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ABSTRACT

Spatial visualization skills are essential and fundamental to
studying STEM subjects, and sketching is an effective way
to practice those skills. One significant challenge of support-
ing practice using sketching questions is the vast number of
possible mistakes, making it time-consuming for instructors
to provide customized and actionable feedback to students.
The same challenge persists for computer programs as well.
This paper introduces a clustering model designed to catego-
rize sketching answers based on the severity and character-
istics of their mistakes. The model is designed to be used by
a computer-based training platform to provide customized,
actionable formative feedback to students in real-time. The
promising results also suggest a new and comprehensive set
of evaluation criteria to assess a student’s performance on
sketching questions. As a broader contribution, our work
is a proof-of-concept for a modeling approach to automat-
ically evaluate and provide formative feedback on complex
free-hand sketches using abstract features that may be gen-
eralized to a variety of disciplines that involve the creation
of technical drawings.

Keywords
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1. INTRODUCTION

Spatial visualization is the ability to represent and mentally
manipulate two-dimensional and three-dimensional objects
[11]. A body of research has shown that good spatial vi-
sualization skills help students succeed in STEM education
[39, 3, 13, 25, 27, 32, 41, 44]. It is encouraging that existing
research also demonstrates that spatial visualization skills
are malleable and can be trained and improved, for exam-
ple, via forms of workshops and seminars [42]. There have
been successes in increasing the retention rates of STEM
freshmen students with spatial visualization skills training
in recent years, especially for minority groups such as female
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students [39, 23].

Besides multiple-choice questions that are traditionally used
in spatial visualization training, free-hand sketching on grid
paper is an effective type of practice question [38]. Sketching
questions can imitate the sketching tasks required in many
engineering disciplines, which is particularly helpful since
sketching is a fundamental skill for engineering designs [22].
In the training process, since students gain from learning
from their mistakes instead of failing in the first try and
giving up based on the immediate-feedback assessment tech-
nique [26], students can benefit from having a second chance
on a practice problem. However, providing formative feed-
back while not giving away the answer, which is known to
support self-regulated learning [28], on free-hand sketching
can be challenging due to the wide variety of possible incor-
rect answers on such activities.

While human instructors possess the capability to analyze
an erroneous free-hand sketch, identify the source of po-
tential errors and provide formative feedback, it is a time-
consuming process and providing such feedback to a large
student population would require prohibitive efforts that
would likely prevent the feedback from being provided in
a timely fashion [2]. Computer-based systems able to pro-
vide timely formative feedback can be considered as an al-
ternative to address this limitation. However, one significant
challenge to automatically providing immediate customized
feedback for sketching questions is the need for a computer-
based system to be able to recognize and understand how
much an answer is different from the answer key and the
types of mistakes students are making.

On the one hand, sketching questions have an enormous
number of possible incorrect answers, which are often spe-
cific to a unique problem, making it difficult, if not impos-
sible, to identify every possible error and to prepare unique
feedback for each one. As an alternative, a computer-based
system could be designed to recognize categories of answers
based on the severity or characteristics of their errors and
provide feedback relevant to each one. However, to the best
of our knowledge, there is no existing research that catego-
rizes answers to complex sketching questions based on their
errors, either conceptually or computationally. The lack of
solution motivated us to identify patterns that exist in stu-
dents’ erroneous sketching answers and create a computer-
based algorithm that can categorize them in real-time.
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Due to the lack of existing categories of erroneous answers in
free-hand sketching problems, we propose the use of a clus-
tering approach to identifying such categories. Our research
questions are the following:

RQ1 What categories exist in students’ sketching answers
based on the severity and characteristics of their er-
rors?

RQ2 How meaningful are the identified erroneous answer
categories, and what actionable feedback can be pro-
vided for each category?

We constructed a list of features that can be used to char-
acterize students’ erroneous sketching answers. Using a k-
mean clustering approach, we discovered six common answer
categories for incorrect sketches that are distinct from one
another according to the severity and characteristics of the
errors. Our clustering results suggest a new set of evaluation
criteria for complex free-hand sketching answers that is more
interpretable and generalizable than those in prior work [7,
43, 5]. Also, we provide initial suggestions for the kinds
of formative feedback appropriate for each answer category
without giving away the answer [36].

To the best of our knowledge, our study is the first to identify
categories of erroneous sketches, both computationally and
conceptually, in spatial visualization sketching problems us-
ing abstract features. Our approach also has the potential to
be generalized to other subject areas that require sketching
practices, mostly technical drawings in various Engineering
and Science subjects, such as circuit diagrams in Electri-
cal Engineering, engine models in Mechanical Engineering,
building plans in Architecture, and structural formula in Or-
ganic Chemistry.

