum of such transformations by choosing the appropriate
permutation of {vi} since the path of each flow has no loops.

Hence we will consider a generic mapping of the form F : D → D, F (x)m = fm(x,C) where D ⊂ RM

is a compact, convex set. For x = (xi) ∈ RM , define the norm ‖x‖ .
= max(

∑
xi≥0 xi,−

∑
xi<0 xi) and

let d be the corresponding metric. Since D is convex, it is enough to show that F is condensing in
a neighborhood of x ∈ D. From Lemma 2.1, there exists a set Ax ⊆ M such that F (x)m = xm
[F (x)m < xm] for m ∈ Ax [m 6∈ Ax]. Furthermore there exists a sufficiently small neighborhood B(x)
of x such that Ay = Ax for y ∈ B(x). Then for y ∈ B(x) we have (F (x) − F (y))m = (x − y)m if
m ∈ Ax and (F (x)− F (y))m = (C −

∑
n∈Ax

(x− y)n)φm/
∑

n6∈Ax
φn if m 6∈ Ax. Thus F is condensing

in the region {x ∈ D : Ax 6=M}.
As mentioned above, Tw can be written as the disjoint sum of F type transformations. Therefore Tw is

also a condensing mapping if
∑

n∈Mk
v0(w)sn+nk

> Ck holds for at least one k. But if this does not hold,
it follows that v0(w)j = wm for sm ≤ j < sm+1. Thus we have shown that for every w, there exists a
unique v0(w) satisfying Tw(v0(w)) = v0(w) Furthermore v0(w) is also a continuous function of w. Indeed
assume that this is not true and there exists n→∞, wn → w but v0(wn) 9 v0(w). But since v0(wn) lies
in a compact region, there exists v̄ s.t. v0(wnk

) → v̄ ∈ Ωw and because T is continuous, T (v̄) = v̄. But
this is in contradiction to the uniqueness of the fixed point in Ωw and thus proves the continuity of v0(.).

From the analysis above, we conclude that the unique fixed point corresponding to the instantaneous
rates of flows in the network is a continuous function of the instantaneous rates of the external inputs to
the network if we ignore the o(1) term in (III.8) due to the buffering. For every sample path, the above
analysis of finding the unique fixed point still applies since shifting T by a constant (which is the o(1)
buffer amount here) will not effect any of the arguments. But because of the continuity of T , each of
these fixed points differs from the one of the bufferless case by an amount of o(1). Thus we conclude
that there exists a continuous mapping gmk : RM → R such that

Xm,N
k,t /N = gmk (X1,N

t /N, . . . , XM,N
t /N) + o(1). (III.10)

From the above result and the contraction principle, Xm,N
k,t /N satisfies an LDP of type (II.1) with the

good rate function IX
m
k

1 given by

I
Xm

k
1 (y) = inf{IX1 (x) : x ∈ RM , gmk (x1, . . . , xM) = y} (III.11)
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The rate function IX
m
k

1 is also continuous. For this, it is enough to show that it is upper semicontinuous,
i.e.,

lim
n→∞

I
Xm

k
1 (yn) ≤ I

Xm
k

1 (y) for any yn → y (III.12)

Let x be such that gmk (x) = y for which the equation (III.11) is minimized; i.e. IX
m
k

1 (y) = IX1 (x). Now
take any y′ such that d(y′, y) < δ1 for small enough δ1. If we can find x′ satisfying gmk (x′) = y′ and
IX1 (x′) < IX1 (x) + ε, then by letting ε→ 0, we get (III.12). From the definition of T , we can find x′ (not
necessarily unique) and δ2 such that d(x′, x) < δ2 and gmk (x′) = y′. But since IX1 (.) was assumed to be
continuous, IX1 (x′) < IX1 (x) + ε is true for small enough δ2 = δ2(δ1, ε).

Having obtained the LD asymptotics of flows in the network, we now consider the buffer overflow
asymptotics.

