The State of the Art in Language Workbenches

Conclusions from the Language Workbench Challenge

Sebastian Erdwegl, Tijs van der Storm?3, Markus Volter*, Meinte Boersma®
Remi Bosman®, William R. Cook’, Albert Gerritsen®, Angelo Hulshout3,
Steven Kelly®, Alex Loh’, Gabriél D.P. Konat'?, Pedro J. Molina'!, Martin Palatnik®,
Risto Pohjonen9, Eugen Schindler6, Klemens Schindler6, Riccardo Solmilz,
Vlad A. Vergulo, Eelco Visser'?, Kevin van der Vlist!3,
Guido H. Wachsmuth!?, and Jimi van der Woning13

s

' TU Darmstadt, Germany
2 CWI, Amsterdam, The Netherlands
3 INRIA Lille Nord Europe, Lille, France
4 voelter.de, Stuttgart, Germany
5 DSL Consultancy, Leiden, The Netherlands
6 Sioux, Eindhoven, The Netherlands
7 University of Texas, Austin, US
8 Delphino Consultancy, Best, The Netherlands
9 MetaCase, Jyviskyli, Finland
10 TU Delft, The Netherlands
1 Ycinetic, Sevilla, Spain
12 Independent, Bologna, Ttaly
13 Universiteit van Amsterdam

Abstract. Language workbenches are tools that provide high-level mechanisms
for the implementation of (domain-specific) languages. Language workbenches
are an active area of research that also receives many contributions from industry.
To compare and discuss existing language workbenches, the annual Language
Workbench Challenge was launched in 2011. Each year, participants are chal-
lenged to realize a given domain-specific language with their workbenches as a
basis for discussion and comparison. In this paper, we describe the state of the art
of language workbenches as observed in the previous editions of the Language
Workbench Challenge. In particular, we capture the design space of language
workbenches in a feature model and show where in this design space the par-
ticipants of the 2013 Language Workbench Challenge reside. We compare these
workbenches based on a DSL for questionnaires that was realized in all work-
benches.

1 Introduction

Language workbenches, a term popularized by Martin Fowler in 2005 [19], are tools
that support the efficient definition, reuse and composition of languages and their IDEs.
Language workbenches make the development of new languages affordable and, there-
fore, support a new quality of language engineering, where sets of syntactically and
semantically integrated languages can be built with comparably little effort. This can

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 197-R17] 2013.
(© Springer International Publishing Switzerland 2013

http://www.stg.tu-darmstadt.de/
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe
http://www.voelter.de/
http://www.dslconsultancy.com/
http://www.sioux.eu/en/
http://www.cs.texas.edu
http://www.delphino-consultancy.nl/
http://www.metacase.com/
http://www.tudelft.nl
http://www.icinetic.com/
http://www.uva.nl

198 S. Erdweg et al.

lead to multi-paradigm and language-oriented programming environments [8, 61] that
can address important software engineering challenges.

Almost as long as programmers have built languages, they have also built tools to
make language development easier and language use more productive. The earliest
language workbench probably was SEM [52]; other early ones include MetaPlex [7],
Metaview [51], QuickSpec [43], and MetaEdit [48]. Graphical workbenches that are
still being developed today include MetaEdit+ [28], DOME [24], and GME [38]. On
the other hand, language workbenches that supported textual notations include Cen-
taur [5], the Synthesizer generator [46], the ASF+SDF Meta-Environment [30], Gem-
Mex/Montages [2], LRC [36], and Lisa [42]. These systems were originally based
on tools for the formal specification of general purpose programming languages [20].
Nonetheless, many of them have been successfully used to build practical domain-
specific languages (DSLs) as well [41]. Textual workbenches like JastAdd [49], Ras-
cal [32,33], Spoofax [27], and Xtext [17] can be seen as successors of these systems,
leveraging advances in editor technology of mainstream IDEs. At the same time, pro-
jectional language workbenches like MPS [57] and Intentional [47] are reviving and
refining the old idea of structure editors [9], opening up the possibility of mixing arbi-
trary notations.

Throughout their development, language workbenches and domain-specific
languages have been used in industry. Examples include:

— Eurofighter Typhoon [1], with IPSYS’s HOOD toolset (later ToolBuilder).

— Nokia’s feature phones [44], with MetaEdit+.

