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Abstract

We extend the discrete-time dynamic flow algorithms presented in [5, 19, 13, 9, 10, 8] to
solve the analogous continuous-time dynamic flow problems. These problems include finding
maximum dynamic flows, quickest flows, universally maximum dynamic flows, lexicographically
maximum dynamic flows, dynamic transshipments, and quickest transshipments in networks
with capacities and transit times on the edges.

1 Introduction

Ford and Fulkerson introduced the maximal dynamic flow problem in [5]. The problem is defined
on a dynamic network N' = (V, E,u,7,{s,t}): a set of nodes V, a set of directed edges E with non-
negative, integral capacities v and transit times 7, and a subset .S of nodes called terminals—here, a
source s and a sink ¢. Given this and a time horizon T, the objective is to find a dynamic flow that
sends as much flow as possible from the source to the sink in time 7. Time, in the Ford-Fulkerson
model, is measured in discrete steps, so that if one unit of flow leaves node 7 at time 6 on arc (¢, j),
one unit of flow arrives at node j at time 6 + 7;;, where 7;; is the transit time of arc (7,5). The

model also allows storage at any node in the network.

The research on dynamic flow problems has taken two approaches. One approach models time
in discrete time steps. The other approach models time continuously. Research of the first type
typically uses the time-expanded network, either explicitly in the algorithms, or implicitly in the

proofs, to produce theoretically or practically efficient algorithms. Research using the second
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approach has considered networks with time-varying capacities and costs, and has focussed on
proving the existence of optimal solutions while further generalizing the model. In this paper, we
try to relate the two approaches by extending some of the polynomial time algorithms that work

in the discrete-time model to produce optimal continuous dynamic flows.

A time-expanded network is a directed graph that contains one copy of every node in the dynamic
network for every time step, i.e., its vertex set is {j(#) : j € V,0 € {0,1,...,T}}; and, for every
arc (j,k) in the dynamic network, it contains arcs (j(#),k(0 + 7jx)), 6 € {0,...,T — 7jx}. The
time-expanded network is useful because the transit times are implicit in the network, and thus
all problems that we can solve in traditional networks, we can solve in this one. For example, the
maximum dynamic flow problem in time 7" becomes, in this graph, a maximum flow problem from
source s(0) to sink ¢(7"). Unfortunately, this graph may be very large, and is thus not practical to

work with for large discretizations.

There are algorithms for problems in the discrete-time model that work with the dynamic net-
work directly. Ford and Fulkerson [5] describe an algorithm to solve the maximum dynamic flow
problem with one minimum cost circulation computation. Wilkinson [19] and Minieka [13] both
describe a simple, but exponential time algorithm to solve the universally maximum flow problem.
In their surveys, Aronson [4] and Powell et al. [16] summarize much of the progress made since
then. Recently, Hoppe and Tardos [9, 10, 8] have described several polynomial time algorithms for
discrete dynamic network problems including approximate universally maximum dynamic flows,

lexicographically maximum flows, and dynamic transshipment.

There has also been much research on continuous network flows, most of it for very general networks.
Anderson, Nash, and Philpott [2] consider the problem of finding a maximum flow in a network
with zero transit times, but with capacities and node storage that vary over time, and develop a
duality theory for continuous network flows. In their book, Anderson and Nash present this result
as well as other work on continuous linear programs [1]. Since then, there has been much more
work on continuous dynamic flow problems in networks with time-varying edge capacities, storage
capacities, or costs. For example, see [3, 15, 14, 18, 17]. One focus of this research is to extend the
class of these time-varying functions for which optimal solutions exist. These general continuous
flow problems appear to be very hard to solve: the algorithms developed so far fall short of being
efficient, either theoretically or practically, and the implementations do not seem able to handle

problems with more than a few nodes.

Hajek and Ogier [7] provide the first polynomial time algorithm to solve a continuous dynamic

network flow problem. They consider a network with zero transit times, constant upper bounds



on the flow rates, and infinite node storage, and prove a polynomial time algorithm to empty the

network of excess supply in minimum time.

