SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 997.

January 1992

THE ELLIPSOID ALGORITHM
USING PARALLEL CUTS!

by
Ai-Ping Liao and Michael J. Todd

1Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.

The Ellipsoid Algorithm Using Parallel Cuts’

Ai-Ping Liao and Michael J. Todd

School of Operations Research and Industrial Engineering,

Cornell University,
Ithaca, New York 14853.

Abstract

We present an ellipsoid algorithm using parallel cuts which is robust and con-
ceptually simple. If the ratio of the distance between the parallel cuts under
consideration and the corresponding radius of the current ellipsoid is less than or
equal to some constant, it is called the “canonical case”. Applying our algorithm
to this case the volume of the next ellipsoid decreases by a factor which is, at
worst, exp(—iﬁl—;ﬂ). For the noncanonical case, we first add an extra constraint
to make it a canonical case in a higher dimensional space, then apply our al-
gorithm to this canonical case, and finally reduce it back to the original space.

Key words. Ellipsoid algorithm, parallel cuts, complexity, linear system.

1Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.

1 Introduction

We will be concerned with methods for determining the feasibility of a linear system.

In particular, we are going to try to find an n-vector z such that
I< ATz <u (1)

where A is an n X m matrix and [, u are m-vectors. We assume n,m > 2 and A is of
full rank. If [£ u, then obviously, (1) is infeasible; and if there is an index, say z, such
that I; = u;, then system (1) can be reduced to a subsystem obtained by deleting the
i-th inequality and then solving (1) over the subspace {z € R" : afz = Li(=w)}. If

m < n, by performing a QR-factorization of A, we have

R
A= [Q1,Q2] =R

and thus (1) is equivalent to

1< RTQTz < w (2)
which has solution(s) such that

i+
QFe = RT(——).

r

Thus we will always assume m > n and | < u. We also denote r := %‘—‘i and s := ’—‘g—’

for convenience.

In [2] Burrell and Todd proposed a parallel-cut ellipsoid algorithm based on the
result of Todd [9].

Let

P={zeR":1< ATz <u}. (3)

3]

P can be alternately written as
P={zeR":(afz -1)(aTz —u;)<0,i=1,...,m} (4)

where a; is the i-th column of A and [;, u; are the corresponding components of 7, u
respectively.
Now choose a nonnegative diagonal matrix D = diag(d) = diag(ds,--.,dn), and

combine the inequalities above with weights d;. We thus obtain a set
E:=E(d):={z e R": (ATz -)TD(ATz —u) < 0}. (5)

It is obvious that P C E. We suppose that ADAT is nonsingular. Thus E is actually
an ellipsoid.

Further calculation shows that
E={z€R":(z—-z)TADAT(z — z.) < 2T (ADAT)z. — [T Du} (6)

where

ze 1= zo(d) := (ADAT) ' ADr (7)

is the center of E.

If the current center violates some constraint, say, l; < a7z < wu;, by the result
of Todd [9] we can construct a new ellipsoid that contains that part of the previous
one between the parallel hyperplanes a7z = I; and afz = u;, and the volume of the
ellipsoid decreases by a factor which is, at worst, exp(-mlﬁ—)).

As we know, the ellipsoid method has to be carried out to a high accuracy in order
that each of the sequence {E,} of ellipsoids contains the feasible region P which makes
it difficult to implement. But Burrell and Todd’s algorithm has the advantage that,

with the representation (5), P is contained in each Ej regardless of round-off error

3

as long as Dy > 0. In Section 2 we propose, with the “up and down” technique, a
simpler scheme based on Burrell and Todd’s algorithm; and its complexity analysis is
given in Section 3. We also show that why it is necessary to update bounds in order to
get a polynomial bound for this algorithm as well as the Burrell and Todd algorithm.

Finally, in Section 4 we describe several variants of the algorithm.

2 The Algorithm

By calculation, the volume of E is
(eTADATz, — T Du)?
(det(ADAT))?
=t kn-(v(d))? (8)

vol(E) = kn-

where &, is the volume of the unit ball in R", a constant depending on n only, and

v(d) = f(d) - h(d), where

f(d) := 2TADATz, — I Du, (9)

h(d) := (det(ADAT))"=. (10)

The idea of the method is as follows: we use the center of E(d) in (6) as the test
point, we focus on the function v(d) and by using the coordinate descent algorithm to
minimize v(d), a polynomial bound can be obtained for the feasibility problem. More
sophisticated methods for minimizing v(d) are discussed in Liao [8]. Geometrically, if
the current center violates some constraint, say, [; < a7z < uj;, then we increase d;
to make the j-th constraint “more important” and shrink the volume of E. In the
“canonical case” (defined below in the Algorithm) a constant decreasing factor for v(d)

can be obtained; for the “non-canonical case”, we lift up the problem to R7*! space by

4

adding one extra constraint so that the “lifted” problem is a “canonical case”, apply the
algorithm to the canonical case and then reduce the problem back to RT by combining
the “lifting” constraint and the j-th one.