2. RELATED WORK
2.1 Spatial Visualization Skills and Sketching

Spatial visualization skills were estimated to play an impor-
tant role in 84 careers [37], most of which are STEM-related.
A longitudinal study showed that psychometrically-assessed
spatial ability predicts career in STEM fields after account-
ing for Math and Verbal aptitudes [45].

Spatial visualization skills are applied in various STEM ar-
eas. Research shows that students with better spatial vi-
sualization skills perform better in Chemistry [32, 6]. In
Organic Chemistry, for example, students with strong spa-
tial visualization skills draw preliminary figures more often.
Hence they use figures to gain a better understanding of
the questions and are more likely to answer them correctly
[32]. Another body of research revealed the connection be-
tween spatial skills and Geoscience [17, 30]. In particular,
students with strong visual penetration ability, e.g., imag-
ining cross-sections, perform better in Geology [17]. Fur-
thermore, understanding cross-sectioning is a basic skill in
many other engineering subjects [9, 12]. Spatial visualiza-
tion is also found to be tightly related to performance in
Anatomy in Biology [34], Radiology in Medicine [16].

A wide variety of empirical research has shown that spa-
tial visualization skills are malleable. Interventions designed

to improve spatial visualization skills reach, on average, a
medium effect size of 0.47 [42]. A well-known training devel-
oped by Sorby (2009) showed significant post-test improve-
ment for each class of college students over a 6-years-long
study. In particular, Sorby found that the training signifi-
cantly improved female students’ retention rate but not that
of male students [39]. The finding suggested the critical role
of spatial visualization skills training in increasing the diver-
sity of STEM field students.

Sketching ability is fundamental to engineering design [22]
and highly correlates with many STEM subjects [35]. To
improve spatial visualization skills, sketching is one of the
most effective approaches [38]. Electronic sketching has also
demonstrated potential in training spatial visualization skills
[8, 47]. Thus, the application of sketching practice is worth
studying for better improving spatial visualization skills.

2.2 Computer-based Evaluation and Forma-
tive Feedback for Sketches

To the best of our knowledge, there is no prior work on
the evaluation of sketches in spatial visualization training,
both conceptually or computationally. The use of computer-
based formative feedback for spatial visualization sketching
has not been studied either. There is a body of research
on computer-based evaluation and formative feedback for
other types of sketches [5, 7, 43, 40, 15, 18, 19, 20]. How-
ever, some of them are too simple or too domain-specific to
be generalized to a complicated case as in spatial visualiza-
tion sketches. Others’ evaluation methods cannot provide
actionable or easy-to-interpret formative feedback.

For free-hand sketching that is evaluated mostly based on
the shape and structure, there are a few existing evaluation
approaches in domains other than spatial visualization train-
ing. Bhat (2017) developed Skechography, a river-sketching
auto-grading tool for Geology [5]. This tool could perform
sketch recognition and compare the river’s shape similarity
using the Shape Context algorithm, the distances of start
points and endpoints between a student’s answer and the
answer key. Based on the degree of similarity and distances,
the tool provided a score that was a weighted sum of these
three features. Skechography evaluated a river, which had
only one line with specific features of a start point, an end-
point, and the shape of the line. The simplicity of this ap-
plication has a weak external validity and cannot be used in
evaluating spatial visualization sketches.

The work by Chandan et al. (2018) [7], on the other hand,
worked on a complicated case of free-hand drawing of objects
of specific categories, e.g., a bee, an airplane, etc. They ap-
plied a Convolutional Neural Network approach for object
categorization and a Scale Invariant Feature Transform ap-
proach to check the similarity between a given sketch and
the "standard” sketch. As feedback, the tool showed the per-
centage of similarity to various categories of objects. The use
of deep learning methods made the interpretation of results
challenging. Hence, this approach is limited in its capability
to generate specific and actionable feedback to help students
improve their answers.

Mechanix, a sketch-based tutoring system for learning forces
applied on a truss, could provide specific feedback to free-
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hand sketching of forces [43]. In this case, the errors that
could occur were known and clearly defined on an arrow-
basis. Given the small number of arrows, it is relatively easy
to cater specific and actionable feedback to each error. In
the case of spatial visualization sketches, a sketch contains
far more number of lines, making it infeasible to provide a
piece of feedback for each line.