— RISLA, a DSL for interest-rate products [3], with ASF+SDF.

— Polar’s heart rate monitors and sports watches [26], with MetaEdit+.

— WebDSL [56] and Mobl [22] for building Web applications and mobile applications
respectively, with Spoofax.

— File format DSL for digital forensics tool construction [53], with Rascal.

— mbeddr [58,59] a C-based language for embedded software development, includ-
ing extensions such as units of measure, components, requirements tracing, and
variability, based on MPS.

Language workbenches are currently enjoying significant growth in number and di-
versity, driven by both academia and industry. Existing language workbenches are so
different in design, supported features, and used terminology that it is hard for users
and developers to understand the underlying principles and design alternatives. To this
end, a systematic overview is helpful.

The goal of the Language Workbench Challenge (LWC) is to promote understanding
and knowledge exchange on language workbenches: Each year a language engineering
challenge is posed and the submissions (often but not exclusively by tool developers) im-
plement the challenge; documentation is required as well, so others can understand the
implementation. All contributors then meet to discuss the submitted solutions. By tack-
ling a common challenge, the approaches followed by different workbenches become
transparent, and understanding about design decisions, capabilities, and limitations in-
creases. In this paper, we channel the lessons learnt from the previous iterations of the
LWC and document this knowledge for the scientific community at large. In particular,
we make the following contributions:

The State of the Art in Language Workbenches 199

— We describe the history of the LWC.

— We establish a feature model that captures the design space of language work-
benches as observed in the previous LWCs.

— We present and discuss the 10 language workbenches participating in LWC’13 by
classifying them according to our feature model.

— We present empirical data on 10 implementations of the LWC’13 assignment (a
questionnaire DSL).

— Based on our investigation, we document the state of the art of language work-
benches.

2 Background

The idea of the LWC was born during discussions at the 2010 edition of the Code Gener-
ation conference. Since then, LWC has been held three times, each year with a different
language to implement as assignment. Below we briefly review the assignments of 2011,
2012, and 2013. Then we describe the methodology we followed in this paper.

2.1 The Challenges of LWC

The LWC’11 assignment! consisted of a simple language for defining entities and re-
lations. At the basic level, this involved defining syntax for entities, simple constraint
checking (e.g., name uniqueness), and code generation to a general-purpose language.
At the more advanced level, the challenge included support for namespaces, a language
for defining entity instances, the translation of entity programs to relational database
models, and integration with manually written code in some general-purpose language.
To demonstrate language modularity and composition, the advanced part of the assign-
ment should be realized without modifying the solution of the basic assignment.

In the LWC’12 assignment?, two languages had to be implemented. The first lan-
guage captured piping and instrumentation models which can be used, for instance, to
describe heating systems. The elements of this language included pumps, valves, and
boilers. The second language consisted of a state machine-like controller language that
could be used to describe the dynamic behavior of piping and instrumentation models.
Developers were supposed to combine the two languages to enable the simulation of
piping and instrumentation systems.

The LWC’13 assignment3 consisted of a DSL for questionnaires, which should be
rendered as an interactive GUI that reacts to user input to present additional questions.
The questionnaire definition should be validated, for instance, to detect unresolved
names and type errors. In addition to basic editor support, participants should modularly
develop a styling DSL that can be used to configure the rendering of a questionnaire.
We describe the details of the LWC’13 assignment in Section 5.

1 http://www.languageworkbenches.net/index.php?title=LWC_2011
2 http://www.languageworkbenches.net/index.php?title=LWC_2012
3 http://www.languageworkbenches.net/index.php?title=LWC_2013

http://www.languageworkbenches.net/index.php?title=LWC_2011
http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.languageworkbenches.net/index.php?title=LWC_2013

200 S. Erdweg et al.

2.2 Research Methodology

The main goal of this paper is to document the state of the art of language workbenches
in a structured and informative way. We assemble the relevant information based on our
experience and involvement in the LWC from 2011 to 2013. Nevertheless, for this paper
we focused on the most recent challenge of 2013. We invited all participants of LWC’ 13
to contribute to the domain analysis and to the language workbench comparison as
described below.