In this paper, we extend the polynomial algorithms developed for the discrete-time model to a
continuous-time model more general than the Hajek and Ogier model, but more specialized than
most of the models discussed in the continuous flow literature. We assume that transit times are
integral and constant over time. Edge capacities, denoted u., are now upper bounds on the rates
of flow, and are constant and integral per unit time. Like Ford and Fulkerson, we allow storage at
the nodes. However, the optimal solutions found by the algorithms presented here will not use any
storage. Since our solutions are thus unaffected by upper bounds on storage capacities, we assume,
for simplicity, that storage capacities are infinite. One artifact of this discrete time model is that
an edge with zero transit time and positive capacity can transmit a positive quantity of flow in zero

time. This is counterintuitive, and is corrected in the continuous time model.

In Section 2, we introduce notation and vocabulary for discussing dynamic flows. In Sections
3-7, we prove continuous versions of the above-mentioned algorithms for maximum dynamic flow,
quickest flow, universally maximum flow, lexicographically maximum flow, dynamic transshipment,

and quickest transshipment.

2 Definitions and Notation

A static flow is a function f on the arcs of a graph that obeys capacity constraints 0 < f < u
and flow conservation constraints 3-; fij = 0, Vi € V\S. A static circulation is a static flow that
must also satisfy conservation constraints at the terminals. The residual network of a static flow
f subject to capacities u is the same network, with capacities redefined as the restdual capacities
uf =u—f.

A discrete dynamic flow is a function g that assigns a flow to each arc at each time step. It must
also obey capacity constraints 0 < g(f) < wu for all time steps §. Since we allow storage at the

nodes, the flow conservation constraints are summed over time to prohibit deficit at any node:
22:0 Ej gij(r) + gji(r - Tji) >0,V0€{0,...,T}, Vi € V\{s,t}.

A continuous dynamic flow is a function z that defines the rate of flow (per unit time) entering
each arc at each moment of time. The capacity constraints are now flow rate constraints, and the
flow conservation constraints are the same as for the discrete dynamic flow, with the sum over time

replaced by an integral.

All of the discrete-time algorithms are based on the concept of chain flows. A chain flow vy = (v, P)



is a static flow of value |y| = v along path P that starts and ends in the terminal set S of a dynamic
network. The length of the chain flow, (), equals the length of P—the sum of the transit times of
the edges in P. Given time horizon 7', any chain flow v = (v, P) with 7(7) < T induces a dynamic
flow [y]¥ by sending v units of flow along P from time 0 until time 7" — 7(y). In the discrete
setting, this flow has value v(7'— 7(y) + 1), while in the continuous setting, it has value v(7T' —7(%)).
This difference reflects a deficiency of the discrete model—the continuous model captures what we

expect from a flow over time.

A chain decomposition of a static flow f is a set of chain flows, I' = {v1,72,...,7}, that satisfy
>vi = f. Wecall I a standard chain decomposition of f if all chain flows in I' use edges in the
same direction that f does. If I' is a standard chain decomposition of a feasible flow f and all the
chain flows in I" have length less than or equal to 7', then I' induces a feasible dynamic flow obtained
by summing the dynamic flows induced by each of the chain flows. This is called a standard chain

decomposable flow and is denoted by [T]7.

2.1 Some Notes on Feasibility and Continuity

If T is a non-standard chain decomposition of a feasible flow f, more care must be taken to show
that the dynamic flow induced by the chain flows in I' is feasible. The flow conservation constraints
are easily checked. The problem is the capacity constraints: a chain flow that cancels the flow
of another chain flow on an edge e might induce a dynamic flow that arrives at e before the
flow it is supposed to cancel. Hoppe and Tardos [10, 8] introduce the use of non-standard chain
decompositions and show that the dynamic flows induced by the ones used in their algorithms
are feasible. In particular, any chain flow that cancels flow at edge e will induce a dynamic flow
that arrives at e later than the flow it cancels, and leaves e earlier than the flow it cancels. These

feasible, chain-flow-induced dynamic flows are called chain decomposable flows.

