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Abstract

Chordal graphs are undirected graphs in which every cycle of length at least four has a
chord. They are sometimes called rigid circuit graphs or perfect elimination graphs; the
last name reflects their utility in modelling Gaussian elimination on sparse matrices.
The main result of this paper is that a chordal graph with n vertices and m edges can
be cut in half by removing O(vV'm ) vertices. A similar result holds if the vertices have
non-negative weights and we want to bisect the graph by weight, or even if we want to

bisect the graph simultaneously by several unrelated sets of weights.

* The work of this author was supported in part by National Science Foundation grant
MCS-82-02948.






I. Introduction

Many divide-and-conquer algorithms on graphs are based on finding a small set of
vertices or edges whose removal divides the graph roughly in half. Examples include
layout of circuits in a model of VLSI [Leis80], efficient sparse Gaussian elimination
[Lipt79a, Gilb80], and construction of Voronoi diagrams to solve various geometric prob-
lems [Lipt80).

Most graphs do not have small separators that divide them evenly in half, but some
useful ones do. Lipton and Tarjan’s planar separator theorem gives an example.

Proposition. [Lipt79b] A planar graph with n vertices has a set of at most 2v2n

vertices whose removal leaves no component with more than 2n / 3 vertices. O

This theorem is the best possible within a constant factor. Djidjev [Djid82]
improved the constant 2v2 to V6; the tightest possible constant is not known. Other
kinds of graphs that can be separated evenly by deleting o(n) vertices are trees (O(1)
vertices [Jord69, Lewi65]), outerplanar graphs (O(1) vertices [Leis80]), hypercubes
(O(n /Viogn ) vertices [Gilb80]), graphs of genus at most g (O(Vgn) vertices [Gilb82)),
and several interconnection graphs for parallel computation [Hoey80, Leis80, Leig81].

An undirected graph is said to be chordal if every cycle of length at least four has a
chord, which is an edge joining two vertices that are not adjacent on the cycle. Chordal
graphs are perfect; that is, every induced subgraph of a chordal graph has a clique cov-
ering and an independent set of the same size [Hajn58]. Dirac [Dira61] developed some
of the basic theory of chordal graphs, which he called rigid circuit graphs. Rose
[Rose70] discovered a connection between chordal graphs and systems of linear equa-
tions whose coefficient matrices are sparse and symmetric. Such a system can be solved
using Gaussian elimination with pivots chosen from the diagonal. The coefficient matrix
is the adjacency matrix of an undirected graph; the graph is chordal if and only if the
elimination can be done in some order without fill-in, that is, without changing any zero

entries to non-zeroes.

Since a complete graph is chordal and has only trivial separators, chordal graphs in
general cannot be separated by removing o(n) vertices. The main result of this paper is
that chordal graphs do satisfy a separator theorem in which the size of the separator
depends on the density of the graph. We prove that a chordal graph with n vertices
and m edges has a cutset of O(vV'm') vertices whose removal leaves no component with

more than n /2 vertices. (This is immediate at the extremes of density, for complete
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graphs and for trees.) We show that the separator can in fact be chosen to be a com-
plete subgraph. We also show that the result holds if the vertices have nonnegative
weights and we want to bisect the graph by weight, or even if we want to bisect the

graph simultaneously by several unrelated sets of vertex weights.

The next section contains some definitions and results from the literature that we
will need later. Section III proves the main result. Section IV presents an almost linear
algorithm to find the separator. Section V extends the main result to graphs whose ver-
tices have multiple weights. The final section describes possible applications and open

problems.

II. Results from the literature

The first results we require concern the graph model of Gaussian elimination. Let
G=(V,E) be a graph, not necessarily chordal. Let v be a vertex of G. The deficiency

of v is the set of non-edges between neighbors of v,

D(v) = {{z,y} : {v,2}€E, {v,y}€E, {z,y}¢E}.

The deficiency of v corresponds to the zeroes of the coefficient matrix that become
nonzero when the equation in v’s row is used to eliminate the variable in v’s column.
The graph G, produced by eliminating v from G is obtained by adding v’s deficiency

and deleting v and its incident edges, so
G, = (V-{v}, E(V-{v}) U D(v)).

When a sequence of vertices is eliminated from a graph, the edges in the deficiencies
that are added are called fill-in edges. A stmplicial vertex of a graph is a vertex that has
a null deficiency, so it can be eliminated without fill-in; thus, it is a vertex whose neigh-
bors form a clique. A graph G is a perfect elimination graph if its vertices can all be
eliminated in some order without any fill-in. Such an order is called a perfect elimina-

tion ordering of the vertices of G.