There exists another body of work that focused on the recog-
nition of East Asian characters, which are similar to a sim-
ple sketch [40]. However, these solutions applied an "all or
nothing” approach to recognize the structure of a charac-
ter, which was not helpful in providing specific formative
feedback. A few other works aimed to evaluate and pro-
vide feedback on the quality or aesthetics of a sketch, but
not on the correctness in terms of the structure of shape
[15, 18]. There is also an evaluation approach for computer-
aided design solid models specifically, using criteria related
to parameters set in the computer-aided model, which does
not apply to free-hand sketching because the concept of pa-
rameters is not intuitive in free-hand sketching [19, 20].

Overall, there is limited work on a computer-based evalua-
tion of complex free-hand sketching based on structural cor-
rectness that can generate specific and actionable formative
feedback. Our work aims to fill in this gap.

2.3 Answers Categorization in Content-based
Automated Evaluation

In evaluating constructed response automatically from a content-

based perspective, there is a rich body of work in evaluat-
ing short answer questions for a variety of subjects and do-
mains [24]. However, except for the studies mentioned in the
last section, there is very few existing literature related to
the content-based evaluation of complex free-hand sketch-
ing. Therefore, we draw our inspiration from the existing
research in evaluating short answer questions and apply it to
complex free-hand sketches, a different type of constructed
response.

Answer categorization is one of the most frequently used
approaches to perform a content-based evaluation of short
answers. In most cases, supervised learning is applied using
a manually labeled training set based on pre-defined rubrics
[21, 33, 1, 10, 29]. For example, c-rater applied NLP tech-
niques that determined whether an answer contained each
key concept and was widely applied on short answer ques-
tions in Biology, Psychology, Math, and Reading, to not
only grade but to provide specific real-time feedback [21,
1]. Pulman and Sukkarieh (2005) experimented with Induc-
tive Logic Programming, Decision Tree and Naive Bayes to
classify short answers into the desired category for Biology
[33].

In our case, however, there are neither pre-existing robust
rubrics as the evaluation standard for spatial visualization
sketches nor known categories of error. This brought dif-
ficulties to label a training set manually accurately. Also,
most content-based evaluation approaches only provided up
to three levels of scoring. Some exceptions that provided
more than three levels of scoring were either unclear about
the definition of the levels or the levels were only mechanical
composition of the correct answer [24]. As an alternative,
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Figure 1: Free-hand sketching tool for isometric
sketching on the online spatial visualization train-
ing platform

we turned to unsupervised learning to perform answer cat-
egorization to identify categories that were as granular yet
meaningful as possible. Clustering is an often-used unsuper-
vised learning approach in short-answer grading, especially
in the case of answering open-ended questions. Previous
work [4, 48] has shown that clustering could group answers
that are similar in text characteristics, semantics, and top-
ics. Our work aims to leverage this method to categorize
complex sketches in spatial visualization training.

3. METHODS
3.1 Data Collection

We collected data from students solving free-hand sketch-
ing problems in a 100-level engineering course called ”"Spa-
tial Visualization” that utilized an online training platform
over half a semester in Fall 2019 at our home institution,
a large public university in the Midwestern United States.
The online training platform was previously developed as a
computer-based spatial visualization training platform [47]
to enable practicing at scale using online exercise and auto-
matic grading. Previous work has shown a significant im-
provement in spatial visualization skills for those who com-
pleted the exercises on the platform [47].

Students in the course met once a week in-person for an
hour, and the majority part of the course was working through
practice problems on the platform on their own as their
weekly assignment, given the instructions. The focus of
practice questions each week was different, depending on
the particular set of skills that were being trained, such as
mental rotation, cross-sectioning, and coded plan. The plat-
form supports both multiple-choice questions and sketching
questions. Figure 1 and Figure 2 show the free-hand sketch-
ing tool on the platform that allows students to sketch out
their answers on the computer. Students can draw and erase
lines on the grid paper freely. Students could also save their
sketch when they leave the platform and load what they
saved when they come back. In the course, students were
given a maximum of two attempts for each sketching ques-
tion, i.e., they were given a second chance if they answered
incorrectly in the first attempt. All the sketching questions
were graded with an ”all or nothing” approach.

The collected dataset includes 370 incorrect sketches from
14 students in the course that covers five types of sketch-
ing questions and 61 unique questions. We excluded correct
sketches in the categorization because they would naturally
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Figure 2: Free-hand sketching tool for orthographic
sketching on the online spatial visualization training
platform

be in one category by mapping exactly to the answer key.
Examples of the types of sketching questions include draw-
ing the orthographic view of a 3D object given the isometric
view or vice versa, and drawing the resulting 3D object after
rotating a given 3D object with a certain degree in a given
direction. Each type of sketching questions contained a se-
ries of different questions with 3D objects of various shapes.
On average, each sketch contains approximately 30 to 80
lines of unit length.