Given any feasible discrete dynamic flow, we can transform this into a feasible continuous dynamic
flow by defining the flow rate z on arc (¢, ) in time interval [§,6 4+ 1), 6 € Z to be equal to |f;;(6)|.
This transformation has the nice property that the amount of flow arriving at j via arc (4,7) in the
unit interval beginning at time ¢ in the continuous flow will equal the amount of flow that arrives
at j via arc (7,7) at time step @ in the discrete flow. All transformations of discrete dynamic flows
into continuous dynamic flows mentioned in this paper will be of this natural form. We prove here

that these natural transformations produce optimal continuous dynamic flows.

If our time horizon is integral, than the natural transformation of chain decomposable flows are

also feasible. If the time horizon 7" is not integral, then we can create a continuous 7-horizon flow



by naturally transforming a discrete [7']-horizon chain-decomposable flow into a continuous chain
decomposable flow, and stop sending flow along each chain flow v at time 7' — 7(7) instead of time
[T] — (). We call such a change the natural extension of the original discrete chain decomposable
flow. If the discrete chain decomposable flow is feasible, the continuous chain decomposable flow
that results from the natural transformation of this flow is also feasible. Since all transit times are
integral, all chain flows have integral length, and so the chain flows used with time bound [T"] can
also be used with time bound 7. Thus reducing the time bound does not affect the time a chain
flow starts using an edge. It does reduce the time that the chain flow uses the edge, however. But
since the dynamic flow induced by a chain flow is shortened by the same amount for each chain

flow, no gap is created between a flow and a cancelling flow. Hence the new flow is also feasible.

All the dynamic flows discussed in this paper are based on chain decomposable flows, and all the
extensions of the discrete algorithms will use natural extensions of these flows. We have just seen
that the resulting flows must be feasible, hence the proofs in this paper are restricted to establishing

optimality.

3 The Maximum Dynamic Flow Problem

Ford and Fulkerson introduced the maximal dynamic flow problem in [5]. The object is to send as
much flow from source to sink by a given time bound. They showed how to solve this discrete-time

problem by computing a minimum cost flow problem in a related network.

In the continuous-time version, we are looking to find flow rate 2 to maximize the amount of flow

entering ¢t. We formulate this maximum continuous dynamic flow problem below.

maximize v = f] Yy lere(d — he) — 2 (6)] 6
subject to [ Spey 2k (0 — Thj) — 2;1(0)]d0 >0 €V, 0 €[0,T)

0 < z,k(0) < ujp, J,keV,0€l0,T]

In this section, we will show that the natural transformation of a T'— 1-horizon, maximum discrete
dynamic flow yields a T-horizon, maximum continuous dynamic flow, for 7" integral; and that we
can use the Ford-Fulkerson algorithm to find a maximum dynamic flow for any real 7' > 0. Below,
we define a generalized cut, a la Anderson, Nash and Philpott [2], with capacity that is an upper
bound on the value of any feasible continuous dynamic flow. We will later show that this bound is

met by the natural transformation of the discrete dynamic flow generated by the Ford-Fulkerson



algorithm.

If we let j(6) represent node j at time 6, then a generalized cut C in the network A is defined by a
set of cut points {a;},1 < j < nin [0,T], so that j(#) € C,V0 > o, with ay = 0 and a; =7'. This
definition is actually more restrictive than the cut defined in [1], but we will show that there is a
continuous dynamic flow that saturates such a cut. The capacity of generalized cut C is the sum
over all edges of the amount of flow that can cross an edge while the end points are on different

sides of the cut. Formally, this is

Z /a ujkdﬁ— Z max{0, ax — Tjr — o }Ujp- (1)

jkeE jkeE
Theorem (Anderson, Nash, and Philpott [2]): If z is a feasible, continuous dynamic flow and C is
a generalized cut, then the value of the flow 2 is bounded from above by the capacity of C.