Domain Analysis. The first part of our methodology addresses the goal of accurately
describing the domain of language workbenches. We have asked all participants of
LWC’13 to provide a detailed list of features supported by their language workbench.
The first three authors then started to “mine” a feature model [25] to capture the rel-
evant aspects of the language-workbench domain. Since non-functional features have
not been in scope of any previous LWC, we solely focused on the functional properties
of language workbenches. The extracted feature model was then presented to all partic-
ipants for feedback. The refined feature model presented in Section 3 provides a way to
categorize language workbenches according to which features they support.

Empirical Data. In addition to a general overview of language workbenches, we in-
vestigated empirical data on the solutions submitted to the LWC’13. We constructed a
feature model for the features of the questionnaire DSL and asked the participants to
indicate which features they realized in their solution. We present a description of the
assignment and the feature model in Section 5.

To get an impression about how different language workbenches achieve various
(subsets of) features of the questionnaire DSL, we also asked all participants to answer
the following three questions:

— What is the size of your solution? The suggested metric for the answer was SLOC
(Source Lines of Code)*.

— What are the static, compile-time dependencies? This captures the various libraries,
frameworks, and platforms that are needed to run the compiler and IDE of the
questionnaire DSL.

— What are the dynamic, runtime dependencies? This addresses the additional soft-
ware components that are needed to run the generated questionnaires GUISs.

We present the answers to these questions and discuss the language workbenches in
view of these results in Section 6 and Section 7 respectively.

Generality of the Survey. Not all existing language workbenches were represented
at LWC’13. Language workbenches that contributed to earlier challenges, but not to
LWC’13, include commercial ones, such as the Intentional workbench [47], OOMegaS,
and Obeo Designer6, as well as academic systems such as Atom3 [37], Cedalion [39],
and EMFText [21]. As we show in Section 4, the language workbenches covered in
our study are very diverse regarding the features they support. To our knowledge, the

4 SLOC does not count comments or empty lines. Note that SLOC only works for textual lan-
guages; we come back to this problem in Section 6.

3 http://www.oomega.net/

6 http://www.obeodesigner.com/

http://www.oomega.net/
http://www.obeodesigner.com/

The State of the Art in Language Workbenches 201

features of aforementioned language workbenches are covered by our feature model.
Hence, even though not all language workbenches are part of this survey, we consider
the domain of language workbenches sufficiently covered.

3 A Feature Model for Language Workbenches

Language workbenches exist in many different flavors, but they are united by their
common goal to facilitate the development of (domain-specific) languages. Based on
input provided by the participants of LWC’ 13, we derived the feature model shown in
Fig. 1. It outlines the most important features of language workbenches. We use stan-
dard feature-diagram notation and interpretation [4]: The root node (Language work-
bench in Fig. 1) is always selected. A mandatory feature (filled circle) has to be selected
if its parent is selected. An optional feature (empty circle) does not have to be selected
even if its parent is selected. In a list of Or children (filled edge connector), at least one
feature has to be selected if the parent is selected.

We separate language workbench features into six subcategories. A language work-
bench must support notation, semantics, and an editor for the defined languages and
its models. It may support validation of models, testing and debugging of models and
the language definition, as well as composition of different aspects of multiple defined
languages. In the remainder of this section, we explain the feature model in more detail.

Every language workbench must support the mandatory feature notation, which de-
termines how programs or models are presented to users. The notation can be a mix of
textual, graphical, and tabular notations, where textual notation may optionally support
symbols such as integrals or fraction bars embedded in regular text.

A language workbench must support the definition of language semantics. We dis-
tinguish translational semantics, which compiles a model into a program expressed in
another language, and interpretative semantics, which directly executes a model with-
out prior translation. For translational semantics we distinguish between model-to-text
translations, which are based on concatenating strings, and model-to-model translations,
which are based on mapping abstract model representations such as trees or graphs. To
simplify the handling of abstract model representations, some language workbenches
support concrete syntax for source and target languages in transformation rules.

Editor support is a central pillar of language workbenches [19] and we consider
user-defined editor support mandatory for language workbenches. The two predominant
editing modes are free-form editing, where the user freely edits the persisted model
(typically the source code), and projectional editing, where the user edits a projection
of the persisted model in a standard, fixed layout. In addition to a plain editor, most
language workbenches provide a selection of syntactic and semantic editor services.
Syntactic editor services include:

Customizable visual highlighting in models, such as language-specific syntax color-
ing for textual languages or language-specific node shapes for graphical languages.
Navigation support via an outline view.