Now by using (III.7) and (III.10),

IP {Fmk } ≤ IP
{
fm(gk(Z

N
t ), NCk)− o(N) < gmk (ZN

t )
}

and hence from the continuity of fm and gnk ’s,

limN→∞
1
N

log IP {Fmk } ≤

− inf{IX1 (x) : fm(g1
k(x), . . . , gMk (x), Ck) < gmk (xm)}

= − inf{IX1 (x) : m 6∈ A(g1
k(x), . . . , gMk (x), Ck)}

Now we look at the lower bound. Similar to the upper bound part,

IP {Fmk } ≥ IP
{
fm(gk(Z

N
t ), NCk) + o(N) < gmk (ZN

t )
}

and thus
limN→∞

1
N

log IP {Fmk } ≥

− inf{IX1 (x) : fm(g1
k(x), . . . , gMk (x), Ck) < xm} =

− inf{IX1 (x) : m 6∈ A(g1
k(x), . . . , gMk (x), Ck)}

�

Remark 3.1: It is in general difficult to identify the function gmk explicitly. When the network is
feedforward, it can be written as a composition of function fn’s recursively. However, gmk (x) can be
numerically computed at every point x ∈ RM . A simple algorithm would be to perform an exhaustive
check for every possible scenario of whether xm should go unchanged or scaled down along the nodes
of type m’s path. Note that for every given x, only one of these scenarios (unique fixed point in Ωx) can
happen as shown in the above proof. The validation of a scenario can be done by looking at the input-
output relationships (functions fn’s) Since fn’s are linear, it can be verified whether the corresponding
linear system for a scenario has a solution. In the worst case, this has to be performed for every possible
scenario, taking exponential in

∑M
m=1 lm amount of time.

The logarithmic asymptotics for overflow probability can be improved when Xm,N is the sum of N
i.i.d. processes. For this purpose, we will use the sharper LD asymptotics in RM given in [13]. W.l.o.g.
assume that M ∈Mk. Let Φk : RM−1 → R s.t.

M−1∑
i=1

IX
i

1 (xi) + IX
M

1 (Φk(x1, . . . , xM−1)) = Imk
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and Ψk : RM−1 → R be such that

{xM = Ψk(x1, . . . , xM−1)} =

{x ∈ RM : m 6∈ A(g1
k(x), . . . , gMk (x), Ck)}

Let V = (Hessian(IX1 ))−1 and let HΦk
(HΨk

) be the Hessian of Φk (Ψk). Take x∗k to be the unique (by
assumption) point where Proposition(3.1) result is minimized and αk = ∇IX1 (x∗k).

From the proof of Proposition 3.1, we know that

IP {Fmk } ∼ IP
{
ZN
t ∈ NΓm,Nk

}
where Γm,Nk = {x ∈ RM : m 6∈ A(gk(x), Ck ± o(1))}. Here an ∼ (�) bn means that an/bn → (≤) 1 as
n→∞.

Assume that HΨk
−HΦk

> 0. Then from Theorem 1.4 in [13],

IP
{
ZN
t ∈ NΓm,N

}
=

e−NIm
k d0√

2πNDet(V (x∗k)) |(αk)M |

×
1 +O( 1

N
)

(Det(|(αk)M |(HΨk
(x∗k)−HΦk

(x∗k)))
1/2

(III.13)

for d0 � eo(N) where Det(.) is the determinant function. Here the exponent term o(N) is at the order of
buffer sizes.

It is difficult to analytically check or prove the positivity of HΨk
− HΦk

in general but numerical
evidence suggests that it is always verified.

We can also find the joint distribution of overflows in each buffer by using the vector version of the
contraction principle. We only state the result since the proof follows mutatis mutandis as above.