Proof: Let y;(6) be the amount stored in node j at time 6.

yi (8) = / S (ki (0 — i) — zj(0)] 40, 5 € V — {51}

keV

Since we require storage to be nonnegative at all times, we have that

/ S 2k (0 — 1) — 25(0)] 40 = 35 (T) — w5 (ay)
Y keV
< y](T)a .7 eV - {Sat}' (2)

We can rewrite v as the amount of flow leaving the source by time 7", minus the amount stored in

the network at time 7

v= [ T la®) - an@-n)d- ¥ @), 3)

keV FEV—{s,t}

Using (2), (3), together with the fact that ay = 0, and oy = T, we get the following inequality,
which leads to the result.

<
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T
Z /a Z [2%(0) — 2 (0 — ;)] dO

JEV VY keV

= > Zf [2%(0) — 2x; (0 — Tx;)] A6

JEV keVv
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To compute the maximum discrete-time dynamic flow in time 7" — 1, Ford and Fulkerson add an
infinite capacity arc from the sink to the source with transit time —7T. Next, a static, minimum
cost circulation f is computed in this network, with transit times as costs. If |f| = 0, then there is
no source-sink path with transit time < T' — 1, so the maximum dynamic flow is also 0. Thus we
assume in the remainder of this section that |f| > 0. The resulting flow in the original network is
decomposed into chain flows 4; such that f = Y, v;. This static flow is transformed into a dynamic
flow of value T'| f| — " Tjkfix by sending as much flow as possible along each path at each time
step. Ford and Fulkerson show that this is a maximum discrete-time dynamic flow by exhibiting a
saturated cut in the time-expanded graph. Let a; be the distance from the source to node j in the

residual graph of f. Then the saturated cut C' in the time-expanded graph is
C={j0)6 = o} (4)

This cut has capacity

Z max{0, ar — Tjr — Q; }Ujk. (5)
jkeE

Using complementary slackness of minimum cost flows [5] which states max{0, a — 7jr — o }(ujx —
fjx) = 0 for every edge, we can rewrite (5) as

> (a—a)fi— Y Tl

jkeE jkeE

Since as = 0 and oy = T (recall |f| > 0), we see the cut has capacity equal to T|f| — X rec g Tjkfjk-

Theorem 3.1 The continuous mazimum dynamic flow in time T in a dynamic network has value
T|f| — Xjker Tirfix, where f is a a minimum cost circulation in the network with an additional

sink-to-source arc with cost =T and infinite capacity.

Proof: Compute a minimum cost circulation in the extended network described in the theorem
Decompose the flow into paths and send as much flow as possible along each path v; from time 0
until time 7" — 7(9;). The value of this flow is >, fOT_T(%) |vi|d@, which, using |f| = 3, |7, equals
T|f| — > ker Tjrfik- This is the capacity of the generalized cut defined by the «;’s over time T

Since this argument holds for all real 7' > 0, the theorem is proved. [ ]

4 The Quickest Flow Problem

The flip problem of the maximum dynamic flow problem, the quickest flow problem asks for a flow

of integral value v that completes in minimal time. In the discrete setting, this is solved easily by



binary search on the time bound 7'. Note that in this model, it may be possible to send more flow
in the optimal time than is necessary to deplete the supply. The following theorem implies that

binary search may also be used to solve the quickest continuous flow problem (QCFP).

Theorem 4.1 Given a dynamic network with integral supply, the minimum time necessary to solve
QCFP may be expressed as a rational number with denominator bounded by the size of a minimum

cut in the network.

