
Test Collection Management and Labeling System
Eunyee Koh

Advanced Technology Labs, Adobe Systems Inc.,
San Jose, CA, 95110-2704, USA

eunyee@adobe.com

Andruid Kerne, Sarah Berry
Interface Ecology Lab,

Dept. of Computer Science & Engineering
Texas A&M University, College Station, TX 77843, USA

andruid@cse.tamu.edu, berry.sarah@gmail.com

ABSTRACT
In order to evaluate the performance of information retrieval and
extraction algorithms, we need test collections. A test collection
consists of a set of documents, a clearly formed problem that an
algorithm is supposed to provide solutions to, and the answers
that the algorithm should produce when executed on the
documents. Defining the association between elements in the test
collection and answers is known as labeling. For mainstream
information retrieval problems, there are publicly available test
collections which have been maintained for years. However, the
scope of these problems, and thus the associated test collections,
is limited. In other cases, researchers need to build, label, and
manage their own test collections, which can be a tedious and
error-prone task. We built test collections of HTML documents,
for problems in which the answer that the algorithm supplies is a
sub-tree of the DOM (Document Object Model). To lighten the
burden of this task, we developed a test collection management
and labeling system (TCMLS), to facilitate usability in the
process of building test collections, applying them to validate
algorithms, and potentially sharing them across the research
community.

Categories and Subject Descriptors
H.3.7. [Digital Libraries]: Collection.

General Terms
Algorithms, Experimentation.

Keywords
Test collection, XML schema, Document Object Model.

1. INTRODUCTION
Many information retrieval or information extraction researchers
use test collections to validate their algorithm’s precision and
recall in reference to a test collection [1]. The test collection
consists of a set of documents, for which an algorithm is supposed
to provide solutions. A test collection is labeled, that is, annotated
with the answers that the algorithm should produce when
executed on the documents. Test collections are an important
factor in research validation, so they need to be built objectively

and maintained consistently. There are publicly available test
collections, developed by institutions such as TREC [11].
However, the documents in those collections are not labeled in a
manner appropriate for all information retrieval and extraction
research problems. Thus, researchers have needed to build and
label their own test collections, for example, the Open Video test
collection [9].
A systematic mechanism for building test collections eliminates
errors and enforces consistency in labeling practices. In addition,
a system that manages test collections facilitates usability in the
process of building test collections, applying them to validate
algorithms, and potentially sharing them across the research
community. To lighten researchers’ burden of building their own
test collections, we developed the Test Collection Management
and Labeling System (TCMLS).
The system is designed with the client-server model. The client is
implemented as a Firefox browser extension, which enables
researchers to collect and label any HTML documents using their
browser. The extension sends a service request message, such as
what document needs to be labeled. The server, which is built
using lightweight semantic distributed computing services [12],
performs the requested service, such as uploading a copy of the
document, and sends a response, including result status. We
specified the request and response message format between client
and server using XML. If the message does not follow the
specified syntax and semantics, the server will ignore it.

This paper starts by examining related work addressing and
explaining the need for managing test collections. Then, we
present the design of the TCMLS, in the context of our research
problem, which involves extracting informative parts from web
documents. We describe how the system works, and how we are
using it. We close by discussing how this work can meet the
research community’s needs.

2. RELATED WORK
Various test collections have been used throughout the years for
the evaluation of information retrieval systems. TREC provides a
set of large reference test collections that are extensively used by
researchers [11]. TREC collections have included Web Test
Collections, the Blog Track, the Query Track, the Question
Answering Track, and the SPAM Track. It also supported a video
track devoted to research in automatic segmentation, indexing,
and content-based retrieval of digital video, which then emerged
as independent [13]. Beyond TREC, other test collections include
CACM, ISI collections, and Cystic Fibrosis [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09...$10.00.