The lemmas that follow are due to Rose and Tarjan [Rose70, Rose72, Rose76],
Fulkerson and Gross [Fulk65], and Dirac [Dira61].

Lemma 1. A graph G is chordal if and only if it is a perfect elimination graph. O

A perfect elimination ordering must start with a simplicial vertex. Any simplicial
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vertex will do, and a choice of simplicial vertices is always available.

Lemma 2. If G is chordal and C is any clique then there is a simplicial vertex in G-C.
Any simplicial vertex can be eliminated first in some perfect elimination ordering. O

Now we give a condition that determines the fill-in for any elimination ordering on
any graph.
Lemma 3. Fix an elimination ordering for a graph G. Let v and w be nonadjacent

vertices of G. Then {v,w} is a fill-in edge if and only if there is a path from v to w

consisting of vertices that are eliminated earlier than either v or w. O

A separation clique is a complete subgraph whose removal leaves a disconnected
graph.
Lemma 4. If G is chordal and not complete, then G has at least one separation clique.
O

We mention the following result to contrast it with the first theorem of the next
section; the proofs below do not use it. A v,w separator is a set of vertices that cuts

every path from v to w.

Lemma 5. A graph G is chordal if and only if for all vertices v and w, every minimal

v,w separator in G is a clique. O

II. A Vm -separator theorem

Let G be a chordal graph with n vertices and m edges. Suppose that each vertex
of G has a nonnegative weight, and that the sum of the weights is n. The main result
of this section is that there is a clique that divides the weight in half.

Theorem 1. Let G be a weighted chordal graph as above, with p vertices in its largest
clique. Then G contains a clique whose removal leaves no connected component of
weight more than n / 2. Unless n=1, the clique can be chosen to have at most p-1 ver-

tices.

Remark. This theorem resembles Lemma 5 above, but seems not to follow from it.
Let us call the separator in the statement of Theorem 1 an n /2 separator. Then a
minimal n / 2 separator need not be a clique; for example, if G is a path with 5 vertices
then one minimal n / 2 separator is the second and fourth vertices. Also, there need not
be a minimal v,w separator that is an n /2 separator; for example, if G is an n /2-
vertex clique with an additional vertex of degree one adjacent to each clique vertex then
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the only minimal v,w separators are single clique vertices.

Proof. The idea of the proof is to start with an arbitrary clique and make it ooze
around the graph like an amoeba until it is an n /2 separator. It oozes by disgorging
vertices that can join or become components of weight less than n / 2, and by engulfing
vertices that are in a component of weight more than n / 2.

Here are the details. We will not distinguish between a set of vertices of G and the
subgraph of G it induces. Unless G is empty, it has at least one clique. Let C be the
clique that minimizes the maximum weight of a connected component of G-C. In case
of ties, minimize the number of vertices in a maximum-weight component of G-C. If
ties remain, minimize the number of vertices in C. If ties still remain, choose arbi-
trarily.

Assume for the sake of contradiction that G-C has a component A of weight
greater than n /2. Then the total weight of G-A is less than n / 2. We shall state and
prove three facts about A and C.

Fact 1. Every vertex of C is adjacent to some vertex of A.

Proof. If v€C were not adjacent to any vertex of A, then C—{v} would have been

chosen in preference to C.

Fact 2. If B is a nonempty subset of A, then B contains a vertex that is simplicial in
BUC.

Proof. Immediate from Lemma 2.

Fact 3. Component A contains a vertex v adjacent to every vertex of C.

Proof. The vertex v is the last vertex of A in a perfect elimination ordering of AUC
with C ordered last. Thus v=ga; where {a,,...,a;,¢y,...,¢; } is a perfect elimination ord-
ering of AUC. Such an ordering exists because by Fact 2 we can repeatedly choose
simplicial vertices that are not in the clique C'.

Let z be a vertex of C. Since A is connected and (by Fact 1) z is adjacent to a
vertex of A, there is a path from z to e in AUC that uses only vertices of
A-{a,}={ay,...,a;_}. Lemma 3 says that if {z,a;} is not an edge of AUC thenitis a
fill-in edge. But a perfect elimination ordering has no fill-in, so z is adjacent to g in

AUC and in G. Thus g is adjacent to every vertex of C, so we can take v=gq;.

Fact 3 leads to a contradiction: CU{v} is a clique, and it should have been chosen

in preference to C. Thus C is the desired n / 2 separator.