Each submission of an attempt to answer a question pro-
duced a raw log describing their answer. In the raw log,
two major types of information were recorded. First, it con-
tained the set of lines in the final submitted sketch. Second,
it recorded the history of all the timestamped steps a stu-
dent took of adding or deleting a line, clearing, or loading
the sketch for that question (Figure. 3). In this paper, we
focused on the final submitted sketch only since the goal is
to categorize the final answer instead of analyzing students’
process of solving a free-hand sketching problem.

Each final submitted sketch is represented by the X-Y coor-
dinates of a list of lines. The lines are further denoted by the
type of the lines, either solid line or dashed line, which are
the two standard types of lines used in the sketching exercise
for different purposes. A sketch is mostly made up of solid
lines, but a dashed line should be used instead of a solid line
to represent a hidden edge from a particular perspective.

Another data point in the raw log is the type of grid paper
used for a sketch. There are two types of grid paper in the
sketching exercises: an isometric grid for isometric drawing,
and a dot grid for orthographic drawing. A sketch is consid-
ered as correct only if the shape and the size of the object
match with those of the answer key, and uses the correct
type of grid paper. The position of where a sketch is drawn
on the grid paper is flexible.

We performed two steps of data standardization on the raw
log before feature extraction. First, we aligned both the stu-
dent’s answer and the answer key to the lower-left corner of
the sketch-pad. Second, all the lines were broken down into
unit length and de-duplicated so that lines that overlapped
with each other would only be counted once. We conducted
these two steps for the ease of comparing student’s answers
against the answer key.

3.2 Feature Extraction

Figure 3: An example of a raw log file generated
from sketching questions on the online spatial visu-
alization training platform

We developed a total of 8 features to use as input for our
clustering model. We performed feature engineering man-
ually after observing a small subset of the data to get an
idea of what information human instructors might use when
interpreting incorrect answers. In order to get a preliminary
view of possible errors that would be as comprehensive as
possible, we selected three questions that had the highest
number of incorrect answers and observed the errors made
by students on those problems. Based on our preliminary
observation, we created three categories of features that rep-
resent different characteristics of the observed errors.

The first group of features uses a unit-length line as its basic
unit, i.e., a line connecting adjacent points, and represents
the number of lines that are wrong compared to the an-
swer key. We observed from the subset of mistakes that the
number of incorrect lines involved in a sketch varied widely,
from only one wrong line to over 80% of lines being wrong.
The number of incorrect lines is a straightforward way to
quantify the degree to which a sketch was incorrect. We
considered three scenarios in which a line is wrong.

1. An extra line: a line is in the student’s answer, but
there is no line at the same position in the answer key.

2. A missing line: a line is in the answer key, but there
is no line at the same position in the student’s answer.

3. A line with incorrect type: two lines with the same
position in the student’s answer and the answer key are
of different types, i.e., solid line vs. dashed line.

To normalize the number of incorrect lines against the com-
plexity of the sketch, we adopted the percentage of wrong
lines instead of the absolute number, i.e., dividing by the
total number of lines in a sketch. The three features in this
group are Percentage of Extra Lines, Percentage of Missing
Lines, and Percentage of Lines with Correct Position but
Incorrect Type.

The second category of features represents the groupings of
the incorrect lines based on their location in a sketch. In
our preliminary observation, we found that, between two
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Figure 4: An example of a sketch (on the right) with
four error components, i.e., four sites of mistakes.
The sketch on the left is the answer key.

sketches with a similar number of incorrect lines, the incor-
rect lines may be inter-connected and concentrated in one
place in a sketch while being scattered in multiple spots in
another sketch. These two cases represented the mistakes of
different natures.

Based on the assumption that incorrect lines that are con-
nected are more likely caused by the same mistake, we treated
all the incorrect lines as an undirected graph and defined
each component in the graph as one ”site” of mistake. A
component here has the same definition of a component in
an undirected graph, a subgraph in which any two vertices
are connected by paths, and which is connected to no ad-
ditional vertices in the supergraph [46]. As an example, in
Figure 4, there are a total of four error components in the
sketch, three extra lines in different locations, and a discon-
nected taller stack separated from the bottom of the object.

We constructed three features in this category. The first
feature is the number of components in the graph made of
incorrect lines, which is a representation of the number of
mistake sites in a sketch. Since the size of a component
represents how severe a mistake is, the second feature is the
average size of all the error components in a sketch. The
larger the average component size is, the more severe the
mistakes are on average. The last feature is the maximum
size difference among all error components, which reflects
the range of severity across multiple mistake sites in a sketch.