Proposition 3.2: For any set of nodes S ⊆ {1, . . . , K} and set of flow types Rk ⊆Mk for k ∈ S,

lim
N→∞

1

N
log IP(overflow for m ∈ Rk at nodes k ∈ S)

= − inf{IX1 (x) : m ∈ Rk,m 6∈ A(gk(x), Ck), k ∈ S}

IV. LOSS RATIO AND ACCEPTANCE REGION

In this section, we consider the problem of characterizing the admissible region defined by the loss
asymptotics in a network which is accessed by a large number of independent flows. As mentioned in
the introduction, this is one of the main motivations for the development of the asymptotics.

Let us first define the quantities of interest. At the modeling level, we consider the granularity at the
level of bits since we are working with a discrete fluid model. Let Qm,N

k,t denote the number of bits of type
m in the buffer at node k and at time t+ and define QN

k,t =
∑M

m=1Q
m,N
k,t . Note that QN

k,t ≤ Bk(N) ≤ NCk
for large enough N . From Lemma 2.1, at time t, there exists a random set Ak,t ⊆M containing the flow
types which are completely served. Thus Qm,N

k,t = 0 for m ∈ Ak,t. If m 6∈ Ak,t and its traffic exceeding
the service capacity it receives is less than Bm

k (N), then all of the excess traffic is buffered. Otherwise,
the rest which cannot be buffered is lost. Under this scheme, the buffer content of type m 6∈ Ak,t at node
k evolves according to

Qm,N
k,t = min

{
Bm
k (N), Xm,N

k,t +Qm,N
k,t−1

−(NCk −
∑

n∈Ak,t
[Xn,N

k,t +Qn,N
k,t−1]) φmP

n 6∈Ak,t
φn

}
For each input flow of type m, let Lm,N be the total loss ratio (LR), defined as the ratio of the expected
value of lost bits (number of bits which arrive when the buffer is full) at all nodes along a route to the
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mean of input traffic in bits. Define rm = {πmi : i = 1, · · · , lm} to be the set of nodes on the route of
type m flow. Then

Lm,N =

∑
k∈rm L

m,N
k

IE[Xm,N
t ]

(IV.14)

where Lm,Nk is the expected number of packets lost at node k for type m traffic and given by

Lm,Nk = IE

[(
Xm,N
k,t +Qm,N

k,t−1 − C
m,N
k,t −Q

m,N
k,t

)+
]

(IV.15)

where Cm,N
k,t is the capacity used by type m at node k and time t.

We then have the following result characterizing the asymptotic loss corresponding to each flow which
is identified by the route it takes through the network. Note that we assume each flow is routed from its
ingress to destination along a unique route with no loops in the route. This is a realistic assumption in
MPLS type of architectures.

Proposition 4.1:

lim
N→∞

1

N
log Lm,N = −min

k∈rm
Imk (IV.16)

Proof: Let Lm,Nk be the expected value of packet loss at node k for type m traffic as defined above. Then,

log Lm,N = log(
∑
k∈rm

Lm,Nk )− log(IE[Xm,N
t ]).

Now
Lm,Nk = IE[max(0, Xm,N

k,t +Qm,N
k,t−1 − C

m,N
k,t −Q

m,N
k,t )]

≤ NyIP {Fmk }+ IE[Xm,N
k,t 1I{Xm,N

k,t >Ny}]

To find an upper bound for the second term on right hand side, first note that Xm,N
k,t ≤ Xm,N

t + o(N).
Then

IE[Xm,N
k,t 1I{Xm,N

k,t >Ny}] ≤

∞∑
x=y

(Nx+ 1)IP
{
Nx ≤ Xm,N

0 − o(N) < Nx+ 1
}

Thus
lim
N→∞

1

N
log IE[Xm,N

k,t 1I{Xm,N
k,t >Ny}] ≤ − inf

x≥y
IX

m

1 (x)

Since IXm

1 has compact level sets, IXm

1 (x) → ∞ as x → ∞ and therefore we can choose y such that
IX

m

1 (x) > Imk for x > y. Thus we get

lim
N→∞

1

N
logLm,Nk ≤ −Imk
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Now we consider the lower bound for Lm,N
k .

