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ABSTRACT 

Nonparametric regressiOn 1s a set of techniques for estimating a regression curve 

without making strong assumptions about the shape of the true regression function. These 

techniques are therefore useful for building and checking parametric models, as well as for 

data description. Kernel and nearest neighbor regression estimators are local versions 

of univariate location estimators, and so they can readily be introduced to beginning 

students, and consulting clients who are familiar with such summaries as the sample 

mean and median. 
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1. INTRODUCTION 

Nonparametric regression is a collection of techniques for fitting a curve when there 

is little a priori knowledge about its shape. The estimators discussed in this article provide 

estimates that are smooth functions, and the estimation procedure is called smoothing. 

Running averages, a very simple type of smoother, have been used since at least the late 

1800's for determining trends in time series (for example, Wolfenden, 1942, attributes the 

method to De Forest in the 1870's). Since the 1970's there has been renewed interest in this 

area. A number of new smoothing techniques have been suggested, and their properties are 

becoming well-understood. This article introduces local location estimators such as kernel 

(N adaraya 1964; Priestley and Chao 1972; Watson 1964) and nearest neighbor regression 

estimators (Benedetti 1977; Stone 1977; Tukey 1977) as simple extensions of ordinary 

univariate location estimators. These nonparametric regression estimators are powerful 

data-analytic tools, both as stand-alone techniques and as supplements to parametric 

analyses. 

Estimators of location, such as the sample mean and median, are generally taught 

in elementary statistics courses, along with estimates of their precision. Summarizing a 

bivariate relationship using local location estimators is readily introduced to beginning 

students as an extension of these techniques. 

Scatterplots are generally used to introduce bivariate relationships. Students have 

little difficulty with the idea of summarizing the trend in a scatterplot with a curve, fit 

by eye, particularly if the initial examples are not too scattered about the regression line. 

In my experience, students readily accept the idea that a more accurate summary may be 

obtained by dividing the scatterplot into vertical strips, and computing a location estima­

tor in each strip. Error bars can be computed in each strip using univariate confidence 

intervals. 

Practical application of this method generally leads the students to question how the 

strips should be located on the plot, and how the number of strips (or the width of the 

strips) should be chosen. These questions lead naturally to the idea of "moving" strips 
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(windows) and selection of window size (bandwidth or span) that are central to kernel and 

nearest neighbor regression. 

Introducing local means or medians as a summary of a bivariate relationship empha­

sizes to students that regression estimators attempt to represent the population location 

at fixed values of the predictor variables. Parametric fits can then be introduced as a 

means of summarizing the observed relationship with an equation, and the parametric 

and nonparametric fits can be compared as the first step in assessing goodness-of-fit of 

the parametric model. For example, the elementary text by Freedman, Pisani and Purves 

(1978, Chap. 10) makes good use of this method before introducing linear regression. 

When residual plots are introduced as diagnostic tools, it is natural to think of smoothing 

them as well, to detect trends not described by the parametric model. 

There is an unfortunate lack of off-the-shelf software for nearest neighbor and ker­

nel smoothing. However, related smoothers are now available in a number of software 

packages, including JMP (SAS Institute 1989), Minitab (Ryan, Joiner and Ryan 1985), S 

(Becker, Chambers and Wilks 1988) and Systat (Wilkinson 1988). 

2. LOCAL LOCATION ESTIMATORS 

The simplest nonparametric regression estimators are local versions of location esti­

mators. For a random variable (t,y),the regression curve, p(t) = E(yJt), shows how the 

mean of the dependent variable, y, varies with the independent variable, t. 

If we are interested in estimation only at a single value of the independent variable, 

say, t*, (and if t is under experimental control, so that we can sample the dependent 

variable at t*), we would do best to sample only at this value. Then we could use a 

location estimator, such as the sample mean, trimmed mean, or median. Confidence 

intervals for this estimator would be formed using the usual intervals for the location 

estimator. 

If we have several design points, (t1 · · · tn), with several replicates of the dependent 

variable at each design point, we can estimate p(ti) by a location estimator of the ob­

servations taken at ti. Confidence intervals can also be computed at each point, or, if 
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the variance is assumed to be constant, can be computed using a pooled estimate of the 

population variance. 

This method is shown in Figure 1, using the sample mean as the location estimator. 