We now state the algorithm. Strictly speaking, this algorithm should be called a

coordinate descent algorithm with scaling and updating modifications.

Algorithm 2.1
o Initialization. Choose d® > 0, and scale it so that f(d°) = 1; set k = 0.

e Fork=0,1,..., do

If z¥ := z.(d*) € P, stop with the feasible solution z}; otherwise, choose 7 with

the j-th constraint violated by z¥. Let

52

N J R Ty-1,, .
B = TADAT) Ta; v:=a;(ADA") a;.

(i) (canonical case) If B < 1, we take \¥ = 71, and d**! = d* + AFe;.

(i) I B > 1, we take \F = ;1) and d**! = d* + A*e;, AND update the bounds

Iy’
as follows:)
l; — W if alz, > uj, or
u; W if alz. <
3
where dit! = 571;; and
(lovu0) = (i, +) ifafz. <lj

(w5 — > uj;) if a;F:BC > u;.
Then, scale d**! so that f(d*+!) = 1, where f is computed with the updated j-th

bounds; set k£ « k + 1, and repeat.

O

We can get better bounds Iy, uo from z and z, which respectively minimize and

maximize al x over Ej, := E(d*). This leads to

. : T . . : T .
l; if ajz. <; Uu; if ajzc > uj

lO — Ug =
afzz if afxc > uj, afzu if a?mc < 1,

where

z = xc~7“"1f(ADAT)'laj,

z2e = s+~ 3(ADAT) 1q;.

Then, if Iy > u; or up < l;, stop with the conclusion that the system is not consistent.

Note that case (ii) corresponds to an instance of case (i) in R7*! space by adding
a new constraint, say a 0-th constraint, Iy < al z < uo, where ap = a;, with dt=0. It
is easy to see that § < 3 and #* violates the 0-th constraint, where B and ¥ are the
corresponding quantities in the new system. It thus becomes case (i) in this system.
Therefore, we take \¥ = 5= and d**1 = d* + Mrey, where dF := (0, (d¥)T)T € R+, If

we denote the quantities for the new system with tildes we have 5(d*) = v(d*). Note

that, since ag = a;,

ADAT = > da;al = zdia;aiT = ADAT

i=0 i=1
where d; = dj,i = 1,...,m,i # j, d; = do + d;. Thus A(d**') = h(d**') where
dk+1 = d* 4+ d5*le;; on the other hand, direct calculation shows that f(d**!), with
the updated bounds, is equal to f(d*+!) with the original bounds and the 0-th bounds
lo, ug. Therefore, #(d*+1) = v(d**!). We also note that the system with the updated

bounds has the same solution set as the original one. See Figure 1.

6

(a) Noncanonical case: lc > le

ag = aj
U()IU.J‘,ZQ——‘UJ'—\/;;’_

(b) Canonical case: lc = le

DOWN: combining j-th and 0-th constraints
into one

S
=
8
I

&:N.q

P 7o . .
{ ; is a convex combination of

lo and [

(c) Back to the original set

Figure 1: Up and down: dealing with the noncanonical case.

~J

The above argument can be summarized as follows: case (ii) is essentially the same
as case (i), i.e. if a constant reduction of v(d) can be obtained in case (i), it can also be
obtained in case (ii). We call the above method the “up and down” technique. We will
see in the next section that 8 < 1 is important in the analysis for getting a polynomial
bound.

Finally, we note that scaling is not necessary if § is defined as

g2

fi= f(d)af(AlJ)AT)‘laj;

and that the inverse of AD+; AT can be obtained from that of AD AT by performing
a rank-1 update by the Sherman-Morrison Formula. Thus our algorithm is as simple

as the ellipsoid method yet more robust in practice.

3 Complexity Analysis

This section provides the analysis of the algorithm.