The last set of features describes the general characteristics
of the sketch. One feature is whether the student uses the
same type of sketching grid as the answer key. Another
feature is whether the sketch is empty. If it is empty, it
indicates either the student did not attempt the question or
accidentally skipped the question.

3.3 Model Construction

As there was no prior framework or knowledge on how to
categorize the erroneous sketches, it was not possible to ob-
tain labels (ground truth) describing each answer. As such,
we used an unsupervised clustering algorithm to identify cat-
egories of erroneous answers from existing data. Based on
prior observation of the data, we hypothesized that the fea-
tures of each cluster should have a sphere-like shape. There-
fore, we used k-means clustering with squared Euclidean dis-
tance. The algorithm aims to assign all the data points into
a specified number of clusters such that every data point is

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

Figure 5: Examples of mistakes in Cluster 0, having
one minor mistake. The sketch on the left is the
answer key.

in the cluster with the nearest mean. Ideally, data points
that have similar values across all the features are grouped
in one cluster.

After feature extraction, we performed further data normal-
ization as the first step of model construction. Since the
k-means clustering algorithm is sensitive to the scale of the
features, we normalized each of the three features (Number
of Components, Average Size of Components, and Maxi-
mum Difference between Size of All Components) into the
unit interval respectively across all data, so that they were
on the same scale as the other features that were either in
percentages or in a boolean format.

We performed parameter tuning to decide on the optimal
number of cluster k. We started with two clusters and re-
peatedly increased the number of clusters by one. We evalu-
ated the choice of k using two criteria. The main criterion we
used to evaluate the quality of the clustering results was how
interpretable a new cluster was and whether it could help
us provide more specific and actionable feedback. Another
complementary criterion for evaluation was the Silhouette
score, measuring the quality of the clusters based on the co-
hesion of the separation of the identified clusters (Silhouette
score ranges from -1 to 1). We valued the interpretability of
a cluster over a higher Silhouette score. Therefore, as long
as the Silhouette score remained at an acceptable level, we
increased k£ until the interpretation of the newly generated
cluster did not make sense or did not differ much from the
existing clusters.

4. RESULTS

Our clustering approach identified a set of six clusters re-
lated to categories of erroneous answers in free-hand sketch-
ing problems, as listed in Table 1. The 6 clusters are ordered
based on the severity of the errors in the table. The clus-
tering model yields a Silhouette score of 0.6659, which is a
reasonable value.

Cluster 0 is the most common cluster in the dataset. From
the centroid value, we can see that the sketches in this cluster
only have one mistake (Number of Component = 1) with
about two incorrect lines (Avg Component Size = 1.89). The
centroid values suggested that a large portion of the errors
had only one minor mistake, which was most likely due to
drawing errors such as forgetting an edge at the corner, or
drawing an extra edge on a plane (see examples in Fig 5).

Cluster 1, the second-largest cluster in the dataset, differs
from Cluster 0 mainly by the number of mistakes in the
sketch. On average, there are 2.21 mistake components in
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Cluster|Cluster Interpretation Perc Perc Perc Num C‘::‘? Max Size
ID Size P Missing | Extra Type Comp Sizep Diff
0 218 |Have one minor mistake 2.39% 2.16% 0.04% 0.00
1 65 |Have more than one minor mistakes| 4.13% | 10.46% | 0.11%

2 3p |Have both majorand minor 2061% | 32.14% | 0.29%
mistakes, mostly minor mistakes

3 15 |Have both major and minor 37.82% | 22.46% | 0.77%
mistakes, mostly major mistakes

4 39 More than half of the sketch as a 80.08% | 67.04% | 0.00%
whole is completely wrong

5 3 Empty sketch - 0.00% 0.00%

Table 1: Clustering Results Summary Table: The size, interpretation and centroid of each cluster are shown in
the table. The centroid values are transformed back to its original scale if unit normalization was performed.
Values are color-coded with different shades of red, representing low values to high values)

Figure 6: Examples of mistakes in Cluster 1, having
multiple minor mistakes. The sketches with a white
background are the answer keys.

the sketch. The average size of 3.04 lines of the components
suggests that these are still minor mistakes with three incor-
rect lines on average. It is reasonable to interpret Cluster
1 as sketches that have several minor mistakes. Examples
of this category are shown in the examples in Fig 6. Even
though both Cluster 0 and Cluster 1 contain minor errors,
they are different enough because students in Cluster 0 make
one small mistake likely due to being careless. In contrast,
those in Cluster 1 may have misconceptions that are causing
a series of mistakes.

