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ABSTRACT
As students progress in their university programs, they have
to face many course choices. It is important for them to re-
ceive guidance based on not only their interest, but also
the “predicted” course performance so as to improve learn-
ing experience and optimise academic performance. In this
paper, we propose the next-term grade prediction task as
a useful course selection guidance. We propose a machine
learning framework to predict course grades in a specific pro-
gram term using the historical student-course data. In this
framework, we develop the prediction model using Factor-
ization Machine (FM) and Long Short Term Memory com-
bined with FM (LSTM-FM) that make use of both student
and course attributes as well as past student-course grade
data. Our experiment results on a real-world data of an au-
tonomous university in Singapore show that both methods
yield better prediction accuracy than the baseline methods.
Our methods are also robust to handle cold start courses
with the average prediction error can be as low as three
quarter grade difference from the ground truth.
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1. INTRODUCTION
Predicting student grades has recently gained attention as it
benefits not only students, but also instructors [3]. Students
face many course courses in every new term. They need some
guidance based on their “predicted” performance in future
courses so as to improve their course selection and overall
academic performance. Instructors, on the other hand, can
also adjust their course delivery methods to the predicted
student grade performance.

We consider a university setting where students are required
to choose courses at the beginning of each program term.

The predicted grades of the selected courses is then evalu-
ated against the grades received at the end of that term.
This task is called the next-term student grade prediction
and it requires the past student-course grade data to pro-
vide useful features to predict grades of courses taken in the
following term.

Our next-term student grade prediction task is different from
the previous student grade prediction works [2, 3] which fo-
cused on predicting grades of a calendar term where students
from different admission years are predicted together. Since
different program terms are included in the prediction task,
it is difficult to train the model to specialize on courses in
the specific program term of the students.

In this paper, we develop FM and long short term memory
combined with FM (LSTM-FM) models that are trained on
student’s program terms instead of calendar terms. The pro-
posed models are evaluated on a real-world data collected
from an autonomous university in Singapore. We further
make use of both static and dynamic student and course
attributes to derive features that improve the prediction re-
sults. Additionally, our proposed models could perform well
on predicting both existing and cold-start courses.

2. PROBLEM FORMULATION
Given a set of students S = {s1, s2, ..., s|S|}, where each
student belongs to a certain cohort, denoted by cohort(si)
(i.e. batch of students admitting to the university in the
same year). To graduate from their programs, students
must complete T = {t1, t2, ..., t|T |} program terms and reg-
ister one or more courses in each program term. Let C =
{c1, c2, · · · , c|C|} be the set of all courses taken by students
from S. We denote the grade obtained by student si in
course cj by gi,j ∈ {A+, A, · · · , F}. Our task is then to pre-
dict gi,j for every student si from a target student cohort
S in a target program term tk for every course students
have registered in the program term tk. We assume that
the course grades for earlier program term(s) by the same
students are available, and the course grades for students
from previous cohorts in the earlier and target terms can be
observed.

We define the feature representation of a student-course pair
(si, cj) as a feature vector Xi,j . A prediction model for the
above problem is thus a function F : X → Y where Y ∈ R2.
F is learned from a training data (tk, X

trg, Y trg). For each
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Figure 1: Training and testing instances for program
term-specific grade prediction involving data from
cohorts 1 to 3 as training, and data from cohort 4
as test.

student si ∈ S, Y trg
i,j is unknown for courses cj ’s registered

by si during the target program term tk. For each student s′i
of earlier cohorts, Y trg

i,j = gi,j for courses cj ’s registered by si

in the target program term tk. For all students, Xtrg
i,j are fea-

tures derived from student si and course cj using data from
earlier program terms. The testing data (tk, X

test, Y test)
consists of Xtest

i,j = Xtrg
i,j and Y test

i,j = gi,j when si received
the grade gi,j in the program term tk.

Figure 1 illustrates the training and testing instances of the
next term grade prediction for students of cohort 4 in tar-
get program terms 1 to 3. For target program term 3 (see
the last table of the figure), the training data include the
student-course data of students from cohorts 1 to 3. The
feature representation of a student-course pair is derived
from program terms 1 to 2 of these students, or from the
non-program term student and course attribute data (e.g.,
student education background, course major, etc.).