We denote the current point as d and the next point as d* = d(}) := d + Aej; In
general, quantities with “+” are those defined at d*. Suppose that the j-th constraint
is violated by the current center z.(d). By the argument in the previous section, it is
enough to deal with case (i); we thus assume that 8 < 1.

The following two rank-1 update formulae can be found, for example, in House-

holder [6].

Lemma 3.1 (Sherman-Morrison Formula) Let u,v be two n-vectors, and M be a

nonsingular n x n matriz. Then, if & := 1 +vTM='u # 0, M + uvT is nonsingular and

(M 4+uo?) ' =M1~ ézM“luvTjVI"l.
F

Lemma 3.2 Under the same assumptions as in Lemma 3.1, we have

det(M + uv®) = det(M)(1 + vTM).

|
Now we calculate Inv(d + Ae;) — Inv(d). By the Sherman-Morrison formula,
zt zo(d + Aej) = (ADAT + Aajal)"'(ADr + Aa;rj)
(ADAT)"'ADr 4+ Ar;(ADAT) la; — 5(ADAT)~1aja§‘(ADAT)—‘ADr
o
A%y -
- —-(—J_—-T‘](ADAT) 1(1]‘
0(r; — alz.)
= g+ ———1—(ADA") " a;
et gy AP
where 0 := 1+ Ay =1+ 0, and 8 := \y. Correspondingly,
ATzt = ATz + MAT(ADAT)-la., (11)
i (40 ’
Thus, if we denote 6(f) := f(d*) — f(d),
5(1) rITDYATet —1TDYy — T DAz, + T Du
rT DAYzt + Arjalat — Mju; —rT DAz,
O(r; —afz.) 1 T Ar;f(r; — alz.)
— I a; T, a; T, — Alju;
T50)y a; Te + Arja; . + T30 JUE
/\(7”]’ B CLT:CC)GT:EC T /\7“0(7" - arxc)
1_10 L2+ Arja) 7 + — 1J+03 — AMju;
A
g a{rja]r:cc — (ajze)? + (1 4+ O)rjalz. + 0rF — Orial z. — (1 +0)lju;]
\ :
m[—(a?xc - lj)(a;ra:c — uj) + 057
po
SN 7/ I 12
Tl — %ol, (12)

aTpeml WaTze—u;
where 0y := (o) ze=b)() 1) On the other hand, by Lemma 3.2,

<
54
J

+ AT
Ly det(ADHAT) 1y (13)

h(d*) —) Pl ol
In A(d*) — In h(d) D Get(ADAT) -

n
Thus, noting that f(d) =1,

¢(0) = Inv(d*) —Inv(d) = In(l + 1—%(9 —0y)) — %111(1 o). (14)

We note that since z. does not satisfy [; < a?mc < uj, 0o > 0. Thus,

0 1
1 — (0 — —=In(1+0) <
n(1+61+0(o)) nln(+0) <
<B sl —l—ln(1+9) (15)
“T1460 n '
Hence, if we choose § = 3-, we have
1 1 1
+Y _ < — _
Inv(dt) —lnv(d) < ﬂ2n+12n nl(1+2)
1 1 1 1
< L Zin(l4 —
= 41 2a(n+1) L (1l +50)
One property of the logarithmic function is:
(—1
In(1+6)>6é— —————, for |§] < 1.
2(1 - 141)
Thus, for n > 2,
1 1 1 1 1 1 1,1 1
S S | 2y < S (o
4 2n(2n+1) n n(1+2n) — 4 4n?4+2n n(2n 4(2n2—n))
S, 1
= n'4n 2n 4(2n? —n)
_ 1(1 1)
T n24 4(2n-1)
1.1 1 1
< 2G-S
n?'4 12 6n?
Hence
v(dt) 1

or, in term of the reduction in volume of the corresponding ellipsoids,

volume(E*) (v(d*) H 1
volume(E) (v(d)) < expl=g5.)

We thus have

Theorem 3.3 Suppose there is a known p > 0 such that, if P is nonempty, it contains

a ball B(y*,p) of radius p. Then the algorithm stops in at most

volume(E(d°))
volume(B(Y™*, p))

) = 6n? log(f—(—d%g@)

12n log(

steps.

a

For getting a polynomial bound for our algorithm, we suppose all the input data
are integers and the input length of system (1) is:
L= Z Z(log([aij[-+ 1) -+ 1) +1
1=—1 7=1

where a(_y); = [; and ag; = u;.