Folding to hide part of a model.

Code assist through syntactic completion templates that suggest code, graph, or
tabular fragments to the user.

Language workbench

Notation Semantics Validation Testing Composability

Syntax/views Validation Semantics Editor services

Structural Semantic DSL testing DSL debugging DSL program debugging

Textual Graphical | = Tabular Translational Interpretative
Symbols Model to text Model to model Naming Types Programmatic
Legend:
Concrete syntax Editor ./ Mandatory
d Optional
Oor
Edtiting mode Syntactic services Semantic services

/A\

Free-form Projectional Highlighting Outline Folding Syntactic completion Diff Auto formatting Reference resolution

Fig. 1. Feature model for language workbenches. With few exceptions, all features in the feature model apply to the languages that can be defined with a

language workbench, and not to the definition mechanism of the language workbench itself.

Semantic completion Refactoring Error marking Quick fixes Origin tracking Live translation

0¢

‘Te 10 Sompig 'S

The State of the Art in Language Workbenches 203

— Comparison of programs via a diff -like tool (the basis for version control).
— Auto formatting, restructuring, aligning, or layouting of a model’s presentation.

Semantic editor services include:

— Reference resolution to link different concepts of the defined language such as dec-
larations and usages of variables.

— Code assist through semantic completion that incorporates semantic information
such as reference resolution or typing into the completion proposal.

— Semantics-preserving refactorings of programs or models, ranging from simple re-
naming to language-specific restructuring.

— In case an error is detected in the model, an error marker highlights the involved
model element and presents the error message to the user.

— Quick fixes may propose ways of fixing such an error. When the user selects any of
the proposed fixes, the faulty model is automatically repaired.

— When transforming models, keeping track of a model’s origin enables linking ele-
ments of the transformation result back to the original input model. This is particu-
larly useful for locating the origin of a static or dynamic error in generated code. It
is also useful in debugging.

— To better understand the behavior of a model, it can be useful to have a view of the
code that a model compiles to. Language workbenches that feature live translation
can display the model and the generated code side-by-side and update the generated
code whenever the original model changes.

In addition to the above services, the language editor provided by most language work-
benches can display information about the result of language-specific validations. We
distinguish validations that are merely structural, such as containment or multiplicity
requirements between different concepts, and validations that are more semantic, such
as name or type analysis. Language workbenches may facilitate the definition of user-
defined type systems or name binding rules. However, many language workbenches
do not provide a declarative validation mechanisms and instead allow the definition of
validation rules programmatically in a general-purpose programming language.

Another important aspect of building languages is testing of the language definition.
Testing a language definition may be supported by unit-testing the different language as-
pects: the syntax (parser or projections), semantics (translation or interpretation), editor
(completion, reference resolution, refactoring, etc.), and validation (structure or types).
Some language workbenches support debugging. We distinguish between support for
debugging the language definition (validation or semantics), and support for construct-
ing debuggers for the defined language. The latter allows, for instance, the definition of
domain-specific views to display variable bindings, or specific functionality for setting
breakpoints.

Finally, composability of language definitions is a key requirement for supporting
language-oriented programming [8, 61] where software developers use multiple lan-
guages to address different aspects of a software system. Language workbenches may
support incremental extension (syntactic integration of one language into another) and
language unification (independent languages can be unified into a single language) [12].
This composition should be achieved for all aspects of a language: syntax, validation,
semantics, and editor services.

204 S. Erdweg et al.

In summary, our feature model captures most of the design space for language work-
benches. In creating this feature model, we ignored how the various features can be
supported by a language workbench. This is the focus of the subsequent section.

4 Language Workbenches

In this section, we introduce the language workbenches that participated at LWC’13
and show which features of our feature model they support.

4.1 Introduction of the Tools

Enso (since 2010, http://www.enso-lang.org) is a greenfield project to enable a soft-
ware development paradigm based on interpretation and integration of executable spec-
ification languages. Ensd has its roots in an enterprise application engine developed at
Allegis starting in 1998, which included integrated but modular interpreters for seman-
tic data modeling, policy-based security, web user interfaces, and workflows. Between
2003 and 2010 numerous prototypes were produced that sought to refine the vision and
establish an academic foundation for the project. The current version (started in 2010)
is implemented in Ruby. Rather than integrate with an existing IDE, Enso seeks to even-
tually create its own IDE. The goal of the project is to explore new approaches to the
model-based software development paradigm.