This program term-specific grade prediction approach is more
intuitive than previous works that focused on the grade pre-
diction for students taking courses in the same calendar term
which could involve different program terms for students
from different cohorts [2, 3]. Since student grades of dif-
ferent program terms refer to different sets of courses, our
problem definition and solution approach ensure that dyad
features and ground truth labels for the testing data of a
target program term follow the same data distribution as
that of the training data.

3. DATASET AND FEATURES
3.1 Dataset Description
The dataset was collected from an autonomous university in
Singapore that covers four consecutive cohorts (2011- 2014)
of undergraduate students from the same degree program.
Students are required to complete 8 program terms.

Table 1 shows the dataset statistics. It consists of 618 stu-
dents and 691 courses. In total, we have 19,655 student-
course pairs that involve grades, known as the student-course
dyads. Students from cohort 4 are used as the test cohort
to allow more data to be used in training. The university
implements 12 grading letters that are mapped to numeric
values for grade prediction as follows. A+, A, A-, B+, B,
B-, C+, C, C-, D+, D, and F are mapped to 4.3, 4.0, 3.7,
3.3, 3.0, 2.7, 2.3, 2.0, 1.7, 1.3, 1.0, and 0.0 respectively.

Table 1: Dataset Statistics
Cohorts Total

1 2 3 4
Num. Students 115 145 157 201 618
Num. Courses 169 160 170 192 691
Num. Dyads 3748 4471 4850 6586 19,655

Table 2: Student-Course Dyads of Target Cohort 4
(CSS: cold start students, CSC: cold start courses,
NCS: non-cold start dyads)

Program #dyads #NCS CS
term #CSC #CSS
t1 986 0 0 986
t2 955 952 3 0
t3 856 850 6 0
t4 919 907 12 0
t5 801 789 12 0
t6 704 677 27 0
t7 699 676 23 0
t8 666 638 28 0

Cold start dyads. The cold start student-course dyads of
a target program term are ones with new students or courses
with respect to the program term. They do not appear in
the training set, but appears in the testing set. As shown
in Table 2, program term t1 sees all cold start dyads with
new students (denoted by CSS). The other program terms
however hardly encounter new students. Dyads involving
cold start/new courses (denoted by CSC) are relatively fewer
as not many new courses are introduced in each program
term. Most of the new courses are observed in the program
terms t6 to t8, the last 3 terms of the program. The other
dyads are the non-cold start (NCS) dyads.

3.2 Student-Course Features
We consider five categories of features for representing the
student-course dyads (si, cj):

Static student features. These are features of a student
which do not change with time as they are not associated
with any target program term, such as student’s major,
gender, alma mater, and cohort.

Dynamic student features. These are student features
derived from the data and their values may vary in differ-
ent target program terms. These features are particularly
useful to determine the latest performance and academic
load of the student, such as student’s average grade in the
previous program term (lterm gpa) and up to previous pro-
gram term (lterm cum gpa), number of credit units (CUs)
a student received up to previous program term (total chrs)
and registered in the target program term (term chrs), av-
erage CUs per program term taken by a student (speed),
number of courses taken by a student in every course disci-
pline up to target program term (disc distrib), relative CUs
gained by a student compared to all students in the same
cohort (rel total chrs), and relative lterm cum gpa of a stu-
dent compared with that of the cohort (rel lterm cgpa).

Static course features. These are features of a course
cj that do not change with time: course’s discipline (disc),
CUs (chrs), and level (clevel).
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Dynamic course features. These are features of a course
cj that change with time: instructor of cj (iid), number of
students taking cj in the target program term (num enrolled)
and in all previous program terms (total enrolled), average
grade (term cgrade) and grade distribution (term dgrade)
obtained by students of the previous cohort when they took
cj in the target program term, average grade (lterm cum cgrade)
and grade distribution (lterm cum dgrade) obtained by stu-
dents of the same and previous cohorts when they took cj
in any program terms in the past.