It is easy to see that the system (1) is equivalent to

AT <
r<u (16)

ATy < —]

whose input length L’ satisfies L < L’ < 2L.
Since the assumption in the theorem may fail to hold, we consider the perturbed

system:

ATz < :=u+2-Ve
=0 (17)

ATz < = -1 +2Ve

11

which is equivalent to
-2 Vel < ATz < i=u+2Ve (18)

and let P, be its solution set; then one can prove (see, e.g., Khachian [7] or Gécs and
Lovasz [3]) that P = § if and only if P, = 0 and that, if P # 0, there is some y~
with B(y*,2-2L") C P,. If we apply the algorithm to system (18) with the initial point
d° = e, then

F@)R(d) < f(e) = rTAT(AAT) Ar — 1Tu/T

where 7' = 3% since h(d°) = h(e) < 1 due to the nonsingularity of AAT and the

input data being all integers. Define
mazdet(AAT) := max{|det B| : B is a submatrix of AAT};

then it can be shown that mazdet(AAT) < 252¢(447) where

size(AAT) :=n* + Y log(|(a")"d’| + 1)

1,7=1
and we use superscripts to denote the rows of A. Using the Cauchy-Schwarz inequality

and noting that ||a]|; < |la’|l; < 2 for all ¢, we have
size(AAT) < n? 4+ (2L + 1)n® < 3n’L,

so that mazdet(AAT) < 23n’L Similarly, mazdet(AAT, Ar') < 93n°L Thus, by
Cramer’s theorem, each component of (AAT)~! Ar' is less than or equal to 2L, There-

fore,
f(e) — T'TAT(AAT)-IAT' . l/Tu/T
< TITAT(AAT)«JATI + m22L

12

S Z 22L 23n L +m22L

J=1

— nm23n L+42L + m22L

< m(n+1)23n2L+2L.
Since

6n? log(w) < 6n®L(3n? + 10)log(m(n + 1)) < 24n°(m + 1)L,

0?
we can determine feasibility of the system (1) in at most 24n®(m + 1)L steps. We note
that this bound can be improved, for example, if we can find n columns of A, say the
first n columns of A, which are linearly independent, by setting d® = e, := (e7,0)T
where e € R". Then the bound becomes 24n%(n + 1)L. Finally, we note that a feasible
solution of (1) can be obtained in polynomial time from one of (18) using a rounding
method (see Grotschel, Lovasz and Schrijver [4]).

If I;,u; do not satisfy # < i, the constant decrease factor might not be bounded

away from 1. From (14) we have

, _ et} 1, B(20 — 0 + 6?) 1
q¢(0) = (14 5l0 = b7 T R)
= u(B1 -2y 4 28+ 20 Dy0— (905 +), (19)
where
B = (L4 01+ B (0= o),
If

B (aTz. — ;) (aTz. — u;) 1
/800 - ~ - ;7

then ¢'(p) = 0. Thus, by Lemma 4.2 below, ¢(f) is minimized by 6 = 6q. So

= (1 -+ 90)"'%

13

u(dt)

) M 1. Therefore, we cannot get a decrease factor

and if p — 0 (so f — o0),
that is bounded away from 1.
A typical example is when d; = 0. In this case, f(d),al (ADAT)a;, and z. do not

depend on [, uj, so it follows that we can let

8o, = L, U4
n

by choosing [; and u; appropriately.

4 Variant Algorithms

In this section we give some variants of Algorithm 2.1.
Algorithm 4.1

Same as Algorithm 2.1 except that the step length in the canonical case is taken as
A" = argmin{v(df + Xe;) : A > 0},
and d**' = dF + *e;.]

In the following we show that v™(d) is a pseudo-convex function of each component
of d; thus A* can be obtained by setting the derivative of v™(d* 4+ Ae;) with respect to
X to zero. We first cite Cauchy’s formula which is a special case of the Cauchy-Binet

formula that can be found, for example, in Horn and Johnson [5].

Lemma 4.1 (Cauchy’s Formula) Let A be an n by m and B be an m by n matriz,

m >n, and let C = AB. Then
det C =) det A(,v)det B(7,)
¥

14

where the sum is taken over all index sets y C {1,...,m} of cardinality n, A(,7) is the
submatriz formed by the columns of A whose indices are in v, and B(,) is analogously

formed by the rows of B indezed by ~.

Lemma 4.2 v"*(d) is a pseudo-convez function of each component of d € R}.