The argument above shows that each component of G-C contains a vertex adja-

cent to all of C’s vertices. If G is not complete then C is not the largest clique in G,
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and C has at most p—1 vertices. If G is complete we can take C to be all of G' except
the lightest vertex. O

Corollary 1. Let G be a chordal graph with n vertices and m edges. Suppose G’s
vertices have nonnegative weights that add up to n. Then G has a set of O(Vm) ver-

tices whose removal leaves no connected component of weight more than n / 2.

Proof. Theorem 1 says that G has a clique that separates the graph as required. This
clique has at most m edges and hence only O(V'm ) vertices. O

Corollary 2. Let G be a chordal graph with n vertices and m edges. Then G has a
set of O(Vm ) vertices whose removal leaves no connected component with more than
n /2 vertices. O

A k-tree [Rose74] is a graph constructed by starting with a k-vertex clique and
adding vertices one at a time, making each new vertex adjacent to k¥ mutually adjacent
old vertices. Thus a 1-tree is a tree. A k-tree is chordal, and its largest clique has k+ 1
vertices unless the k-tree is a k-clique. Therefore k-trees have n /2 separators whose
size is independent of the size of the tree.
Corollary 3. Let T be a k-tree whose vertices have nonnegative weights that add up
to n. Then T has a set of k vertices whose removal leaves no connected component of

weight more than n / 2. 0

IV. An O(m a(m,n)) algorithm

This section describes an algorithm to find the separator of Theorem 1 in
O(m a(m,n)) time, where a(m,n) is the very slowly growing function that appears in

the running time of the disjoint set union algorithm [Tarj75].

We will develop the fast algorithm in several stages. The first stage comes directly

from the proof of Theorem 1.



Algorithm 1.
begin
C—{}
while some component A of G—-C has weight more than n / 2 do
while some vertex z of C is adjacent to no vertex of A do
C — C—{z}
od;
v «— some vertex of A adjacent to every vertex of C;
C « CU{v}
od
end

Since a vertex is added to C' at most once, the main loop is executed at most n

times. The whole algorithm is easily implemented to run in O(mn) time.

We can speed this up by realizing that vertices are added to C' in the reverse of a

perfect elimination ordering of G.

Algorithm 2.
begin

find a perfect elimination ordering {vy,...,v, } of G;

t — n+1;

while some component of {v;,...,%;_;} has weight more than n /2 do

t — 1-1
od
C « v; plus all of v; y,...,v, that are adjacent to v;

end

We need to prove that this algorithm correctly finds the separator C of Theorem 1.
Define the boundary of a set A of vertices, written dA, to be the set of vertices of G-A
that are adjacent to vertices of A. Consider the final value ¢ takes on in the algorithm,
and let A; be the heaviest component of {vy,...,v;}.

First, C is a clique, because v; is simplicial in {v;, ,...,v, } by the definition of a
perfect elimination ordering.

Second, v; must be in A;, because A; weighs more than n /2 but no component of
{vy,...,v;_;} weighs more than n /2. Then v; is the last vertex of A; in the perfect elimi-

nation ordering, so the same argument as the proof of Fact 3 in Theorem 1 shows that
v; is adjacent to every vertex in dA;. Therefore C is 0A; U{v;}. Since A; is the only
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component of G-dA; that weighs more than n /2, d4; U{v;} is a set whose deletion

from G leaves no component that weighs more than n / 2.

Algorithm 2 also runs in O(mn) time. We can get a more efficient implementation
by looking at the vertices in the opposite order, from v; to v,. The final version of the
algorithm starts with an empty graph H and adds vertices of G to it in perfect elimina-
tion order until some component of H has weight more than n / 2. The last vertex this
algorithm adds to H is vertex v; from Algorithm 2; knowing v; we can easily find C.

The following algorithm maintains a family of disjoint sets sy,...,s, of vertices to
represent the components of H. Initially all the sets are empty. As vertex v; comes up
in perfect elimination order it is placed in set s;, and then the sets containing vertices
adjacent to v; are merged into s;. Along with each set s; we keep the total weight

w(s;) of its vertices. Function find(v) returns the name of the set containing vertex v.