Proof: First note that the maximum continuous dynamic flow is a continuous function of T". Thus,
unlike the quickest discrete-time flow, the value of the maximum continuous dynamic flow in the
optimal time of the quickest continuous flow is exactly equal to the supply. Fix T', and the maximum
continuous flow z has value |z| = T'|f| — X 4cg Tjxfjk, for some static flow f. Given f, and the
supply quantity v, we could then find that 7" = (v + X ke g Tjkfj)/|f|- By assumption, v and the
transit times are integral, and thus, by well-known facts about min-cost flows, f is integral. Hence
the optimal 7" for the quickest continuous flow is rational with denominator bounded by |f|, which

is bounded by the minimum cut in the network. |

5 Universally Maximum Dynamic Flows

A maximum dynamic flow in time 7" is an earliest arrival flow if it is also a maximum dynamic flow
for every time 0 < 6 < T. A latest departure flow is a flow with time horizon T that maximizes
the amount of flow leaving the source in every interval [6,T], 0 < 8 < T. A wuniversally mazimum
dynamic flow is an earliest arrival and latest departure flow. Such flows exist in both the discrete
and continuous time models [6, 15]. Wilkinson [19] and Minieka [13] give algorithms to compute
a universally maximum discrete dynamic flow based on Ford and Fulkerson’s shortest augmenting
path algorithm. In this section, we show that, as with the maximum dynamic flow problem, we
can use this discrete-time algorithm to produce a universally maximum continuous dynamic flow.

(Our discussion of the Wilkinson and Minieka algorithm follows the presentation of Hoppe [8]).

Let T be the set of chain flows induced by paths found by the shortest augmenting paths algorithm,
and let I'g = {v; € T': 7(7;) < 6}.

Theorem 5.1 [['7 is a universally mazimum continuous dynamic flow.

Proof: The sum of the chain flows in any I'y is a minimum cost flow, and it can be transformed to

a minimum cost circulation by adding an arc from sink to source with length —f. By Theorem 3.1,



the value of the flow entering the sink for any interval (0,#) is maximum for any @, and hence the

flow is an earliest arrival flow.

[[]7 is also a latest departure flow, and hence a universally maximum flow. Consider the dynamic
flow induced by chain flow v; € I'. For every |v;| units of flow entering the sink at time 6, there are
|7i| units of flow leaving the source at time 7" — §. Summing over all chain flows in I', we see that
the departure schedule is symmetric to the arrival schedule, and hence the dynamic flow is also a

latest departure flow. [ |

5.1 A “Snapshot” Algorithm

Unfortunately, the algorithm of Wilkinson and Minieka is not a polynomial time algorithm, since
the shortest augmenting paths algorithm might use an exponential number of paths [20]. Hoppe and
Tardos [9, 8] give two polynomial time algorithms related to this problem. The first is a “snapshot”
algorithm that computes the value of the T-horizon, universally maximum discrete dynamic flow on
a specified edge at a specified time step, denoted f,,(6,T"). We extend this algorithm to compute
the rate of flow entering a specified edge in a specified time interval (¢ —1,0], 8 € Z.

Hoppe and Tardos observe that in the discrete time model, f;.(6,T) could be described by a
subset of the set of chain flows used in the T-horizon, universally maximum discrete dynamic
flow algorithm; that the sum of flows in this subset also describes a minimum cost flow; and that
2(0,T) depends only on this minimum cost flow, and not on the specific chain decomposition.

They then give a polynomial time algorithm to compute this minimum cost flow.

To extend this algorithm to work in the continuous setting, we first note that since all arcs in the
original network have integral lengths, a minimum cost circulation in the network with return arc
of length —f € Z is also a minimum cost circulation in the same network with return arc of length

—(8 — ¢€), for any € € (0,1).

Let z be the rate of flow determined by the universally maximum continuous dynamic flow algorithm
discussed above. First consider the case when 7' is integral. Then, integral transit times imply that
z changes only at integral time intervals. Thus f;,(6,7) computed by the Hoppe-Tardos algorithm
can be interpreted, in the continuous-time model, as the rate of flow entering an edge over any time
interval of form (0,6 +1],0 € Z,6 <T — 1.