This would seem to be a large set of test collections. However, in
fact, the utility of these collections for research is to evaluate an
important but small set of possible information retrieval and
extraction problems. To address this limitation, many researchers

build their own test collections to enable conducting performance
evaluation. For example, Dakka et al. could not rely on the above
popular research collections because the collections do not
include the variety of alternative news sources in news portals,
which is critical in their research [3]. Instead, they collected news
articles crawled and processed by Newsblaster [8] and conducted
user studies to collect users’ relevance judgment for their
experiments. Liu et al. collected PDF documents from various
sources, which they used to evaluate the quality of their table
detection algorithm [7]. Song et al., investigating an information
extraction problem similar to ours, collected 600 web documents
from 405 sites in 3 categories in Yahoo: news, science and
shopping [10]. Both Song et al. and our research problems
involve using the Document Object Model (DOM) tree
representation of an HTML document [14] to identify document
components. They created their own tool for labeling importance
of blocks in web documents. Five human assessors manually
labeled blocks in the documents with importance values. They
then used this labeled test collection to assess the precision of
their extensions to the VIPS algorithm for automatically assessing
block importance [2]. A disadvantage of this tool is that instead of
being able to label any DOM nodes, the blocks that can be labeled
are only those identified by VIPS. Thus, the tool has limited
extensibility for building test collections for validating solutions
to different research problems. By contrast, our system can label
any informative blocks in documents, as well as specific metadata,
such as images and image captions.

3. SYSTEM DESIGN
Building a test collection is conducted through two stages. The
first stage is defining how documents will be labeled and
categorized. The next is interactively collecting and labeling
documents so that we can utilize the test collection in evaluating
algorithm performance. This paper focuses these two stages,
which the TCMLS is being developed to support. We designed
the system in a client-server model in order to manage a central
test collection repository.

This section presents the semantics with which our test collection
documents can be labeled. Once such semantics are defined, the
test collection can be formed. TCMLS usage begins with the user

identifying each document to collect, in response to which the
TCMLS stores a copy of the document and its media assets in its
repository. Next, the user applies the semantics to each test
collection document using the TCMLS, and the system stores the
labels with the associated document in the repository.

Table 1. Document labeling semantics for the test collection to
validate informative images and text extraction algorithm.
category The category the test document belongs to.

partition
For partitioning a document to identify semantic

sub-trees of informative context. Partitions are not
nested or overlapping in the DOM tree.

inform_img
Label informative image with an appropriate
caption and the best field true for the one best

representing the content.

inform_text Label informative text.

noninform_text Label non-informative text only within a block of
informative text to restrict scope of the labeling.

caption Mark as a caption text that describes an informative
image.

3.1 Document Labeling Semantics
We defined labeling semantics for the research problem of
extracting informative images and text from a document. Table 1
describes these labeling semantics. The labels are annotated to the
appropriate DOM nodes (elements) in an HTML document. We
also enable labeling the document as a whole as belonging to one
or another category. So far, in our case, the category labels for
documents are either “news article” or “news index”. The labeling
semantics are coded in the TCMLS.

3.2 Interactive Collecting and Labeling Client
The TCMLS client enables researchers to collect any HTML
document using their browser. It is implemented using the DOM
Inspector (DI) [4], an open source Firefox extension. DI enables
the user to examine the hierarchical DOM tree of the HTML
source code of a web document [14]. The DI already contains a
built-in feature that allows the user to add, edit, or remove
attributes of document elements. When you click an HTML
element in the DI, the corresponding document block is
highlighted with a red rectangle box in the browser (see Figure 1).
Details about the HTML element, in the form of attribute-value
pairs, are displayed. We extended this software by creating the
aptly named Modified DOM Inspector (MDI), which enables the
user to easily label appropriate nodes in test collection documents.

Figure 1. Example of nodes highlighted with Modified DOM
Inspector and labels assigned to the test collection document.

3.3 Identify Each Document to Collect
Figure 2 shows the buttons that we added to the MDI to enable
the user to apply label semantics to a DOM element. The
researcher uses Firefox to browse. She selects a document to
collect, and assigns a category from the set offered by the
Modified DOM Inspector. She clicks the URL to Server button
(see Figure 2). Then, the MDI extension forms the
collect_document message, in XML, which requests the
system server to store a document in the test collection repository,
as follows:
<collect_document category="" url="" datetime=""/>

In the collect_document message, the category field
specifies the category selected with the interface. The url field is
for the document URL that the researcher is collecting, and the
datetime is the time that the message is sent to the server. The
datetime is utilized in the server to track the document at the
time as Web continues to get updated overtime. This step, and the
subsequent performance of the service to store the document in
the test collection repository, must be performed prior to
interactive labeling.

3.4 Store the Document in Repository
When the server receives the collect_document message, it
connects to the specified URL, receives the document, and stores it
and referenced resources such as images and JavaScript in the
repository. As the documents themselves and the associated
resources can be changed or removed, we stored copies. This
requires resolving all URLs for referenced resources into relative
paths stored in the repository. Hyperlinked documents were not
stored and links to them were not transformed. The TCMLS stores
and fixes resource references in order to preserve complete visual
copies of each document.