IE[max(0, Xm,N
k,t +Qm,N

k,t−1 − C
m,N
k,t −Q

m,N
k,t )] ≥

IE[Xm,N
k,t − fm(ZN

k,t, NCk)−Bk(N)] ≥

NyIP
{
Xm,N
k,t − fm(ZN

k,t, NCk) > Bk(N) +Ny
}
≥

NyIP
{
Xm,N
k,t − fm(ZN

k,t, NCk) > 2Ny
}
≥

NyIP
{
Xm,N
k,t > fm(ZN

k,t, NCk + 2Ny/φm)
}

where y > 0 and N is large enough to make Ny > Bk(N). Thus

limN→∞
1
N

log Lm,N
k ≥

− inf{IX1 (x) : fm(gk(x), Ck + 2y/φm) < xm}

From the continuity of IX
m,N
k

1 and f , by letting y → 0, we get

lim
N→∞

1

N
log Lm,N

k ≥ −Imk

Adding up Lm,Nk and using limN→∞
1
N

log IE[Xm,N
t ] = 0 gives

lim
N→∞

1

N
log Lm,N = −min

k∈rm
Imk

�

Now assume that Xm,N is the sum of Nnm i.i.d. processes. In this situation, we define the notion of
the admissible or acceptance region denoted by D. This corresponds to the mix or collection {nm}Mm=1 of
sources or flows, which when present in the network, results in each class meeting a QoS constraint on
the loss rates. Note that a flow of type m is specified by the route πm that it takes through the network.
Specifically,

D = {(nm),m = 1, . . . ,M : lim
N→∞

1

N
log Lm,N < −γm} (IV.17)

for γm > 0. Note that Lm,N , as defined in equation (IV.14) in terms of the aggregate traffic Xm,N , is also
the average number of packets or bits lost per each source of type m, i.e., we assume that losses of type
m are uniformly distributed over all type m sources.

Corollary 4.1: Let D be the acceptance region for (nm) defined above. Consider the fictional system
where Xm,N goes to a node on its path without being affected by the upstream nodes until that node and
let D̄ be the acceptance region for this case. Then

D̄ ⊆ D

Furthermore if γm = γ for all m, then
D̄ = D
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Proof: Consider a node k and type m ∈Mk. Let Īmk to be the LD rate function for the overflow probability
of type m flow at node k in the fictional system. First note that Xn,N

k,t ≤ Xn,N
t + o(N). Then

IP {Fmk } = IP
{
fm(ZN

k,t, NCk) < Xn,N
k,t

}
≤

IP
{
fm(ZN

0 , NCk + o(N)) < Xn,N
0

}
Thus it follows that Īmk ≤ Imk and we get D̄ ⊆ D.

Now take (nm) ∈ D. Then Imk > γ for every k = 1, . . . , K. By definition Īmk =
∑

m∈M IX
m

1 (x̄m) for
some x̄ = (x̄m). Assume gmk (x̄) < x̄m for some m ∈Mk. Then from the way gmk has been defined, there
must exist a node k′ for which

∑
m∈Mk′

gmk′ (x̄) > Ck′ . Otherwise this will imply gmk (x̄) = x̄m for all
m ∈Mk. Therefore using Proposition 3.1 again, we get

∑M
m=1 I

Xm

1 (x̄m) = Īmk > Ink′ for some n ∈Mk′ .
Since (nm) ∈ D, Ink′ > γ and hence Īmk > γ.

If gmk (x̄) = x̄m for all m ∈ Mk, then
∑

m∈Mk
gmk (x̄) =

∑
m∈Mk

x̄m > Ck. In this case at least one
queue must overflow at node k and therefore Īmk ≥ Ink > γ for some n ∈ Mk. Thus Īmk > γ for all m, k
and therefore (nm) is also in D̄. This implies that D ⊆ D̄ and completes the proof.