The data is mortality rate (y) as a function of average July temperature ( t) in a set of 

American cities (Velleman 1988). As temperature was rounded to the nearest degree, there 

are replicates at many temperatures. In Figure 1, the data and i}i., the average mortality 

at temperature ti, are plotted. (When there are no replicates, the sample average is just 

the observed data point.) Between data points, the average mortality rates are estimated 

by linear interpolation. 

Two sets of normal theory confidence intervals are illustrated. If the vanance of 

mortality is assumed to vary with temperature, confidence intervals for the mean should 

be based on local estimates of the variance, 

where ni is the number of data points at ti and Yij is the Ph data value taken at ti. 

These intervals are shown by vertical bars in Figure 1. Notice that temperatures with no 

replicates do not have confidence intervals because no local estimate of standard error can 

be computed. The 1- a confidence interval at ti is computed as 

where t(h,a) denotes the ath quantile of the Student's t distribution on h degrees of 

freedom. Whenever the number of replicates is small, the interval is very wide, due to the 

small number of degrees of freedom for the t-statistic, and the large standard error of the 

sample mean. 

If the variance of mortality is assumed to be constant, a pooled variance estimate 

can be used: 
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where n is the number of design points, and N = 2:?=1 ni is the total number of data 

points. The ends of these intervals are shown on Figure 1 by circles. Confidence intervals 

can be computed at every data point, and the length of the confidence interval is inversely 

related to the square root of the number of replicates, since the degrees of freedom do not 

vary. The confidence interval at ti is computed as 

iii. ±t(N- n,a)ii/...;ni. 

The intervals are, in general, much shorter than those based on local estimates of variance. 

Usually there is only one observation at each design point. However, if we know 

that p(t) is smooth, points that are close together should have approximately the same 

mean. So, if we want to estimate p(t*), we could pick some neighborhood oft* (a vertical 

strip on the scatterplot, as in Figure 2a), and proceed as if the data values falling in the 

neighborhood are actually a sample taken at t*. The estimator is then 

jj(t*) = __!_ '"""' Yi n* L..., 
t;EN(t•) 

= p(t*) + __!_ '"""' [p(ti)- p(l*)] + __!_ '"""' ~i n* L..., n* L..., 
t;EN(t•) t;EN(t•) 

(1) 

where N(t*) is the neighborhood, n* is the number of data points in the neighborhood, 

Yi is the datum at ti, and ~i is the deviation of Yi from J.£(ti)· Since the y-values in the 

neighborhood have mean close to, but not equal to, p(t*), this estimator has bias 

Bias[jj("l*)] = __!_ '"""' [p(ti)- p(t*)]. n* L..., 
t;EN(t•) 

On the other hand, the estimate based on this subset ofthe data will have smaller variance 

than the estimate based on a single observation. If the goodness of the estimator is assessed 

by the Euclidean distance (squared error) between the estimator and the true regression 

function, the estimator based on the neighborhoods is an improvement if the variance 

decreases more than the squared bias increases. 

If we have an unbiased estimator of the population variance, confidence intervals for 

the predicted values can be estimated using the usual normal theory approximations. The 
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confidence intervals will, however, be centered around the biased estimate of the mean. 

Under repeated sampling using the same design points, the bias depends only on the 

unknown regression function and the design points. The confidence intervals will have the 

correct coverage properties for the expectation of the estimator, JJ("l*) + Bias[p(-l*)], but 

not for the true regression curve. Adjusting confidence intervals so that they have the 

correct coverage for the true regression function is a topic of current research. 

Two methods are commonly used to determine the size of the neighborhoods. Kernel 

estimators use strips of constant width (bandwidth). This is illustrated in Figure 2. In 

Figure 2a, the bandwidth is 0.1. The two strips have 6 and 3 points respectively. In 

Figure 2b, the bandwidth is 0.25. The strips have 12 and 10 points respectively. For a 

constant value of the bandwidth, the number of data points, and thus the variance of the 

estimator, varies from strip to strip. As the bandwidth increases, the number of points 

in the neighborhood is nondecreasing and so is the maximum distance between a point in 

the neighborhood and the point of estimation. As a result, the variance of the estimator 

decreases, but the bias, in general, increases. 