Mas (since 2011, http://www.mas-wb. com) is a web-based workbench for the creation
of domain-specific languages and models. Mds uses projectional editing to provide con-
venient styling of models and an intuitive editor experience for “non-dev” users, and
makes language definition as simple as possible. Language semantics is defined through
“activations”, consisting, for instance, of declarative code generation templates. Mas
aims at lowering the entry barrier for language creation far enough to allow adoption
and scaling of the model-driven approach across disciplines and industries.

MetaEdit+ (since 1995, http://www.metacase. com)is a mature, platform-independent,
graphical language workbench for domain-specific modeling [28]. MetaEdit+ aims to be
the easiest domain-modeling tool to learn and to use, removing accidental complexity to
allow users to concentrate on creating productive languages and good models. MetaEdit+
is commercially successful, used by customers in both industry and academia. Empirical
research has consistently shown that MetaEdit+ increases productivity of developers by
a factor of 5-10 compared to programming [26, 29, 44].

MPS (since 2003, http://www. jetbrains.com/mps/)is an open-source language work-
bench developed by JetBrains. Its most distinguishing feature is a projectional editor that
supports integrated textual, symbolic, and tabular notations, as well as wide-ranging sup-
port for composition and extension of languages and editors. MPS realizes the language-
oriented programming paradigm introduced by Sergey Dmitriev [8] and has evolved into
a mature and well-documented tool. It is used by JetBrains internally to develop various
web-based tools such as the Youtrack bugtracker. It has also been used to develop var-
ious systems outside of JetBrains, the biggest one probably being the mbeddr tool for
embedded software development [58].

http://www.enso-lang.org
http://www.mas-wb.com
http://www.metacase.com
http://www.jetbrains.com/mps/

The State of the Art in Language Workbenches 205

Onion (since 2012) is a language workbench and base infrastructure implemented in
.NET for assisting in the creation of DSLs. Onion has evolved from Essential (2008), a
textual language workbench with a focus on model interpretation and code generation.
The main goals of the Onion design is to provide the tools to speed up DSL creation for
different notations (text, graphical, projectional) and provide scalability for big models
via partitioning and merging capabilities. Onion emphasizes speed of parsing and code
generation, enabling real-time synchronization of models and generated code.

Rascal (since 2009, http://www.rascal-mpl.org) is an extensible metaprogramming
language and IDE for source code analysis and transformation [23, 32, 33, 54]. Rascal
combines and unifies features found in other tools for source code manipulation and
language workbenches. Rascal provides a simple, programmatic interface to extend the
Eclipse IDE with custom IDE support for new languages. Rascal is currently used as
a research vehicle for analyzing existing software and the implementation of DSLs.
It provides the implementation platform for a real-life DSL in the domain of digital
forensics [53]. The tool is accompanied with interactive online documentation and is
regularly released as a self-contained Eclipse plugin.

Spoofax (since 2007, http://www.spoofax.org) is an Eclipse-based language work-
bench for efficient development of textual domain-specific languages with full IDE
support [27]. In Spoofax, languages are specified in declarative meta-DSLs for syntax
(SDF3 [60]), name binding (NaBL [34]), editor services, and transformations (Strat-
ego [6]). From these specifications, Spoofax generates and dynamically loads an Eclipse-
based IDE which allows languages to be developed and used inside the same Eclipse
instance. Spoofax is used to implement its own meta-DSLs. Spoofax has been used to
develop WebDSL [56] and Mobl [22], and is being used by Oracle for internal projects.

Sugar]J (since 2010, http://www.sugarj.org) is a Java-based extensible programming
language that allows programmers to extend the base language with custom language
features [11,14]. A Sugar] extension is defined with declarative meta-DSLs (SDF, Strat-
ego, and a type-system DSL [40]) as part of the user program and can be activated in
the scope of a module through regular import statements. SugarJ also comes with a
Spoofax-based IDE [13] that can be customized via library import on a file-by-file ba-
sis. A language extension can use arbitrary context-free and layout-sensitive syntax [15]
that does not have to align with the syntax or semantics of the base language Java. There-
fore, Sugar] is well-suited for the implementation of DSLs that combine the benefits of
internal and external DSLs. Variants of Sugar] support other base languages: JavaScript,
Prolog, and Haskell [16].