Student-course interaction features. As we know which
student si takes which course cj in the target program but
not the grade, we can exploit this information to derive some
features that capture the indirect interaction between si and
cj for us to determine if si will perform well in cj . We derive
rel cterm that measures the program term si registered for
cj relative to the program term other students of the same
cohort taking cj . We also derive disc grade which is the av-
erage grade obtained by si when taking any courses sharing
the same course discipline as cj in the previous terms.

4. PROPOSED METHODS
Two methods are proposed for the next-term grade predic-
tion task, namely, Factorization Machine (FM), and In-
tegrated Long and Short Term Memory with FM
(LSTM-FM). The former is often used for recommenda-
tion tasks. The latter is a sequence model combined with
FM to predict grades of courses in each program term.

4.1 Factorization Machine (FM)
To use FM for next-term grade prediction, our training data
for predicting grades in a target term tk is represented by a
Ndyads

trg × p matrix, X, where Ndyads
trg represents the number

of training dyads, p = |S| + |C| + |F |, and F represent the
set of features. Each row X(i, j) for dyad (si, cj) consists of
a one-hot vector of student ids, a one-hot vector of course
ids, and the features representing the dyad (si, cj).

Model. FM captures both 1-way and 2-way interactions
between all features using factorized interaction parameters,
as formulated below.

Ŷi,j = w0 +

p∑
k=1

wkXi,j,k +

p∑
k=1

p∑
k′=1

Xi,j,kXi,j,k′

k∑
f=1

vk,fvk′,f

where w0 captures the global intercept and together with
the

∑p
k=1 wkXi,j,k serves as a basic linear regression model.

The last part contains all pairwise interactions of the X
features, which is modeled as a factorized parameterization∑k

f=1 vk,fvk′,f .

4.2 LSTM-FM Model
In LSTM-FM, we merge a sequence model with FM to both
learn the sequence of grades received by a student and pre-
dict the grades in the target program term using the ob-
served sequence as well as the feature interaction for the
student-course dyads. The LSTM-FM framework (Figure 2)
is decomposed into two main components: 1) Input Layer
that utilizes bidirectional LSTM networks (Bi-LSTM) [1] to
model the historical grades of a student and 2) Interaction
Layer that employs interaction module similar to FM in or-
der to model features interactions. The returned value is

Figure 2: LSTM-FM framework

then transformed into the predicted grade by using 2-layer
feed-forward networks with layer normalization [4].

As there can be a number of courses taken by the student
in the same program term, we define Gsi

tk,cj
as a |C| di-

mensional vector keeping the grade score of student si gets
for course cj in program term tk. We then use historical
courses-grades of student si, G

si
tk,cj

’s, for terms t1, · · · , tk−1

to learn the hidden states using Bi-LSTM. We subsequently

concatenate the hidden states ~h(si, tk−1) and ~h(si, tk−1) of
the bi-LSTM into h(si, tk−1) which is fed to the interaction
layer with the (si, cj)’s features to predict Gsi

tk,cj
.

5. EXPERIMENTS
5.1 Evaluation Metrics
Root mean squared error (RMSE) and mean absolute error
(MAE) are used to evaluate the accuracy of different grade
prediction methods as formulated below. The grades need
to be converted to numerical values before using the two
metrics. For both RMSE and MAE, the error is defined by
the difference between the predicted grade and the actual
grade. RMSE is appropriate to penalize methods that yield
large errors. MAE, on the other hand, provides the average
difference between the predicted and actual grades. For ex-
ample, for a given actual grade of A- (with numeric score =
3.7), an MAE of 0.3 suggests that the predicted grade differs
from the actual grade by an average of half grade, say B+
(with score = 3.4) or A (with score = 4.0).