Cluster 2 and 3 are quite different from Cluster 0 and Clus-
ter 1. Both of them have a much higher Percentage of Miss-
ing Lines and Percentage of Extra lines compared to Clus-
ter 0 and 1, suggesting more severe mistakes in the sketch.
More severe errors are more likely to be due to an incorrect
structure at specific parts of the sketch rather than careless
mistakes. These two clusters both have a high number of
components (3.70 and 2.80 for Cluster 2 and 3 respectively),
suggesting a series of mistakes across the sketch. Cluster 2
and 3 are different in two perspectives. First, Cluster 2’s
average component size is small (5.13), while Cluster 3’s av-
erage component size is a lot bigger (10.69). Second, Cluster
3 has a massive difference in size across the different com-
ponents (15.73), while Cluster 2 has a medium difference
of 5.63. These differences suggest that within the series of
mistakes in a sketch in Cluster 2, more of them are minor,
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Figure 7: Examples of mistakes in Cluster 2, having
multiple minor mistakes and a small number of ma-
jor mistakes. The sketches with a white background
are the answer keys.

and there is only a small proportion of major mistakes, as
shown in Figure 7. On the other hand, a sketch in Cluster
3 has mainly major mistakes and fewer minor mistakes, as
shown in Figure 8. The major mistakes in Cluster 3 are also
more severe than those in Cluster 2 on average.

Cluster 4 has 80% of the lines missing and 67% extra lines,
a lot higher than the previous clusters. Interestingly, most
of the sketches in this cluster have only one component in
their mistake (1.05 components on average), with an average
size of 45.35 lines. These features suggest that there is one
substantial mistake that spans over half of the sketch, which
is often due to either an utterly wrong structure or a wrong
orientation. For example, both examples in Fig 9 have the
correct structure but wrong orientations.

Lastly, Cluster 5 contains empty answers, either due to the
student not attempting a question or accidentally skipping
it. Even though the cluster size is small, with only 3 data
points due to the low number of empty answers, it is distinct
enough from all the other clusters to be on its own.

Overall, we considered the erroneous answer categories de-
tected to be intuitive and well-defined. They are distinct in
the severity and characteristics of the mistakes. Being able
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Figure 8: An example of mistake in Cluster 3, hav-
ing multiple major and minor mistakes, but mainly
major mistakes. The sketch on the left is the answer
key.

Figure 9: Examples of mistakes in Cluster 4, having
one huge cluster of mistake. The sketch with a white
background is the answer key.

to automatically identify six categories of erroneous answers
demonstrated the potential advantage of using an unsuper-
vised approach in answer categorization than a supervised
learning approach that tries to align the model capability
with human judgment of the answer categories, which could
often only yield up to three clearly defined categories [24].
Additionally, we did not observe any significant difference
between the frequency distribution of the error categories
across the different types of questions in our dataset, i.e.,
the frequency of each answer category did not differ signifi-
cantly across all five types of sketching questions, suggesting
the generalizability of the error categories to more variety of
questions.

S. DISCUSSION
5.1 Evaluation Criteria for Sketching

Due to the lack of prior work on erroneous answer cate-
gories in complex free-hand sketching problems, there is no
currently available set of criteria to evaluate the degree of
correctness of a complicated sketching answer. In multiple
offerings of the spatial visualization training in the past in
our school, an instructor either used an ”all or nothing” eval-
uation approach, or used a subjective standard on one or two
dimensions to judge a sketch, e.g., taking off 0.5 point for
each missing or extra line up to a maximum of 1 point, tak-
ing off 1.5 points any time when not all features of the top,
front, and right sides are correct. These evaluation schemes
are too coarse to reflect the degree of correctness of a sketch
accurately. The results of our clustering analysis provide
promising results towards the development of a more com-
prehensive view on how to evaluate a sketch using a scale of
multiple levels.
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Our model demonstrated that more than one dimension is
needed concurrently to provide a nuanced interpretation of
the state of a sketch. In our model, the percentages of miss-
ing, extra lines or lines with the wrong type, the number
of mistakes sites, the average size of the mistakes, and how
different the various mistakes sites are in a sketch are used
in combination with one another to determine the degree of
correctness and the type of errors. For example, a distinc-
tion between Cluster 2 and 3 suggests that with a similar
percentage of incorrect lines, the number of mistakes com-
ponents and the average size of the components brings addi-
tional insights into whether a sketch contains a large number
of minor mistakes or a small number of major mistakes. As
another example, even though Cluster 0 and Cluster 1 have
a similar average size of mistakes, the number of mistake
sites suggests that students in Cluster 1 may have a more
systematic misconception than those in Cluster 0 who likely
commit a mistake due to carelessness.