Algorithm 3.
begin
find a perfect elimination ordering {vy,...,v, } of G;
t — 0;
repeat
t — 1+ 1;
s; — {u};
w(s;) «— weight of v;;
for v; adjacent to v; with j <4 do
s + find(v;);
if s5£s; then
8; — 8;Us,;
w(s;) «— w(g;)+ w(s)
fi
od
until w(s;)>n/2;
C « v; plus all of v; y,...,v, adjacent to v;

end

The analysis of this algorithm’s running time is straightforward. Finding a perfect
elimination ordering takes O(m) time by an algorithm of Rose, Tarjan, and Leuker
[Rose76]. The main repeat loop is executed at most n times. The for loop is executed

at most twice for each edge, and its body requires constant time except for the find
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operation. The time for at most 2m finds is O(ma(m,n)). Finally, the computation of
C takes O(m) time. Thus the total running time is dominated by the finds, and is
O(ma(m,n)).

V. More separator theorems

We can use the separator theorem in Section III to find separators that chop a
chordal graph into fragments no larger than a specified weight, or to separate a chordal
graph according to two or more unrelated sets of weights simultaneously. These are
analogous to results of Lipton, Tarjan, and Gilbert on graphs with V'n -separators, as

referenced below.

Theorem 2. [Lipt80, Theorem 2] Let G be a chordal graph with n vertices and m
edges, with nonnegative vertex weights that add up to 1. Let ¢>0 be given. Then
there is a set of Vm /e vertices of G whose removal leaves no component with weight

more than €. The separator can be found in O(mlogna(m,n)) time. O

Theorem 3. |[Gilb80, Theorem 1.3.2] Let G be a chordal graph with n vertices and m
edges, with two sets of vertex weights that both add up to n. Then the vertices of G
can be partitioned into sets A, B, and C such that C separates A from B, C has
O(v'm ) vertices, neither A nor B has weight of the first kind more than n /2, and nei-
ther A nor B has weight of the second kind more than (1/2+ €¢)n. The separator can be

found in O(ma(m,n)) time. O

For example, we can take one kind of weight to be 1 for every vertex, and the
other kind to be the vertex degree. Then Theorem 3 allows us to divide a chordal graph

into two pieces with equal numbers of vertices and roughly equal numbers of edges.

Theorem 3 can be applied recursively to obtain a v'm -separator theorem for any
fixed number of sets of vertex weights. In general the separator divides the graph into
two pieces, each with at most half the first kind of weight and at most 1/2+ ¢ of each of
the other kinds of weight. This quickly ceases to be practical, because the constant fac-
tor in the proof of the theorem grows double-exponentially with the number of kinds of

weight.
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VI. Remarks

The algorithm in Section IV finds a separator in O(ma(m,n)) time. We suspect
that this can be improved to O(m) time. No algorithm faster than O(m) is possible if
the input graph is represented by listing its edges or by listing the vertices adjacent to
each vertex. However, the graph might be more compactly represented. For example,
the chordal graph corresponding to an acyclic hypergraph (as described below) is given
as a union of cliques. The sum of the sizes of the cliques can be much less than m. It

might be possible to find a separator in time nearly linear in this sum.

Chordal graphs have applications in a number of areas, and we expect the separa-
tor theorems above to be useful in some of them. One such area is solving sparse linear
systems by Gaussian elimination, where one wishes to find an elimination ordering for a
sparse matrix that causes relatively few zeroes to become nonzero. If the matrix is sym-
metric and only symmetric permutations are allowed, this corresponds to finding a small
set of edges whose addition makes a graph chordal. Finding the smallest such set of
edges is an NP-complete problem [Yann81], but there are heuristics that perform well in
many cases. One heuristic, called nested dissection, uses separators in planar graphs to
give good orderings for systems that come from differential equations on two-
dimensional regions [Lipt79a]. We are investigating the use of the chordal separator
theorem to show that any graph has some nested dissection ordering that is close to
optimum.

Chordal graphs and their separators also appear in database theory. A database
represents a relation (called a universal relation) on a set of attributes. The universal
relation can be represented implicitly by explicitly storing its projections on some sub-
sets of the attributes. Consider the hypergraph whose vertices are attributes and whose
hyperedges are the subsets whose projections are explicitly stored. A separator in this
hypergraph implies an association (technically, a multivalued dependency) between each
component and the separator. This association often corresponds to some relationship

in the real world among the attributes involved.

The hypergraphs of database schemes from the real world are nearly all acyclic
[Beer81]. Acyclic database schemes have a number of desirable properties; roughly, in
an acyclic scheme pairwise consistency between the projections implies that the univer-
sal relation is consistent. A hypergraph is acyclic if and only if the graph formed by
replacing each hyperedge with a clique is chordal.
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