If T is not integral, z can change only at times of the form # and 6 + fr(7T) for § € Z, where fr(7T)
is the fractional part of T. The flow entering an arc (y, z) changes either when the dynamic flow

induced by a chain flow starts passing through y or stops passing through y. Integral transit times



imply that the former happens only at times #, and the latter only at times 6+ fr(7"). Thus the flow
rate is constant over any interval of form (6,60 + fr(7T")) or (6 + fr(7),0 + 1). The chain flows that
send flow through arc (y, z) during the interval (6, 8+fr(7)) but not in the interval (8 +fr(7),6+1),
are the flows that have distance |T'| — @ to travel from y to t. That is, we can compute the flow
rate over interval (6,60 +fr(7")) by computing f;.(8, [T]). The flows that entering arc (y,z) beyond
time @ + fr(7T'), have distance less than |7'| — @ to travel to ¢, and thus we can compute the flow
rate over interval (6 + fr(7'),6 + 1) by computing f,,(0, [T]). This proves the following extension
to Hoppe’s result [8].

Theorem 5.2 Let z be the universally maximum continuous dynamic flow as computed via the
shortest augmenting paths algorithm. The rate of flow entering any edge yz in time interval
(6,0 + fr(T)) or time interval (0 + fr(T),0 + 1) for 8 € Z, is constant and can be computed in
O(log(nU)MCF) time, where U is the largest flow rate in the dynamic network.

5.2 Approximate Universally Maximum Dynamic Flow

Hoppe and Tardos [9, 8] describe an approximation algorithm that returns a discrete-time flow
of value within (1 — €) of the universally maximum discrete dynamic flow over any time interval
[0,6],8 € {0,1,...,T}. The algorithm combines capacity scaling with the shortest augmenting
paths algorithm. The initial phase uses the dynamic network as given and mimics the shortest
augmenting paths algorithm until the static flow value exceeds “*, at which point residual capacities
are rounded down to the nearest even number. With each augmentation, the flow along the path is
added to a set of chain flows I' that will induce the final dynamic flow. Each successive phase uses
the residual network passed by the previous phase with capacities evenly divisible by A, augments
flow along shortest paths until the static flow value of the new augmentations exceeds AT"‘, adds
the augmenting chain flows to I', and then rounds down residual capacities so that they are evenly

divisible by 2A. This continues until there is no augmenting path of length less than or equal to 7.

Remark: This algorithm has a special property that we will use in the proof of Theorem 5.3.
Consider the change to I' if we increase T' by one. Notice that no chain flows will leave I', and, all
those that enter I' have length equal to 7'+ 1. This is a property of the shortest augmenting paths

algorithm that is maintained here.

Theorem 5.3 The continuous transformation of the Hoppe-Tardos (1—¢€)-approzimate universally

mazimum discrete dynamic flow is a (1—e€)- approzimate universally mazimum continuous dynamic

flow.
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Proof: Since the natural transformation of the universally maximum discrete dynamic flow is
a universally maximum continuous dynamic flow, the natural transformation of the approximate
discrete dynamic flow yields a continuous dynamic flow of value within (1 — €) of the universally
maximum continuous dynamic flow over any time interval [0,6], 8 € {0,1,...,[T|}. To see that this
flow is within (1—e¢) of the universally maximum dynamic flow for any time interval [0,60],0 < § < T,

we again consider two cases: 7T integral, and T real.

If T is integral, then we observed in Section 5.1 that the flow rate is constant over any interval
(0,0 +1],60 € Z. Let u and v be the respective values of the approximate and optimal dynamic
flows at time 6 € Z. Note that u > (1 — €)v. At time 6 + 1, these values will be u + ¢ and v + d,
with w4+ ¢ > (1 — €)(v + d). Since both approximate and optimal flows have constant rates of flow
in the interval (6,6 + 1], a weighted average of these two inequalities shows that the value of the

approximate flow at time § + 6, 0 < 6 < 1 is still within 1 — € of the optimal.