Proof. By Cauchy’s Formula,
det(ADAT) = Z a(a,)dil d,‘2 LN din

where a(,) = det A(,¥)? > 0. Thus h="(d) is a positive linear function of each compo-
nent d;; on the other hand, f(d) is a convex function, hence so is f*. By theorem 6.9
of Avriel [1], v™ is a pseudo-convex function of each d; and df minimizes v"(thus v) if

v _
52 = 0. O

Since z¥ violates the j-th constraint, ¢’(0) < 0 and so %%ﬂ < 0; on the other hand,
from (14), v(d* + Xe;) — +00 as A — +oo. Hence, A* exists. Actually, using our

expression (19) for ¢’(8) , it can be explicitly expressed as A* = ‘:—‘, where

_ \/P2+45(- LB+) —p

9*
26(1-1) ’

and

p=28— -71; + %9
With this A* the corresponding ellipsoid E*+! is the smallest one with E¥! D {z € E* :
[; < a?w < u;} ([2]). Thus, by the result of Todd [9], the volume of the corresponding

ellipsoid decreases by a factor of exp(—-—2—(—n1+—1))

15

In our algorithms we use the so called “up and down” technique. As a matter of fact,
the “down and up” technique is also possible; that is, when we meet a non-canonical
case, instead of seeking help in a higher dimensional space, we seek help in a lower
dimensional space. This leads to the Burrell-Todd algorithm [2].

Algorithm 4.2
Same as Algorithm 4.1 except that we use the following “down and up” technique

for non-canonical case: we first delete the j-th constraint by setting
d:= (di,.. . dj—1,dj41y- -+, dm)T € Rm—l,

and denote the quantities computed at d with tildes. Similarly, let A denote A with its

j-th column deleted. We then set the new j-th lower and upper bounds I; and u; as

(l;,aTz,) ifalz. <

(T a;) =

Tz . i aT .
(@i Zi,u;) if ajz. > u;.

where

are the minimizer and the maximizer, respectively, of the function a;!ar: over E, the
ellipsoid obtained by removing the effect of the j-th constraint on the current ellipsoid.
Then take A* = argmin{v(d* + Xe;) : A > 0} where v(d) is defined with the new j-th

bounds, and d**! = d* + *e;. a

Actually, Burrell and Todd [2] give even better updated bounds by considering the

dual variables.

This algorithm also decreases the volume of the corresponding ellipsoids by a factor

of exp(—-z—(n%ri—)) at each step.

16

In the above algorithms, the significant decrease occurs in the so called “canonical
case”. We may also define other kinds of canonical cases and get different algorithms.
But we should note that, in the previous algorithms the updated bound is at least as
good as the previous one; on the other hand, in the following the updated bound may
enlarge the feasibility region. To overcome this difficulty we use the original system (1)
for testing the feasibility of z.(d*); by doing so, the feasible solution to the original
system will be not lost yet the volume of E* keeps shrinking as long as zf is not
feasible. For convenience, we denote by I¥, u* the current bounds at k-th iteration.

The new canonical case is defined as follows:

If a?‘xc > Uy, l] = ale; if a?mc < lj" U; = a;.rzu, where
2 = z.— 7 $(ADAT)a;,
— -1 Ty-1_ .
2 = .47 3(ADAT) lq;.
Algorithm 4.3

e Initialization. Choose d° > 0, scale it so that f(d°) =1 and let (1°,u®) := (I, u);

set £k =0.

e Fork=10,1,...,do

If ¥ := z.(d*) € P, stop with the feasible solution z*; otherwise, choose j with

the j-th constraint violated by z*. Let

g2

o— N i V-1, .
B = af(ADfJIT)—laj’ v:=aj;(ADA") a;

-
where s; 1= =1,

UP: We add a new constraint in current system:
l() S aga: < up

17

where ag := a; and

(o, ug) = (lj,a]Tzu) if a;'r:cc <

(ale,uj) if aJTa:c > u;
where
2 = zF— 4 1(AD*AT) gy,
7z, = zF+477(AD*AT) ;.
(If lp > u; or up < l;, stop with the conclusion that the system is not
consistent.) It is thus the canonical case. Take d¥*! = d* + Meo with A
being either 5—7% or argmin{#(d* + Aeg) : A > 0}. The quantities with tildes

are defined in the same way as those in the paragraphs right after Algorithm
2.1.