Nearest neighbor estimators use strips of constant sample size (span). Usually the 

neighborhood is chosen so that an equal number of design points is taken from either side 

of the point of estimation. This is illustrated in Figure 3. In Figure 3a, the span is 5. The 

width of the first strip is 0.1, and the width of the second strip is 0.15. In Figure 3b, the 

span is 13. The width of the first strip is 0.28 and the width of the second strip is 0.35. 

Although width of the neighborhood varies from strip to strip, if the population variance 

is constant and there are no replicates, the variability of the estimator will be the same in 

every neighborhood (that is, the confidence intervals will all have the same width). For 

nearest neighbor estimators, it is not always clear how to handle replicates. In this paper 

we will base the span on the number of design points covered. The true sample size will 

be taken into account when forming confidence intervals. 

Placement of the boundaries of the neighborhood can have a very strong effect on 

the regression estimator. This is avoided in practice by using moving strips, as in Figures 
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2 and 3. Instead of cutting the t-axis into fixed strips, the strip is moved along the 

axis, and centered at each estimation point in turn. Generally estimation is done only 

at observed design points, by centering the strip at the design point, and extended by 

interpolation between design points. For kernel estimators, this avoids the problem of 

empty intervals. However, in principle, for kernel estimators the strip can be moved 

continuously for estimation at each point on the t-axis. For nearest neighbor estimators, 

moving the strip continuously gives a step function estimator, as the nearest neighbors 

are constant between design points. 

Figure 4 displays 4 regression estimates of the mortality data, with accompanymg 

pointwise confidence intervals. (The pooled within variance has been used to estimate 

a 2 ). In each plot, the heavier central line is the regression estimate. Figure 4a is the 

estimate based on the sample mean at each design point. The estimate is unbiased, but 

quite wiggly. The main features of the plot are the dips at about 68° F and 73° F, and the 

peaks at about 71° F and 78° F. However, there are a number of other local peaks. 

Figure 4b displays an estimate based on fitting mortality with ordinary polynomial 

regression, using a polynomial of degree 3. The estimate is very smooth. The only fea­

ture of the plot is the peak near 78° F and a possible, shallow dip near 67° F. Although 

polynomial regression can also be viewed as a nonparametric regression technique, it is 

somewhat more limited for exploratory analysis than kernel and nearest neighbor regres­

sion, due to the severe shape restrictions of low order polynomials. Unless the relationship 

is truly cubic, the polynomial regression estimator is also biased. Use of a higher degree 

polynomial is similar to using smaller span or bandwidth - the fit is less biased but more 

variable. 

Figures 4c and 4d display, respectively, a kernel regression estimate based on a band­

width of 6° F, and a nearest neighbor estimate based on a span of 5. (The span was chosen 

to produce bandwidths close to 6° F.) The plots are both quite similar to the cubic fit, 

although they are somewhat less smooth. The main difference between the polynomial 

and non parametric curves is the shape of the bump, which appears to be skewed right in 
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the polynomial fit, but is quite symmetric in the nonparametric fits. 

3. ESTIMATING VARIANCE 

To compute confidence intervals, an estimate of variance is needed. If the variance 

is assumed constant, some type of pooled estimator can be used. When the data contain 

replicates at most design points, and the variance is assumed constant, it is natural to 

use the pooled within variance, 8-2 , to estimate the population variance. If the data are 

normally distributed, 8-2/ a 2 is distributed as a chi-squared on N - n degrees of freedom 

Usually, however, there are few replicates in the data. The residual sum of squares is a 

natural candidate for estimating variance. However, Equation (1) shows that the residuals 

are inflated by bias. When the choice of bandwidth or span is based on minimizing the 

squared error distance between the estimated and true regression functions, the bias and 

random error are of the same order of magnitude, so that the residual mean square is 

much larger than the true variance. 

An idea that works well is detrending the data locally, and using the sample variance 

of the detrended data. When the design points are not too clustered, a simple, effective way 

to detrend for variance estimation is to use the pseudo-residuals ri = Yi- (Yi+l + Yi-1)/2 

(Altman and Paulson 1990; Rice 1984). The variance estimator is then 

n-l 
-2 2 "" 2 
a = 3(n- 2) ~ ri 

~=2 

(2) 

The distribution of i72 /a2 can be approximated by x~ where h = (n- 2)/2 (Box 1954). 

The usual normal theory pointwise confidence intervals, using a Student's t ordinate on h 

degrees of freedom should then be adequate and will have the form: 

Yi. ±t(h,a)i7/..;ni, 

where ili. is the average of the data in the neighborhood of ti and ni is the number of 

points in the neighborhood. 