Some HTML documents do not follow the specification completely.
For example, sometimes documents have some missing ending tags.
Thus, a typical XML parser is unable to form the DOM tree from
them. To address this issue, we use JTidy [6], a syntax checker and
pretty printer. JTidy cleans up malformed and faulty HTML, so that

the TCMLS can build DOM trees from any document in the test
collection repository.

Figure 2. Modified DOM Inspector: URL to Server button stores
document in repository. Semantic buttons (right) label selected
HTML element. Save XML button stores labeling in repository.

Upon forming the DOM for an HTML document, the system also
generates a unique identification number, tag_id, for each HTML
element in test documents. This enables the cross-reference
between the label and the test document in separate files. The
generated tag_id was added as an attribute in each element in test
documents in the repository. The following is the example from a
test document.

<html tag_id="0_1144" lang="en">

<head tag_id="1_39">

We used the depth-first-search (DFS) algorithm to generate tag_id.
The DFS algorithm records the discovery time and the finishing
time as each element in the DOM tree is traversed. We defined
the tag_id by combining the discovery time and finishing time.
The tag_id is unique in the DOM tree, and also provides parent-
child relationship among the elements in the DOM by seeing the
number range in the tag_id.

For example, in Figure 3 left, document elements have been
labeled with tag_id. The tag_id of the HTML is 0_9, the HEAD is
1_4, and the BODY is 5_8. The starting and ending range of the
tag_id shows that the HTML element is the parent of both the
TITLE and the HEAD, and that the TITLE is in the different tree
from the BODY. Knowing the parent-child relationship helps
researchers to label the test documents without having redundant
labels inside the same sub-tree. It also helps to locate the labeled
tags in the test documents. This is a more efficient way to label
DOM node relationships than XPath [15], which has
functionalities to find relative nodes, because XPath incurs tree
traversal iterations to operate, while our tag_id directly represents
parent/child relationships.

After the system server processes the request to store the
document in the repository, it sends the client a response. The
response is either ok_response (the request has been
successfully finished) or error_response (the request failed to
be performed by the server). When the client receives the
ok_response, the browser redirects to the test document URL
stored in the repository, so that researchers can label it.

3.5 Label Each Document
The MDI is used to label each document, with the semantics
described in Table 1, by clicking labeling buttons (see Figure 2).
When an img element is selected, another view appears. This
view enables labeling each image as informative or not, and, in
the former case, for one or more captions to be associated. A
dropdown checklist will contain all captions that have been
labeled through the interface in Figure 2. The user can check and
uncheck captions to associate them with the correct image.

Figure 3. Generate tag_id of each HTML tag by traversing the
DOM tree with DFS algorithm. The left diagram shows the
DOM tree, with each tag_id generated by algorithm (right).

3.6 Store Labels in Repository
When the user has finished labeling a document, she clicks the
Save XML button (see Figure 2). Then, a function recursively
walks through the HTML DOM tree with the DFS algorithm, and
checks for the annotation of the labels. Each label is represented
with its tag_id to form compact XML that represents the labeling.
Post-processing is performed to clean up the XML, such that
partition labels are ordered from least to greatest, and each

inform_image is associated with the correct caption. The
completed XML labeling string is sent to the server to store in the
repository. Here is an example:
<document
url="http://csdll.cs.tamu.edu:9080/TestCollections
/websites/News/1176757087819/" title="BBC NEWS |
UK | England | Berkshire | Friendly fire pilot
back in Iraq">
 <partition_set>
 <partition id="0" tag_id="362_700">

 <noninform_text_set>
 <noninform_text tag_id="428_433"/>
 <noninform_text tag_id="434_449"/>
 </noninform_text_set>
 <inform_text_set>
 <inform_text tag_id="366_367"/>
 <inform_text tag_id="372_451"/>
 </inform_text_set>
 <inform_img_set>

<inform_img tag_id="379"
url="newsimg.bbc.co.uk/media/images/42
687000/jpg/_42687225_matty_pa203b.jpg"
best="true">
 <caption_set>

<caption tag_id="380_381"
value="L/Cpl Matty Hull died four
years ago in the attack in Basra"/>

 </caption_set>
 </inform_img>
 </inform_img_set>

 </partition>
 </partition_set>
</document>

The label_document message encapsulates the XML labeling
string, to send it to the server for storage in the repository:
<label_document>
 XML labeling string
</label_document>

3.7 Browsing Test Collection
All the built test collections can be browsed from
http://ecologylab.net/testcollections/. The directory structure is
based on the selected category of test documents. If a user
clicks a category, all the collected documents under the
category are listed. Users can easily browse and download the
test documents with the label XML files.