Our approach could also be used to define minor mistakes
versus major mistakes in a sketch for a group of sketch-
ing questions with similar size and complexity. Without a
systematic review of all the mistakes in a group of sketch-
ing questions, it is hard for an instructor to draw an objec-
tive line between an error that is significant and one that is
not. As a result, the evaluation criteria may be overly strict
or overly generous. The clustering model computationally
categorizes what it considers as minor and major mistakes
based on the optimal separation principle. Its outcome can
serve as analytical support for an instructor’s grading deci-
sion.

5.2 Potential Intervention

Since one of the motivations to construct this model is to
provide real-time, customized, and actionable formative feed-
back, we propose potential customized intervention mes-
sages for each erroneous answer category. Based on the best
practices of offering formative feedback [36], each of the mes-
sages follow a similar structure of (1) first letting the student
know how far they are from the correct answer, (2) describ-
ing what types of mistake there are, and (3) suggesting ways
for the student to approach solving the errors. A summary
of the interventions is provided in Table 2.

Students having answers that fall into Cluster 0 or Cluster
1, which consist of having one or more minor errors, under-
stand what the object should look like structure-wise. When
the system tells them that they are wrong, they may find
it confusing since they are likely confident in their answer.
Hence, the feedback message could first assure the students
that they have got the general structure of the object cor-
rect. Then, the system could let the students know that
they have X number of minor mistakes, where X is the fea-
ture Number of Components. The feedback may also include
whether they have some missing lines, extra lines, or lines of
the wrong type. Lastly, the feedback message would suggest
the students check for details of their drawing by listing out
the common reasons for such errors, such as extra edges on
a flat plane, missing edges at a corner.

If the answer falls within Cluster 2 or Cluster 3, the feedback
message should be different from that for Cluster 0 and 1
because there is at least one major mistake in the answer,
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Cluster = Cluster .
D Size Interpretation
0 218 Have one minor mistake .
L]
Have more than one minor ®
1 65 ;
mistakes
Have some major and minor
2 30 mistakes, mostly minor *
mistakes *
L]
Have some major and minor *
3 15 mistakes, mostly major comer
mistakes
-
More than half of the sketch as
4 39 X .
a whole is completely wrong
5 3 Empty sketch *

Potential Intervention

Encourage students that they get the general structure correct

Inform students the number of minor mistake sites they have

Suggest students to check for detail errors and list the common reasons for
such errors, e.g. extra edges on a flat plane, missing edges at a corner

Encourage students that they are heading towards the right direction

Inform students the number of minor and major mistake sites they have
Suggest students to revisit some parts of the structure

Suggest students to carefully check for drawing errors and list the common
reasons for such errors, e.g. extra edges on a flat plane, missing edges ata

If students have the correct structure but a wrong orientation:

. Encourage students that they get the general structure correct

. Inform them that they may have drawn it in an incorrect orientation
If students have an incorrect structure:

. Let students know that they have the wrong idea for the structure
»  Suggest students to rethink about the structure from the beginning
. Provide hints for the students if available

If students did not make an effort, encourage them to attempt the question
If students forgot to submit a sketch, remind them to submit in the next attempt

Table 2: Interventions Summary Table

likely due to a structural error. The students in these two
cases are mostly on the right track in terms of the general
structure of the sketch. Hence, the feedback message could
first encourage them that they are heading in the right direc-
tion. The system could then say that the sketch has X minor
mistakes and Y major mistakes, where X is the Number of
Components with a size smaller than the Average Compo-
nent Size of the cluster centroid, and Y is the Number of
Components with a size larger than the average. Finally,
the intervention message could suggest the student first re-
visit the structure in detail to identify the major mistake,
and then carefully check for drawing errors referring to a list
of common minor mistakes.

For a student that falls into Cluster 4, it is likely that the
student is either on the wrong track entirely or uses a wrong
orientation. The system can perform a further check to com-
pare the student’s answer to other possible orientations and
see if it belongs to the case of having a wrong orientation.
If it is, the feedback message will remind the student that
the structure of the sketch is mostly correct, but the orien-
tation is incorrect. If it is not the case of having a wrong
orientation, the feedback message will remind the students
that they may have the wrong idea for the sketch, and they
should reconsider the question from the beginning. The sys-
tem could consider providing hints to the students as well
in this case.

Lastly, if a student submits an empty sketch, the system can
check the time spent on the question to determine whether
the student did not attempt the question at all or forgot to
click the submit button. If the student did not attempt the
question, the system would encourage the student to make
an effort in attempting to solve the problem. If the student
forgot to submit the answer, the feedback message would

remind them to submit in the next attempt.