When the design points are highly clustered, more sophisticated detrending may be 
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needed. The method of Gasser, Sroka and J ennen-Steinmetz (1986) seems to be effec­

tive for this situation. Altman and Paulson (1990) gives a simplification of some of the 

computations for this variance estimator. 

4. REDUCING THE BIAS USING WEIGHTED AVERAGES 

Equation (1) shows that kernel and nearest neighbor estimators are biased. Since 

we assume that points which are close together have means which are more similar than 

points which are far apart, it makes sense to use a weighted average, with smaller weight 

for points farther from the center of the strip. This decreases the bias of the estimator 

without much increase in its variance. Standard errors can be computed in the usual way, 

using the formula for the variance of a weighted average. 

Since it is often useful to compare the smooth (regression estimate) for several spans 

or bandwidths, it is helpful if the weights can be defined so that they are readily adjusted 

to the size of the neighborhood. One way to do this is to define the weights using a 

function, K(t), called a kernel weight function, that is large near zero and dies away to 0 

as it reaches 1/2. For example, the quadratic kernel is the function: 

for iti::; 1/2. 

Then, for a kernel estimator with bandwidth >., the estimate at t* is the weighted 

average 
n n 

i=l i=l 

where the weights are defined by Wi = K[(t* -ti)/ >.]. The nearest neighbor estimator with 

span >. has a similar form, with weights defined by Wi = K[(r*- ri)/(>.- 1)], where ri is 

the rank of the ordered design points and r* is the rank of t* among the design points. 

The effect of changing the neighborhood size on the kernel weights is illustrated in Figure 

5. As the neighborhood size is increased, more points fall in the neighborhood, but each 

point receives proportionately less weight. 

The sum of the weights in the denominator is a normalizing factor, which is some­

times replaced by other expressions. The kernel function, K(t), is generally chosen to 
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be symmetric. However, it need not be unimodal or even positive. The quadratic kernel 

given above is optimal in a certain sense among positive kernels. See Gasser and Muller 

(1979) for a discussion of the choice of kernel function. 

Another way of computing weights is to use local linear (or polynomial) regressions. 

Instead of a weighted mean, a linear regression estimate is computed in every neighborhood 

(Cleveland 1979; Cleveland and Devlin 1988; Friedman 1984). This is illustrated in Figure 

6. Essentially, instead of estimating the mean at every point, the curve is approximated by 

estimating a tangent at every point. Local regressions are popular because if the points lie 

on a line (or polynomial), the line (or polynomial) will be reproduced. The computations 

can be done more rapidly than the computations for weighted averages based on kernel 

functions, and normal theory confidence intervals can still readily be produced. 

Kernel, nearest neighbor and local linear estimators are all linear functions of the 

data - that is j}(t) = Ef=1 'Yi(t)yi where 'Yi(t) are the kernel weights (for kernel and 

nearest neighbor regression) or the elements of the hat matrix (for local linear regression). 

As a result, pointwise normal theory confidence intervals can be computed in the usual 

way as 

( 
n ) 1/2 

j}(t)±t(h,a)u tt 1l(t) 

where u and h are defined by Equation (2). Once again, it should be noted that these 

intervals are centered about a biased estimator of the true regression function. 

5. CHOOSING THE SIZE OF THE NEIGHBORHOOD 

The problem of selection of the smoothing parameter (that is, the size of the niegh­

borhood) is closely related to the problems of selecting degree for a polynomial regression, 

or selecting variables in multiple regression. The need to avoid overfitting, and to "trade" 

bias for variance to obtain a better fit is very evident in nonparametric regression. When 

students understand these ideas, it is easy to introduce parametric model selection prob­

lems. 

Figures 2 and 3 show how the regression estimate changes with neighborhood size. 
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Choice of the appropriate neighborhood size is critical to the performance of most non­

parametric regression estimators. When the bandwidth or span is very small, the estimate 

will be very close to the original data, and so will be very wiggly. Due to overfitting, the 

estimate will be almost unbiased, but will have large variance under repeated sampling. 

At the other extreme, the estimate will be very smooth, lying close to the mean of all the 

data or to a simple parametric curve, such as a line or low order polynomial, depending 

on the form of estimator used. The estimate will have small variance, but will be highly 

biased. 