We now argue that the validity of the algorithm for integral 7" implies validity for all 7. Our
previous remark implies that the set of chain flows used in the optimal and approximate flows in
time T are the same as the set of chain flows used in the corresponding [7'|-horizon flows. Thus
the amount of flow reaching the sink by time # < T in the T-horizon flows is the same as the
amount of flow reaching the sink by the same time in the [T]-horizon flows, and thus the value of

the approximate T-horizon flow at time § < 7" is within 1 — € of the optimal, for any 7" > 0. [ |

6 Lexicographically Maximum Dynamic Flows

A lexicographically mazimum dynamic flow is a feasible dynamic flow that, given an ordering of
the terminals S = {sg,s1,..-,8k—1}, and a time bound T, maximizes the amount of flow leav-
ing each terminal in the given order. The set of terminals may contain both sources and sinks:
maximizing the amount of flow leaving a terminal is equivalent to minimizing the amount of
flow entering the terminal. Minieka [13] and Megiddo [12] both noted that this objective is also
equivalent to simultaneously maximizing the amount of flow leaving every high priority subset
Si == {s0,81,---,8i—1}, 0<i < k.

If T is integral, then the natural transformation of a lexicographically maximum discrete dynamic
flow in time 7' —1 is a lexicographically maximum continuous dynamic flow: the flow leaving every
high priority subset S;, 0 < ¢ < k is a maximum continuous dynamic flow by the observation of

Minieka and Megiddo, and Theorem 3.1.

Hoppe and Tardos [10, 8] describe an algorithm that computes a lexicographically maximum dy-

11



namic flow in the discrete-time setting via k& minimum cost flows. They iteratively compute a
discrete dynamic flow maximizing the amount of flow leaving every high priority subset of ter-
minals S;, by computing a minimum cost circulation in an extended network. This circulation is
decomposed into chain flows, which are added to the set of chain flows that induce the final dynamic

flow.

We can extend this algorithm to produce a continuous dynamic flow via the natural extension of
the discrete flows induced by chain flows. We must argue that the resulting low maximizes the
amount leaving every high priority subset S;, 0 < ¢ < k when T is not integral. First note that the
algorithm will return the same chain flows for time horizons 7" and [7"]. Next note that if 7" is a
rational number with denominator bounded by d, then the algorithm will return the same chain
flows for time horizon T as it would on the network modified by multiplying 7' and all transit times
by d. Since the dynamic flow induced in the latter case is a lexicographically maximum continuous
dynamic flow, the same is true in the former: the only difference in the two cases is the time
scale. By taking limits of the lexicographically maximum continuous dynamic flows for rational
time horizons, we see that the same algorithm will return a lexicographically maximum continuous

dynamic flow for all real T' > 0.

7 The Dynamic Transshipment Problem

With the dynamic transshipment problem, we have a dynamic network, an integral vector v of
supplies at the terminals, and a time bound 7. The objective is to find a feasible dynamic flow
that zeroes all supplies within time 7. Hoppe and Tardos [10, 8] solve the discrete-time version of
this problem by reducing it, in polynomial time, to the lexicographically maximum dynamic flow
problem. Their reduction is somewhat complicated, and relies on an oracle to test feasibility. The

goal of this section is to show that it is still valid for continuous dynamic flows.

Hajek and Ogier [7] describe an algorithm that computes a quickest continuous dynamic trans-
shipment in the special case that all transit times are zero and there is only one sink. While
their algorithm does not appear to extend to handle non-zero transit times, or more than one sink
(without restricting the number of sources), it is much simpler than the more general algorithms

mentioned here, running in time O(|V|*).
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7.1 Dynamic Transshipment Feasibility