Whole Platform (since 2005, http://whole.sourceforge.net) is a mature projec-
tional language workbench supporting language-oriented programming [50]. It is mostly
used to engineer software product lines in the financial domain due to its ability to de-
fine and manage both data formats and pipelines of model transformations over big data.
The Whole Platform aims to minimize the explicit metamodeling efforts, so that users
can concentrate on modeling. The Whole Platform aims to reduce the use of mono-
lithic languages and leverages grammar-based data formats for integrating with legacy
systems.

http://www.rascal-mpl.org
http://www.spoofax.org
http://www.sugarj.org
http://whole.sourceforge.net

206 S. Erdweg et al.

Xtext (since 2006, http://www.eclipse.org/Xtext/) is a mature open-source frame-
work for development of programming languages and DSLs. It is designed based on
proven compiler construction patterns and ships with many commonly used language
features, such as a workspace indexer and a reusable expression language [10]. Its flex-
ible architecture allows developers to start by reusing well-established and commonly
understood default semantics for many language aspects, but Xtext scales up to full pro-
gramming language implementations, where every single aspect can be customized in
straightforward ways by means of dependency injection. Companies like Google, IBM,
BMW and many others have built external and internal products based on Xtext.

4.2 Language Workbench Features

We position the language workbenches above in the design space captured by our fea-
ture model as displayed in Table 1. In the remainder of this subsection, we reflect on
some of the findings.

Notation and Editing Mode. Most language workbenches provide support for textual
notations. Only MetaEdit+ is strictly non-textual. Mas, MetaEdit+, MPS, and the Whole
Platform provide support for tabular notations. Mas, MPS and Onion employ projec-
tional editing, which simplifies the integration of multiple notation styles. Currently,
only Ensd combines textual and graphical notations by providing support for custom
projections into diagram editors. All other language workbenches only support textual
notation, edited in a free-form text editor. MetaEdit+, MPS, and the Whole Platform
also support mathematical symbols, such as integral symbols or fractions.

Semantics. Except for Ensd, all language workbenches follow a generative approach,
most of them featuring both model-to-text and model-to-model transformations, and
many additionally supporting interpretation of models. In contrast, Enso eschews gen-
eration of code and is solely based on interpreters, following the working hypothesis
that interpreters compose better than generators.

Validation. Some language workbenches lack dedicated support for type checking
and/or constraints. These concerns are either dealt with programmatically, or assumed
to be addressed by the use of semantically rich meta models. MPS, Sugar]J [40], and
Xtext provide declarative languages for the definition of type systems. Spoofax has a
declarative language for describing name binding rules [34].

Testing. MPS, Spoofax, and Xtext feature dedicated sublanguages for testing aspects
of a DSL implementations, such as parsing, name binding, and type checking. Rascal
partially supports testing for DSLs through a generic unit testing and randomized testing
framework. Five language workbenches provide debuggable specification languages.
Four language workbenches support the debugging of DSL programs. For example,
Xtext automatically supports debugging for programs that build on Xbase and compile
to Java. MPS has a debugger API that can be used to build language-specific debuggers.
It also defines a DSL for easily defining how debugging of language extension works.
Both Xtext and MPS rely on origin tracking of data created during generation. In the
Whole Platform both metalanguage and defined language can be debugged using the
same infrastructure which has support for conditional breakpoints and variable views.

http://www.eclipse.org/Xtext/

Table 1. Language Workbench Features (@ = full support, @ = partial/limited support)

The State of the Art in Language Workbenches

207

MetaEdit+

Notation

Textual

® MPS

@®| Onion

@®| Spoofax

@®| Sugar]

@ Xtext

Graphical

®| ® Enso

©| ®| Rascal

Tabular

® O @ Mis

Symbols

Semantics

Model2Text

Model2Model

® 00 e e e Who

Concrete syntax

Interpretative

Validation

Structural

LI I N

Naming

o e e

Types

Programmatic

Testing

DSL testing

DSL debugging

[JIN

DSL prog. debugging

Composability

Syntax/views

Validation

Semantics

Editor services

Editing mode

Free-form

(K K JE RO IR K IR R IR N)