One way to select the smoothing parameter is simply to look at plots of the smooth 

for several spans or bandwidths. If the overall trend is the feature of most interest to the 

investigator, a very smooth estimate may be desirable. If the investigator is interested in 

local extrema, a less smooth estimate may be preferred. Subjective choice of smoothing 

parameter offers a great deal of flexibility, as well as a comprehensive look at the data, and 

is readily introduced to beginning students. However, objective methods may be preferred 

in order to produce an automatic smoothing technique, or for consistency of results among 

investigators. 

Model selection techniques based on measures of prediction error are often used for 

choosing the smoothing parameter. We could, for example, proceed by minimizing the 

least squares criterion, 2::7=1 r[, where 'f"i = Yi-j}(ti) are the regression residuals. However, 

just as in variable selection, this criterion leads to fitting the largest available model. For 

nonparametric regression, this is the model with bandwidth 0 (span 1), j}(ti) = Yi· The 

result is analogous to polynomial regression, where choosing the degree by minimizing the 

residual sum of squares also leads to j}( ti) = Yi. 

This overfitting occurs because, when the model is not known, the criterion is bi­

ased down for squared prediction error, and the bias increases as the bandwidth or span 

decreases. A number of less biased estimators of squared prediction error have been de­

veloped in the context of variable selection and other model building situations, and are 

applicable to bandwidth and span selection. 
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A popular heuristic is leave-one-out cross-validation, or PRESS (prediction sum of 

squares) (Allen 1974; Geisser 1975; Stone 1974). Case i is deleted from the data for 

predicting J..'( ti) giving the estimate 

fl-i(ti) = L Wj1Jj/ L Wj 

i:f;j i:f;j 

where the weights are defined as in Section 4. The deleted residuals 

are then computed. The method of cross-validation then chooses the bandwidth or span to 

minimize the sum of squared deleted residuals, .E~1 r~i· This method provides consistent 

estimates of the regression function (Hardie and Marron 1985). Although the rate of 

convergence of the smoothing parameter to its optimum is known to be slow (Hardie, Hall 

and Marron, 1986), the selected parameter value often works well even for moderate sample 

sizes. The computational burden is small, as simple algebra shows that r -i = ri/[1-1'i(ti)], 

where 1'i(ti) = wi/ .Ej=1 Wj, so that the regression estimate need only be computed once 

for each value of the smoothing parameter. 

6. LARGE SAMPLE PROPERTIES 

It can be seen intuitively that increasing the bandwidth of a smoother increases the 

bias, while increasing the span reduces the variance. These ideas can be made more 

precise by investigating the large sample properties of the regression estimators under 

some simplifying assumptions. 

The assumptions that will be made are: 

I) The average distance between design points is about 1/n for large sample sizes n. That 

is lti- ti-1- 1/nl = o(1/n). 

This is required to ensure that there are no gaps in the data, since we cannot 

get a good estimate in or near a gap. 

II) The regression function J..'(t) hasp ~ 2 square integrable derivatives. (Actually, only 

continuity is needed, but the algebra is more difficult.) 
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III) The errors are uncorrelated with mean 0 and variance a 2 • 

We will also choose our kernel function, K(t), so that 

A) K(t) is symmetric on [-1/2, 1/2) and 0 off the interval. 

B) JtkK(t)dt = 0 fork <p and jtPK(t)dt =J 0. 

With these assumptions, the asymptotic bias of a kernel estimator can readily be 

computed using a Taylor series expansion around the true value p,(t). As the sample size 

n goes to infinity, and if the bandwidth ). is chosen so that ). goes to zero and n.>. goes to 

infinity, then: 

Bias[P(t)] = (-l)P).Pp(P)(t) j xPK(x)dxjp!+o(..\P), 

where p,(P)(t) is the pth derivative of p,(t). The variance of the kernel estimator is: 

Var[P(t)] = a 2 j K 2 (x)dxjn). + o(1jn..\) 

The results for nearest neighbor estimators are the same if the span is allowed to be n..\. 

For a positive kernel, p must be 2. If the regression function is known to have more 

than 2 derivatives, the asymptotic bias of the estimator can be reduced by using a kernel 

that attains negative values. Also, notice that the bias is greatest where the function has 

large pth derivative. The estimate is biased down in the neighborhoods of local maxima, 

and up in the neighborhoods of local minima. Kernel and nearest neighbor estimators 

erode hills and fill in valleys. 