5.3 Generalizability of the Proof-of-concept Ap-

proach

Our clustering model is more than a single model that works
only in a specific scenario. It is a proof-of-concept approach
for the evaluation of a complex free-hand sketch based on ab-
stract features. Our contributions to the evaluation scheme
of sketching answers have the potential to be generalized
from spatial visualization training to more fields that involve
free-hand technical drawings in various Engineering and Sci-
ence subjects, such as circuit diagrams in Electrical Engi-
neering, engine models in Mechanical Engineering, build-
ing plans in Architecture, and structural formula in Organic
Chemistry. Technical drawing is similar to spatial visualiza-
tion sketching in the sense that they both follow strict rules
of sketching and are often drawn on grid paper to ensure a
consistent proportion and orientation. Technical drawings
in these fields usually start from a fundamental practice of
drawing and modeling using practice problems that have a
limited number of correct answers. With the presence of an-
swer keys, our unsupervised clustering approach is flexible
and easy to be retrained on new datasets to adapt to new
types of sketches, even with additional features developed
based on the learning goal of the type of sketches.

On the other hand, for technical drawing that involves a cre-
ative component or pure creative drawing, it may be harder
to apply our approach directly. In evaluating creative draw-
ing that does not have a limited number of correct answers, a
mistake may be more subjective, and the evaluation may ex-
tend beyond getting a sketch correct to being functional, op-
timal, creative or aesthetic. The clustering approach based
on abstract features of a sketch, however, may be used for
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other purposes in this case. For example, our approach could
be used to group sketches with similar characteristics to-
gether for the convenience of human graders, especially in a
large course with limited human resources, such as Massive
Open Online Courses. Reconsideration in feature engineer-
ing would be needed to achieve the new goals.

6. LIMITATIONS AND FUTURE WORK

The current erroneous answer categories do not take into
account specific reasons that lead to a particular error in
an answer. There may be multiple reasons for a student to
end up with mistakes in the same category. To the best of
our knowledge, there is neither prior work that studies the
common misconceptions in spatial visualization sketching,
nor cognitive models that describe the process of this task.
The closest available work in cognitive models for spatial
ability focuses on how people solve multiple choice spatial
visualization questions, i.e., when candidate solutions are
provided [14, 11, 31]. These models do not cover the process
of generating a spatial object from scratch, which is what
sets spatial visualization sketching apart from the traditional
spatial ability tests. Hence, our proposed model is unable to
distinguish the errors by their causes. Future research con-
ducting qualitative interviews with students to understand
the reasons why an error occur could provide valuable in-
sights towards identifying not only broad categories of erro-
neous answer, but also the causes behind various error cate-
gories. It would also be beneficial to create cognitive models
to understand systematically the strategies students used to
solve these problems. These information would be valuable
in further developing other features that could distinguish
errors according to their underlying cause, for example, by
leveraging the temporal sequence of actions executed by the
student leading to their error. Improving current models
to include information about the most probable cause of an
error would be beneficial in generating formative feedback
that goes beyond providing information about the nature of
the students’ error, and integrates conceptual information
to support students in addressing misconceptions.

The current training data for the model only involved 14
students, which is a relatively small sample. As such, the
current model can be seen as a proof-of-concept for the feasi-
bility of erroneous answer categorization. Applying the same
approach to a larger population of students will be necessary
to validate the stability of the model and ensure that there
are no additional answer categories that may not have been
included in our current dataset. Future studies can re-train
and test the model on a larger population to confirm the ex-
istence of the answer categories identified within the current
study. Since the training process of the model is simple,
re-training the model based on another dataset would be
straightforward.

Another next step for this research is to deploy the model
in an online training platform and conduct user testing to
examine the effectiveness and accuracy of the categorization
and intervention. Last but not least, the method proposed
in this study is designed to be flexible and be applied to
other disciplines. Future work in other disciplines, such as
evaluating circuit diagrams in Electrical Engineering, engine
models in Mechanical Engineering, building plans in Archi-
tecture, and structural formula in Organic Chemistry, will

need to be conducted to evaluate the extent to which the
proposed method generalizes to new topics.

7. CONCLUSION

In conclusion, this paper presents a clustering model as a
solution to categorize erroneous answers in complex free-
hand sketching questions in spatial visualization training.
Eight abstract features were developed and proven to be ef-
fective in the categorization of erroneous answers, including
percentages of various types of incorrect lines, number of
mistake components, and metrics of the size of the compo-
nents. The clustering model detected six answer categories
based on the severity and scale of the mistakes. With these
detected categories, an online training platform will be able
to present customized and actionable formative feedback in
real-time. Moreover, our approach suggested a new and
comprehensive set of evaluation criteria to assess a sketch,
which could potentially be generalized to other disciplines
that require sketching practices.
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