Projectional

Syntactic services

Highlighting

0 e

Outline

Folding

Syntactic completion

Diff

Auto formatting

Semantic services

Reference resolution

Semantic completion

Refactoring

Error marking

e 0000

Quick fixes

Origin tracking

Live translation

oe

Composability. Composability allows languages to be built by composing separate,
reusable building blocks. Enso, Rascal, Spoofax, and SugarJ obtain syntactic compos-
ability through the use of generalized parsing technology, which is required because only
the full class of context-free grammars is closed under union. The composability of Xtext
grammars is limited, since it is built on top of ANTLR’s LL(*) algorithm [45]. Syntactic
composition in Onion is based on composing PEG [18] grammars. The language work-
benches MPS and MetaEdit+, which do not use parsing at all, allow arbitrary notations

to be combined.

208 S. Erdweg et al.
form taxOfficeExample { Did you sell a house in 20107
"Did you sell a house in 20187"
L . Yes
boolean hasoldHouse
"Did you buy a house in 28187" Did you buy a house in 20107
N boolean hasBout . i - Choose an answer
Did you enter a loan?
boolean hasMaintLoar Did you enter a loan?
if (hasSoldHouse) { Choose an answer %
"Whaot was the selling price?"
money sellingPrice What was the selling price?
"Private debts for the sold house:" 100
money privateDebt Private debts for the sold house:
"Value residue:" 200
money valuekesidue = Value residue:
sellingPrice - privateDebt
; ¢) -100.00
} Submit taxOfficeExample

Fig. 2. An example of a textual QL model (left) and its default rendering (right)

The composability of validation and semantics in Rascal, Spoofax, and Sugar] is
based on the principle of composing sets of rewrite rules. In Enso, composition of se-
mantics is achieved by using the object-oriented principles of inheritance and delegation
in interpreter code. In MPS, different language aspects use different means of compo-
sition. For example, the type system relies on declarative typing rules which can be
simply composed. On the other hand, the composition of transformations relies on the
pair-wise specification of relative priorities between transformation rules.

Editor. The free-form textual language workbenches that are built on Eclipse (Rascal,
Spoofax, Sugar], Xtext) all provide roughly the same set of IDE features: syntax color-
ing, outlining, folding, reference resolution, and semantic completion. Spoofax, Sugar],
and Xtext have support for syntactic completion. Rascal, Spoofax, and Xtext allow the
definition of custom formatters to automatically layout DSL programs. Projectional ed-
itors such as MPS, Whole Platform or Mas always format a program as part of the
projection rules, so this feature is implicit. Textual free-form language workbenches get
the Diff feature for free by reusing existing version-control systems. MPS comes with
a dedicated three-way diff/merge facility that works at the level of the projected syntax.
MetaEdit+ provides a dedicated differencing mechanism so that modelers can inspect
recent changes; for version-control a shared repository is used.

5 LWC 2013 Assignment: A DSL for Questionnaires

We use the assignment of LWC’ 13 for comparing the language workbenches introduced
in the previous section. In the present section, we briefly introduce the assignment and
its challenges, which was to develop a Questionnaire Language (QL)’. A questionnaire

7 Original assignment text: http://www.languageworkbenches.net/images/5/53/Ql.pdf.
The questionnaire language was selected based on the expectation that it could be completed
“after-hours” and that it would not be biased towards one particular style of language work-
benches (e.g., graphical or textual). We have had no feedback indicating that the assignment
was infeasible or unsuitable.

http://www.languageworkbenches.net/images/5/53/Ql.pdf

The State of the Art in Language Workbenches 209

Legend: LwWC13
‘ Mandatory
O/ Optional aLs

A m

Sections Pages Styles Widgets Cross-validation

Syntax Execution Validation Editor
Rendering Propagation Saving Names Types Cycles Determinism Highlighting Outline References Error marking

Fig. 3. Feature model of the QL assignment

consists of a sequence of questions and derived values. A question may be condition-
ally visible based on the values of earlier questions. A questionnaire is presented to a
user by rendering it as a GUI, as exemplified in Fig. 2. In addition to these mandatory
features, we asked participants to realize a number of optional features. All features are
shown in the feature model of Fig. 3. Specifically, we asked for a QL language and IDE
implementation supporting the following features:

— Syntax: provide concrete and abstract syntax for QL models.