These results show explicitly the bias versus variance trade-off. The bias disappears 

when ). goes to zero. The variance disappears when n.>. goes to infinity. 

The asymptotic mean squared error is: 

E[j}(t)- p(t)]2 = Bias2 [j}(t)] + Var[j}(t)] 

= ).2P (p(P)(t)j xPK(x)dxjp!) 
2+ a 2J K 2 (x)dxjn). + o().2P) + o(1/n.>.) 

Ignoring the higher order terms and setting the derivative of this expression equal to zero 

shows that, asymptotically, the distance between the estimate and true value is minimized 
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when>.= cn-I/(2P+l), where Cis a constant depending on the pth derivative of 1-'(t), and 

on the kernel. 

For the optimal value of>., the bias and standard error of the estimate are the same 

order of magnitude. This explains why the residual mean square of the smooth is not a 

good estimate of a 2 when the smoothing parameter is chosen to minimize mean squared 

error. As well, it shows that the centering of confidence intervals is an important problem. 

Intervals are centered around a biased estimate of the regression function, and the widths 

of the intervals are too small to compensate for the incorrect centering. 

7. SOFTWARE 

There is a shortage of off-the-shelf software for smoothing. However, for moderate 

sample sizes, weighted averages can readily be computed on a pocket calculator. Running 

medians of 3 or 5 provide rougher estimates, but can readily be computed by eye on a 

scatterplot. 

The IMSL subroutines (IMSL 1984) include routines ICSSCU and ICSSCV which 

compute smoothing splines (Wahba 1990). (Spline smoothing is a more sophisticated 

smoothing technique, which produces results similar to kernel estimators.) Spline smooth­

ing is also available in JMP (SAS Institute 1989). Smoothers based on running medians 

(Tukey 1977) are available in Minitab (Ryan, Joiner, and Ryan 1985), S, (Becker, Cham­

bers and Wilks 1988) and Systat (Wilkinson 1988). Lowess (Cleveland 1979), a method 

based on local linear regressions, is available in S and Systat. Systat also offers unweighted 

averages. However, these packaged routines do not include estimates of the pointwise con­

fidence intervals. 

8. EXAMPLES 

The 3 examples below demonstrate a number of uses of non parametric regression es­

timation. Example A shows the use of non parametric regression to summarize a complex 

regression relationship not readily captured by a parametric model. Example B, taken 

from Gasser, Muller, Kohler, Molinari and Prader (1984), shows how nonparametric re­

gression can be used to supplement parametric modelling. Example C shows the use of 
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nonparametric regression in model building and model checking for a discrete regression 

problem. 

Smoothing in Example A was done using kernel regression with unweighted means. 

Error bars were computed using the variance estimator, 0'2 , described in Section 3. 

Smoothing in Example B was done using the implementation of spline smoothing in JMP. 

Smoothing in Example C was done using kernel regression with quadratic weights. Error 

bars were computed using a local variance estimator. 

Example A) Summarizing a nonlinear relationship 

Figure 7 is a plot of the insurance market activity in ZIP code areas of Chicago as 

a function of theft rate (Andrews and Herzberg 1985). Market activity increases sharply 

with theft rate at low levels of theft, and then decreases. Kernel regression with bandwidth 

12, chosen subjectively, has been used to smooth the data. The complicated shape of the 

curve could not readily be approximated by a parametric function, although polynomial 

regression provides a comparable fit. 

The somewhat jagged appearance of the curve is due to the use of unweighted means. 

There is little data for theft rates beyond 50/1000. For the 3 highest theft rates, the 

neighborhoods contain only one data point, and the estimator simply interpolates the 

data. The wide error bands in this region reflect the sparcity of information. 

Example B) Supplementing a parametric model 

Parametric models for predicting human height have been under development since 

the 1930's (for example, Jenss and Bayley 1937). Recently developed models, (for example, 

Preece and Baines 1978), have very good predictive value. A parametric fit and residual 

plot for a child in a longitudinal study by the University of Zurich, (Gasser et al 1984) 

are displayed in Figures 8a and 8b. The fit was done using SAS PROC NONLIN (SAS 

Institute, 1988) and Preece and Baines Model 1. (The model was developed to fit growth 

after age 48 months.) The curvature following the initial peak evident in the residual plot 

was also observed in fits done by Preece and Baines, and attributed by those authors to 

autocorrelation in the data. However, most of the children show positive departures from 
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the fitted curve at similar ages, indicating that this a systematic, not random, departure 

from the model. 