RMSE =

√√√√∑
Y

trg
i,j is defined(Ŷ test

i,j − Y test
i,j )2

|{(i, j)|Y trg
i,j is defined}|

MAE =

∑
Y

trg
i,j is defined |Ŷ

test
i,j − Y test

i,j |

|{(i, j)|Y trg
i,j is defined}|

5.2 Methods for Evaluation
We focus on evaluating FM and LSTM-FM with the features
defined in Section 3. There are several variants for both
depending on what features are used: FM and LSTM-FM
without any features other than student id and course id are
also included (FM and LSTM-FM without features),
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Table 3: Overall Results (CSC: Cold Start Courses)
Method All dyads Dyads w/o CSC Only CSC dyads

RMSE MAE RMSE MAE RMSE MAE

UR 1.710 1.382 1.735 1.404 1.696 1.378
GM 0.755 0.551 0.757 0.552 0.638 0.506
MoM 0.676 0.488 0.678 0.488 0.583 0.448

Without student-course features

LR 0.628 0.456 0.629 0.455 0.577 0.434
FM 0.607 0.428 0.608 0.428 0.552 0.415
LSTM-FM 0.651 0.464 0.652 0.464 0.618 0.490

With all student-course features

LR 0.629 0.457 0.630 0.459 0.585 0.446
FM 0.625 0.448 0.622 0.445 0.587 0.457
LSTM-FM 0.628 0.449 0.629 0.449 0.574 0.441

With selected student-course features

LR 0.621 0.452 0.621 0.455 0.583 0.452
FM 0.594 0.425 0.594 0.428 0.601 0.450
LSTM-FM 0.603 0.437 0.603 0.436 0.606 0.476

FM and LSTM-FM with all features and FM and
LSTM-FM with only selected features (Section 5.3).

We include several baseline methods for comparison: uni-
form random (UR) that randomly predicts a grade score
from interval [0, 4.3], global mean (GM) that predicts a
grade score using the average of all observed grades in the
training set, mean of means (MoM) that returns the av-
erage of (a) the predicted grade score of GM; (b) the average
observed grades of this student in the training set; and (c)
the average observed grades of this course in the training
set, and linear regression (LR) that uses the first two
components of FM (w0 +

∑p
k=1 wkXi,j,k) to predict a grade.

5.3 Prediction Results
The overall prediction results are summarized in Table 3.
UR yields the highest error. With the use of historical data,
GM can predict with smaller errors. MoM further reduces
the prediction error with more information used. By imple-
menting a traditional machine learning approach, LR, we
can obtain lower prediction error. The results show that
the historical data contribute to grade prediction accuracy,
and it is worthwhile to explore more machine learning ap-
proaches to improve this grade prediction task.

We then analyse the results of our proposed methods. It is
interesting to see that FM with only student id and course
id predicts grades quite well. It is also applied to LSTM-FM
although the latter has a larger error. FM (and LSTM-FM)
with all features actually performs worse than the one with-
out features. With selected features (by excluding cohort,
disc distrib, iid, term dgrade, and lterm cum dgrade), both
methods achieve the best results. The overall results show
that the lowest error obtained by LR in every scenario is
always higher than those of FM and LSTM-FM. This sug-
gests that the 2-way interaction captured in both FM and
LSTM-FM can improve prediction accuracy compared to
LR that only captures linear model. The results so far are
encouraging as an MAE of 0.425 is smaller than a 3

4
grade

difference. We evaluate the methods for dyads that do not
involve CSC to see if they are able to improve prediction
accuracy. Table 3 shows that CSC dyads do not make sig-
nificant difference to the prediction results. This suggests
that the methods are robust against CSC.

The prediction errors for each program term are illustrated
in Figure 3. We observe that both FM and LSTM-FM have
similar performance on predicting grades in every program

Figure 3: Prediction error per program term

term. The first two program terms t1 and t2 have relatively
higher errors compared to the latter terms due to lesser
training data. t1 also handles grade prediction for cold start
students. As the amount of training data increases, we no-
tice a significant error improvement from term t3 onwards.
The error converges at term t5 when the model has suffi-
cient training data. For terms t5 to t8, both methods can
maintain the MAE to be below 0.401.

6. DISCUSSION AND FUTURE WORK
Based on the proposed framework in this paper, we plan
to develop a grade prediction API for the university that
can be used by both students and instructors. This may
help students to select courses that are appropriate to enroll,
given their performance in past terms. Instructors then may
use this API to understand the class profile, see the predicted
performance of their students and use this information to
adjust class outline and delivery method. We plan to explore
using course description and knowledge graph to improve
prediction accuracy. More advanced deep learning models
can also be introduced to explain the prediction results.
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