For the static transshipment problems, Ford and Fulkerson provide a criterion for feasibility: a
supply vector v is feasible if and only if, for every subset of terminals A C S, the maximum flow
out of A is at least v(A). For the discrete dynamic transshipment problem, Klinz [11] observed
the corresponding relation. For a fixed time 7" and a subset A of terminals, define o(A) to be
the value of the maximum discrete dynamic flow that can be sent from sources in A to sinks in
S — A in time T. We can compute o(A4) via one maximum dynamic flow by adding a super source
connected to the sources in A by infinite capacity zero transit time arcs and a super sink similarly
connected to the sinks in S — A. For feasibility of the dynamic transshipment problem we must
have v(A) < o(A) for every A C S. Klinz noted that by considering the Ford-Fulkerson criterion in
the time expanded graph, this condition was also sufficient for feasibility. In the continuous model,
there is no time-expanded graph to consider; nevertheless, the following theorem shows that the
analogous condition is sufficient for feasibility of the continuous dynamic transshipment problem.

Let 0 be the maximum continuous dynamic flow function for fixed 7.

Theorem 7.1 The continuous dynamic transshipment problem is feasible if and only if v(A) <

0(A) for every subset A C S.

Proof: First consider 7" integral. The discussion in Section 3 implies that v(A) < 6(A) for all
A C S if and only if v(A) < o(A4) for all A C S in discrete time 7' — 1. This second condition
implies that the discrete time problem is feasible in time T'— 1, which, by transforming the feasible

discrete flow to a continuous flow, implies that the continuous problem is feasible in time 7'

By Theorem 4.1, v(A) = 6(A) only if T is a rational number with denominator bounded by the
maximum size of a static flow in the network, |f|. If T is such a number, then we can consider
the same network with transit times and time bound multiplied by a constant d < |f|, and hence
the above argument applies. If T" is not such a number, since o is a continuous and nondecreasing
function of T', we can reduce T to the closest such number while maintaining v(A) < 6(A4) for all

A C S. The new problem is then feasible, so the original problem must be also. [ |

The above theorem implies that a simple exhaustive search, testing all subsets A C S will prove
feasibility or find a violated set. Hoppe and Tardos [10, 8] describe a strongy-polynomial time

algorithm to test feasibility that relies on submodular function minimization.
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7.2 Dynamic Transshipment Algorithm

A subset A C S satisfing v(A) = o(A) is called a tight subset. If the terminals can be ordered
{s0,81,-..,5K1} so that each subset S; is tight, then a lexicographically maximum flow is also a
dynamic transshipment. Hoppe and Tardos [10, 8] noted this and used this fact to motivate their
algorithm to find a dynamic transshipment. They successively add terminals to the network with
parametrized capacities or transit times to create a chain of nested tight subsets of length equal to

the number of terminals, and then find a lexicographically maximum flow.

Since both the lexicographically maximum dynamic flow algorithm and the criteria for feasibility
hold for continuous dynamic flows, the natural transformation of the discrete dynamic transship-
ment will provide a continuous dynamic transshipment, if 7" is integral. If T" is a rational number
with denominator d, then we can solve the dynamic transshipment problem in the network with T’
and transit times multiplied by d. In doing so, we may introduce arcs with capacities and transit
times that are not evenly divisible by d, and hence will be fractional when we translate our solution

back to the original network, but these fractions will be integer multiples of 1/d.

Finally, we can bound the size of denominator d: if T is irrational, or has large denominator, then
the argument in the following section shows that either the problem is infeasible, or we can reduce

T and the problem remains feasible.

7.3 The Quickest Transshipment

Given a dynamic network, and a supply vector v, the quickest transshipment is a feasible dynamic
transshipment that satisfies all supplies in the minimum time 7'. Since the dynamic transshipment
problem is feasible as long as v(A) < a(A) for all A C S, and o(A) for fixed A is a continuous
and nondecreasing function of 7', at the minimum time 7" there must be some A that is tight.
Theorem 4.1 then implies that 7" must be a rational number with bounded denominator and thus,
using the dynamic transshipment algorithm, we can solve the quickest transshipment problem via

binary search for the minimal 7T'.
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