Gasser et al analyzed the data using nonparametric regression. A fit using smoothing 

splines, with smoothing parameter chosen to give the same residual sum of squares as the 

parametric fit, is displayed with its residuals in Figures 8c and 8d. No systematic deviation 

appears in the residuals, except for the first few months when the spline curve cannot pick 

up the very rapid initial growth. 

The source of the curvature in the residuals from the parametric model appears to be 

a mid-growth spurt, which occurs in most children around age 7. The form of the Preece 

and Baines model allows only a single growth spurt occurring in the adolescent years. 

A nonparametric estimate of growth rate shows the mid-growth spurt. This mid-growth 

spurt had been discussed in the early literature on human growth, but had disappeared 

from the literature following the development of parametric models which did not allow 

for it. Nonparametric regression, which has very weak assumptions on the shape of the 

regression curve, was able to pick up the extra peak. 

Example C) Model building and model checking in generalized linear models 

Nonparametric regression can provide great assistance in model building, particularly 

when the data is very noisy, or has other features which make patterns difficult to see. 

Binary response data is one example in which nonparametric regression can be useful, 

since scatterplots of the raw data and of regression residuals are often difficult to interpret. 

Figure 9a is a plot of survival of periparturient recumbent cows as a function of serum 

urea (Clark, Henderson, Hoggard, Ellison, and Young 1987). In cattle, increased serum 

urea may be due to a number of causes such as shock, increased protein catabolism and/or 

kidney damage. The asterisks are the observed proportions surviving. (Since there are 

few replicates, most of the proportions are 0 or 1.) The smooth indicates that survival 

increases and then falls, so a linear logistic curve is not appropriate. 

The nonparametric fit was done using a kernel estimator with quadratic weights and 

bandwidth 0.2, chosen subjectively. The fitted curve (dark line) is smoother than the 
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regression estimate in Example A due to the use of the quadratic weights. When uniform 

weights were used with the same bandwidth, the estimated regression function was quite 

jagged although it had the same general shape and features as shown in Figure 9a. 

Estimated pointwise error bars were computed using local variance estimator u'f = 

j}(ti)[l.O- fo(ti)], motivated by a Binomial model for the response. The estimated error 

bars show that the peaks at 1.9 and 3.0 are likely to be real features of the data. The 

peak at 1.4 may be spurious, due to sparser data in this region. 

Figure 9b shows the same data fit with a quadratic logistic regression (dark line). 

Following Azzalini, Bowman and Hardie (1989), the goodness-of-fit of the parametric 

model is assessed by determining if the non parametric fit falls within the parametric error 

bars. The peak of the parametric fit is located very near the primary peak of the smooth, 

but the smooth lies outside the error bars, indicating a sharper increase in survival than 

allowed by the quadratic model. Also, the quadratic fit does not allow the extra peak at 

3.0. The quadratic model does not appear to be a good fit to this data. 

Figure 9c is a plot of survival as a function of serum aspartate amino transferase 

(AST), a blood fraction which indicates muscle damage. The dark line is the logistic fit to 

the data. Except for small regions at extreme values of AST, probably caused by sparse 

data, the smooth lies entirely within the error bars, indicating that the logistic curve may 

be a reasonable model for the data. 

Another way to use smoothing to check the model is to smooth the residual plots. 

This is a sensitive means of detecting nonlinearities in the data. In my experience, be­

ginning students, in particular, find it easier to interpret residual plots if the plots are 

augmented by a smooth. Formal tests of goodness-of-fit of a parametric model versus 

smooth alternatives now exist for a variety of situations. Azzalini, Bowman and Hardie 

(1989) suggest formal tests for generalized linear models. Cox and Koh (1989), Cox, Koh, 

Wahba and Yandell (1988), and Eubank and Spiegelman (1990) suggest tests for linear 

and polynomial regression. 
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9. CONCLUDING REMARKS 

Many other nonparametric regression techniques are available. They have not been 

discussed here, due to lack of space. Smoothing splines have many optimal properties, and 

are readily extended to complicated situations. Techniques using sequential knot selection, 

such as regression trees (Breiman, Friedman, Olshen and Stone 1984) and regression splines 

(Eubank 1988), are computationally and heuristically more complex, but are especially 

useful in multiple regression problems. Proper selection of smoothing parameters, such as 

span or bandwidth, seems to be critical to the success of all techniques. 