�

Remark 4.1: Above corollary shows that when the QoS (in terms of the packet loss) is required to be
the same across all classes (end-to-end routes), end-to-end loss can be computed by considering the initial
statistical characteristics of the flows as they enter the network.

V. TWO NODE CASE AND NUMERICAL RESULTS

In order to illustrate the results, in particular how the functions g(.) are determined, we consider two
examples of a simple network with two nodes. The first example is a feedforward network while the
second example is a network where individual routes have no loops but the network is not feedforward.

Example 1: There are three classes of traffic, one of which uses resources from both nodes. The schema
is illustrated in the figure below. Let us find the overflow probability for type 3 flow at the second node.

X

X

X

1

2

3

  Node 1 Node 2

NC NC
1 2

B (N)B (N)1 2

Fig. 2. Two node feedforward network

To this end, note that for x = (x1, x2, x3) ∈ R3, g1
2(x) = 0 and g3

2(x) = x3. For type 2 flow, we have

g2
2(x) =

{
x2 x1 + x2 ≤ C1 or x2 ≤ φ2

φ1+φ2
C1

φ2

φ1+φ2
C1 otherwise
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Thus we get

I3
2 = inf{IX1 (x) : x3 >

φ3

φ2 + φ3

C2, x3 + g2
2(x) > C2}

To use the sharper asymptotics in (III.13), assume that Xm,N is the sum of N i.i.d. processes. Assume
I3

2 = IX1 (x∗). Then we can compute

|α| = {
∑3

i=1[(IX
i

1 )′(x∗i )]
2} 1

2

Det(V (x∗)) = 1/
∏3

i=1(IX
i

1 )′′(x∗i )

ψ2(x1, x2) = max{ φ3

φ2+φ3
C2, C2 − g2

2(x)}∑2
i=1 I

Xi

1 (xi) + IX
3

1 (φ2(x1, x2)) = I3
2 = IX1 (x∗)

Without further assumptions on the input traffic it is difficult to check that the Hessian Hψ2(x
∗)−Hφ2(x

∗)
is positive definite; nevertheless it can be numerically verified.

The simulation for this example has given consistent results with the formula (III.13). These results
(stated in terms of a 90% confidence interval) along with the estimate given through equation (III.13) are
presented in Table I and II. The results given represent 1

N
log10 IP {overflow for type 3 at node 2}.

The traffic sources were taken as the sum of N i.i.d. ON-OFF processes with periods (Tper), probability
of being ON (p), peak rate (r) and weight factor (φ) as given below:

Flow Tper p r φ
1 30 0.33 3 0.2
2 40 0.40 2 0.3
3 45 0.55 3 0.5

The results in Table I correspond to the situation when type 2 flow does not overflow at node 2. Hence
g2

2(x∗) = x2. In this case, the optimum point was found to be x∗ = (1, 1.162, 2.445). Node 1 and 2 had
capacity 2.3N and 3.6N respectively and the buffers were taken to be of the order

√
N . For the results in

Table II, type 2 flow overflows at the first node as well. To get this scenario, some of the input parameters
were changed as follows: φ1 = 0.3, φ2 = 0.2 and C1 = 1.9, C2 = 3.2. In this case, x∗ = (1, 1.030, 2.316).
As can be seen, the estimation technique is fairly accurate when the scaling factor is 100 or more which

TABLE I
RESULTS WHEN NO OVERFLOW AT NODE 1

N Formula (III.13) Simulation 90% conf.
10 -0.77923 (-1.65935, -0.87308)
20 -1.25845 (-2.62248, -1.69771)
50 -2.80292 (-3.86659, -3.22508)
70 -3.51323 (-4.20805, -3.67714)
80 -3.73507 (-4.24211, -3.77006)
100 -4.18452 (-4.59805, -4.00401)
120 -4.53184 (-4.99378, -4.35273)
150 -5.14357 (-5.55611, -4.72269)

can be found in many realistic cases.
Example 2: In this example, we consider a non-feedforward network with two nodes and two types

of traffic as illustrated below. We will find the overflow asymptotics for type 2 flow at node 2. Let
x = (x1, x2). Then