DOWN: Set d*+! := d*¥ + A¥e;, AND update the bounds as follows:
Let o = Egggﬁ and 6 = 1—q, to = lyug, and tf = lfu;‘ Set the new bounds

as:

(1 = ary + 8k — \f(aro + 67 — (alo + o18)

bt = arg+6rf + \/(aro + 6r%5)2 — (ato + 61%),
with other components remaining the same.

Then, scale d¥*! so that f(d**1) = 1, where f is computed with the updated j-th

bounds; set k «— k + 1, and repeat.

a

It is easy to see that this “down” technique preserves the value of v. For the above

algorithm to make sense, we have to show that:

18

(1) (aro+ 67';-‘)2 — (ate + 6tf) > 0;

(ii) 5! < max{lo, ¥} and ust > min{uo, uf}.

If (i) holds then such lf“ and uf“ exist; (ii) ensures that the solution set of the
updated system includes the original one.

For (i), we have

(aro + 6r;-°)2 — (ato + 6t;-°) o’r + 62(1";‘)2 + 20«57’01";-c — a*tg — abty — 62t;° — aétf

i

= o?si+ 62(sf)2 + 2a5rorf — abty — aétf
> 2cu5$()s;-c + 20:57'07";-‘ — adty — a5tf
= Ozé(u()u;-c + lol;-c — uglp — uflf)

= a5(uf — lo)(uo — lf) > 0.

For (i), we first suppose that uf < ug. We show that u;’“ > uf If uf—-(ar0+5r§) <

0 we are done, so we suppose otherwise. Then

2

(vf(aro + 675 = (ato +68)) — (uf = (aro + 67%))’
= Qu;-‘(on‘o + 57‘?) — (ato + 6t5) — (uf)2
= a(ufuo + Uflo — ugly — (uf)z)

= o(uf —lo)(uo — uf) > 0.

Thus uf*! > uk. If up < u¥, by exchanging the subscripts of j and 0 in the above

k+1
J

k+1

A1 > min{uo, uf}.

> ug. Therefore, u]

argument, we have u
The same method can be used for showing 5! < max{lo, I¥}.
We note that Algorithm 4.3 with * := argmin{&(d* + Xeo) : A > 0} is just the

ellipsoid method with deep cuts with the “up and down” technique. That is, when

19

adding a new constraint Algorithm 4.1 does the same as the ellipsoid method with
deep cuts. See Figure 2.

Finally, we have
Algorithm 4.4

Same as Algorithm 4.3 except that we define the canonical case as follows:

T

: = =T T =T
either [; = a z; and u; = aj z,, or [; = a] z. and u; = aj z,, where

J
2 = z.—y 2(ADAT) q;,

2y = xc—{—'y"%(ADAT)‘laj.
O

We note that Algorithm 4.4 is just the ellipsoid method with the “up and down”
technique. That is, when dealing with a canonical case, Algorithm 4.4 does the same
as thé ellipsoid method does. See Figure 3.

Finally, we can just use the “up” part of the “up and down” technique in all the
above algorithms except Algorithm 4.2, and they are still polynomial algorithms for the
feasibility problem, but the number of constraints is getting larger and larger. They

can also be used to solve convex programs and preserve polynomiality.

k+1
[

(a) a?m’g > u;

Up

ly

(b) Canonical case

(c) Back to the original set

Figure 2: Algorithm 4.3.

21

k+1
i

UP

DOWN

k1

Figure 3: Algorithm 4.4.

22

() aTzk > u;

(b) Canonical case

(c) Back to the original set

References

[1] M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc.,
1976.

[2] B. P. Burrell and M. J. Todd. The ellipsoid method generates dual variables.
Mathematics of Operations Research, 10:688-700, 1985.

[3] P. Gacs and L. Lovész. Khachiyan’s algorithm for linear programming. Mathemat-
ical Programming Study, 14:61-68, 1981.

[4] M. Grotschel, L. Lovéasz, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169-197, 1981.

[5] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press, 1990.

[6] A.S. Householder. The Theory of Matrices in Numerical Analysis. Ginn(Blaisdell),
1964.

[7] L. G. Khachian. Polynomial algorithms for linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20:53-72, 1980.

[8] Ai-Ping Liao. Algorithms for Linear Programming via Weighted Centers. PhD
thesis, Cornell University, Ithaca, New York, 1992.

[9] M. J. Todd. On minimum volume ellipsoids containing part of a given ellipsoid.
Mathematics of Operations Research, 7:253-261, 1980.

23