Polynomial regression, with degree determined from the data, is the most popular 

nonparametric regression technique and is often taught in courses on multiple regression. 

Because the curve can be summarized by the regression coefficients, it is a useful technique 

for comparing curves, and for checking for nonlinearity. However, low degree polynomials 

do not offer the flexibility in shape of kernel and nearest neighbor estimators, limiting the 

usefulness of polynomial regression for data exploration and summary. The need to use 

polynomials of successively higher degree as the sample size increases (Eubank 1988) is 

seldom emphasized. 

In this article, normal theory confidence intervals have been discussed. Confidence 

bands based on resampling techniques, such as the bootstrap, can also be used (Efron and 

Tibshirani 1986) and preserve the nonparametric flavor of the analysis. 

Nonparametric regression techniques are flexible, powerful methods for estimating 

an unknown regression function. These techniques are useful in their own right, for data 

exploration, and estimation of the mean function, its derivatives, and features such as 

maxima and zeroes. They can also be used for model building and model checking in 

parametric regression. A number of texts giving fuller details of these methods have 

recently become available. These include Eubank (1988), Gyorfi, Hardie, Sarda and Vieu 

(1989), Hardie (1990), Muller (1990), and Wahba (1990). 

Because the theory supporting nonparametric regression is more complicated than 

that of least squares linear regression, most treatments of the topic are in advanced texts 

18 



such as those cited above. (A notable exception to this is Tukey 1977.) However, the 

heuristic motivation behind local location techniques can be easily understood. Com­

putationally, local location techniques are no more difficult than the location estimators 

on which they are based. For these reasons, the powerful tools of nonparametric regres­

sion can readily be made accessible even to beginning statistics students. This paper 

has attempted to show, as well, that there are good pedagogical reasons for introducing 

nonparametric regression techniques prior to, or in parallel with, parametric techniques. 
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Figure 1: Mortality as a function of July average temperature in a sample of American 
cities. The curve joins the mean mortality at each temperature. The error bars 
are the 95% confidence intervals for the mean when the variance is estimated 
separately at each temperature. (There are no error bars for the 5 temperatures 
with no replicates.) The error bar at 82°F extends from 12.5 to 1855.5. The circles 
mark the endpoints of the 95% confidence intervals for the mean when the 
pooled variance estimate is used. 
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Figure 2: Kernel estimate of the curve y=t sin(2.57tt)+E at various bandwidths. 
The design points were generated from a Uniform(O,l). The errors 
were generated from a Normal(O,.Ol). The neighborhoods of t*=.2 
and .7 are shown by the shaded strips on each plot. 
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Figure 3: Nearest neighbor estimate of the curve y=t sin(2.5nt)+e at various 
spans. The design points were generated from a Uniform(O,l). The 
errors were generated from a Normal(O,.Ol). The neighborhoods of 
t*=.2 and .7 are shown by the shaded strips on each plot. 
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Figure 4: Mortality as a function of July average temperature in a sample of American cities. 
Various fits to the data including the pointwise mean (a) cubic polynomial (b) kernel 
regression (c) and nearest neighbor regression (d). In each case the pointwise 95% 
confidence intervals are given using a pooled variance estimate. 
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Figure 5: The effect of bandwidth on kernel weights 
At larger bandwidths, more points get non-zero weight, but 
the weight of each is smaller. 
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Figure 6: Running linear regression estimate of the curve y=t sin(2nt)+e at 
span=.1. The design points were generated from a Uniform(0,1). 
The errors were generated from a Normal(0,.01). The local linear 
regressions are shown at 3 points along the curve. 
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Figure 7: Voluntary market activity as a function of theft rate in Chicago 
neighborhoods summarized by ZIP code area. 
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Figure 8: Parametric fit (a) and residual (b) and smoothing spline fit (c) and residual (d) to the height of a boy as a 
function of age. 
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Figure 9: An example of the use of smoothing to supplement parametric modelling. The 
data is the survival of peri parturient recumbent cows as a function of various 
blood serum measurements. 
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