I2
2 = inf{IX1 (x) : x2 > φ2C2, x2 + g1

2(x) > C2}
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TABLE II
RESULTS WHEN OVERFLOW AT NODE 1

N Formula (III.13) Simulation 90% conf.
10 -0.77566 (-1.32077, -1.21675)
20 -1.20184 (-1.71778, -1.54059)
50 -2.22781 (-2.70593, -2.39074)
70 -2.85220 (-3.27359, -2.82593)
80 -3.15686 (-3.51278, -2.90836)
100 -3.75665 (-4.17732, -3.42352)
120 -4.34758 (-4.76554, -4.02275)
150 -5.12302 (-5.35258, -4.71349)

  Node 1 Node 2

NC2

B (N)B (N)1 2

NC1X1

X2

Fig. 3. Two node non-feedforward network

g1
2 can be expressed as:

g1
2(x) =

{
x1 x1 ≤ φ1C1 or x1 + g2

1(x) ≤ C1

φ1C1 otherwise

Similarly

g2
1(x) =

{
x2 x2 ≤ φ2C2 or x2 + g1

2(x) ≤ C2

φ2C2 otherwise

From these, the set of (x1, x2) in calculating I2
2 can be obtained as:

{x2 > φ2C2, x2 + g1
2(x) > C2} = {x2 > φ2C2, x2 + x1 > C2, x1 + φ2C2 ≤ C1} ∪

{x2 > φ2C2, x2 + φ1C1 > C2, x1 + φ2C2 > C1}

VI. DISCUSSION

The results can be extended in several directions:
1) We have assumed that the weight factors φm were same at each node. Similar arguments and results

apply when weight factors at each node are different.
2) Continuous time fluid models can be handled for the bufferless case with the assumption that for

every m = 1, . . . ,M

lim
t→0

Xm,N(0, t)

t
= X̄m,N a.s.

for some r.v. X̄m,N . Then this limit r.v. can be taken as the instantaneous fluid input rate for the
analysis.

3) When there is traffic entering the network with total rate of o(N), above results still hold. These
sources will use a negligible amount of the capacity and LD rate functions of these sources as well
as their packet loss will be 0 at 0 and infinite elsewhere. Therefore they will not have any impact
on the LD rate functions for overflow.

When the buffers are large such as Bk(N) ≥ O(N), the time scale for overflow will be bigger than
1. In this case, it is again necessary to find the large deviation rate functions of outputs in terms of the
inputs but this is a very difficult problem.
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It is not always easy to find or measure the LD rate functions for a general traffic process. When the
input traffic has a known peak rate and a mean rate, we can find a lower bound for the rate function and
hence use this bound for the admission control purposes. Assume Xm,N is the sum of Nnm i.i.d. sources.
Let X̃m be one of the Nnm sources which make up Xm,N and X̃m

t be its rate at time t. Assume that
X̃m
t ∈ (0, πm). Using Hoeffding’s Inequality,

IE[exp(θX̃m
t )] ≤ ρm

πm
eθπm +

πm − ρm
πm

Therefore,

IX
m

1 (x) = sup
θ
{θx− log IE[exp(θX̃m

t )]} ≥

x

πm
log

(
x(πm − ρm)

ρm(πm − x)

)
− log(

πm − ρm
πm − x

)

We can find an on-off source for which the lower bound of the rate function is achieved. For example,
choose X̃m

t to be the stationary version of the following periodic function (in the discrete time, time
intervals must be chosen small enough to make the approximation better):

Zt =

{
πm 0 ≤ t < ρm/πm
0 ρm/πm ≤ t < 1
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