4. Conclusion
We have developed a system to reduce researchers’ tedious task
of test collection management and labeling. The system provides
usability for iteratively building test collections. It facilitates
algorithm validation. As they are developed, test collections are
published on the web, enabling sharing by the research
community. By installing the browser extension on Firefox, other
researchers can also contribute to the test collection. They can
browse and download the built collection, and use it for the
algorithm validation. Our goal is to maintain our system to enable
sharing and extending collections among the research community,
to support algorithm development efforts.
While institutionalized test collections have been developed to
promote solutions to important research problems, there is a world
of important research problems they have not addressed. However,

test collections are necessary for much research on information
retrieval and extraction. The burden of creating test collections
may function as a barrier to entry for important new research
areas. The present research develops tools to support test
collection management and labeling. It thus has the potential to
facilitate the diversification of research efforts in the fields of
information retrieval and extraction, by reducing the efforts
necessary to address research problems whose significance has
not yet been institutionally acknowledged, but which may turn out
to be of great importance.

5. ACKNOWLEDGMENTS
Support is provided by NSF grants IIS-0633906 and IIS-0747428.
We would like to thank Laurie Byrum, Adobe Systems for useful
comments to improve this paper and the anonymous reviewers for
helpful comments.

6. REFERENCES
[1] Baeza-Yates, R., Ribeiro-Neto, B., Modern Information

Retrieval, Addison-Wesley Longman Publishing, 1999.
[2] Cai, D., Yu, S., Wen, J. R. & Ma, W. Y., VIPS: a Vision-

based Page Segmentation Algorithm, Microsoft Technical
Report, MSR-TR-2003-79, 2003.

[3] Dakka, W., Gravano, L., Efficient summarization-aware
search for online news articles, JCDL 2007, 63-72.

[4] DOM Inspector, Mozilla,
http://www.mozilla.org/projects/inspector/, last visited
12/13/2007.

[5] Fox, E. A., Characterization of two new experimental
collections in computer and information science containing
textual and bibliographical concepts, Technical Report 83-
561, Cornell University, Department of Computer Science,
Ithaca, NY, 1983.

[6] JTidy, http://jtidy.sourceforge.net/, last visited 01/08/2008.
[7] Liu, Y., Bai, K., Mitra, P., Giles, L. C., TableSeer: automatic

table metadata extraction and searching in digital libraries,
JCDL 2007, 91-100.

[8] Newsblaster, http://www.newsblaster.com/, last visited
04/22/2009.

[9] Slaughter, L., Marchionini, G., Geisler, G., Open video: A
framework for a test collection, Journal of Network and
Computer Applications, 23(3), 2000, pp. 219-245.

[10] Song, R., Liu, H., Wen, J. R., & Ma, W. Y., Learning
Important Models for Web Page Blocks based on Layout and
Content Analysis, Special Interest Group on Knowledge
Discovery and Data Mining (SIGKDD) Explorations, 6(2),
pp. 14-23, 2004.

[11] Text REtrieval Conference (TREC), http://trec.nist.gov/, last
visited 01/18/2008.

[12] Kerne, A., Toups, Z.O., Dworaczyk, B., Khandelwal, M., A
concise XML binding framework facilitates practical object-
oriented document engineering, ACM DocEng 2008, 62-65.

[13] TREC Video Retrieval Evaluation (TRECVID), http://www-
nlpir.nist.gov/projects/trecvid/, last visited 04/22/2009.

[14] W3C, Document Object Model (DOM) Level 2 Core
Specification, http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113/, 2000.

[15] XML Path Language (XPath), http://www.w3.org/TR/xpath,
last visited 04/22/2009.

	1. INTRODUCTION
	2. RELATED WORK
	SYSTEM DESIGN
	3.1 Document Labeling Semantics
	3.2 Interactive Collecting and Labeling Client
	3.3 Identify Each Document to Collect
	3.4 Store the Document in Repository
	3.5 Label Each Document
	3.6 Store Labels in Repository
	3.7 Browsing Test Collection

	4. Conclusion
	5. ACKNOWLEDGMENTS
	6. REFERENCES