— Rendering: compile to code that executes a questionnaire GUI (or interpret di-
rectly).

— Propagation: generate code that ensures that computed questions update their value
as soon as any of their (transitive) dependencies changes.

— Saving: generate code that allows questionnaire users to persist the values entered
into the questionnaire.

— Names: ensure that no undefined names are used in expressions.

— Types: check that conditions and expressions are well-typed.

— Cycles: detect cyclic dependencies through conditions and expressions.

— Determinism: check that no two versions of equally-named questions are visible
simultaneously (requires SAT solving or model checking).

— Highlighting: provide customized visual clues to distinguish language constructs.

— Outline: provide a hierarchical view or projection of QL models.

— References: support go-to-definition for variables used in conditions and expres-
sions.

— Error marking: visually mark offending source-model elements in case of errors.

We also asked participants to develop a second language called QLS for declaring the
style and layout of QL questionnaires. QL has the requirement that it should be possible
to apply a QLS specification to an existing questionnaire without anticipation in the
definition of the questionnaire itself. Specifically, we asked for the following features:

— Sectioning: allow questions to be (re)arranged in sections and subsections.
— Pagination: allow questions to be distributed over multiple pages.

210 S. Erdweg et al.

— Styling: allow customization of fonts, colors, and font styles for question labels.

— Widgets: enable the selection of alternative widget styles for answering questions.

— Cross-validation: check that the references within a QLS specification refer to valid
entities of the corresponding questionnaire model.

Taken together, there are 17 features of which 3 are mandatory (syntax, rendering and
propagation). The next section discusses empirical data on the submitted solutions them-
selves.

6 Results

The results presented in this section are based on the solutions submitted to LWC’13
(links to the sources of these solutions are listed in Table 2). In Table 3 show for each
language workbench which features the corresponding QL/QLS implementation sup-
ports. The feature-based categorization of the solutions provides a qualitative frame of
reference for interpreting the size and dependency results given in Table 4. To indicate
the completeness of a solution, we computed feature coverage as shown in the bottom
row of Table 3. The coverage is computed by counting the number of supported features
(@ =1,@ =0.5), and then dividing by the total number of features (17).

Table 4 summarizes the results on the size of each QL/QLS solution. As a size metric,
we use the number of source lines of code (SLOC), excluding empty lines and com-
ments. Because in some language workbenches non-textual notations are used to realize
(parts of) the solution, SLOC does not tell the whole story. In these cases, we also count
and report the number of model elements (NME). Model elements include any kind of
structural entity that is used to define aspects of a language. For example, in MetaEdit+,
modeling elements include graphs, objects, relationships, roles, and properties.

For the textual language workbenches Enso, Onion, Rascal, Spoofax, SugarJ, and
Xtext, SLOC were measured using the script cloc.pl® or by manual count. For Mas,
MetaEdit+, and the Whole Platform we counted the number of model elements and
measured the size additional code artifacts. Since MPS is purely projectional but still
provides a textual presentation of languages, we use an approximate SLOC count: We
counted modeling elements and computed SLOC of an equivalent Java program by
multiplying the number of model elements with different factors for different types of
modeling elements [59]. In addition we report the number of SLOC/NME per feature.
The number is obtained by dividing the total SLOC/NME by the number of supported
features. Finally, the table also shows the compile-time and runtime dependencies of
each solution to appreciate the complexity of deploying the resulting QL/QLS IDE and
the generated questionnaire applications.

It is important to realize it is not our intention to present the quantitative results of
Table 4 as an absolute measure of implementation effort or complexity (as is, e.g., done
in [35]). They cannot be used to rank language workbenches. Factors that prevent such
ranking include:

— The SLOC count is incomplete in systems where non-textual languages are used,
such as in Mds, MetaEdit+, MPS and Whole Platform. The NME count only par-
tially makes up for this.

8 http://cloc.sourceforge.net

http://cloc.sourceforge.net

The State of the Art in Language Workbenches 211

Table 2. Published sources of the QL solutions

Lang. Workbench \ Links to the corresponding QL solutions

Enso https://github.com/enso-lang/enso/tree/master/demos/Questionaire

Mas http://www.mas-wb.com/secure/concrete/language?id=120001&securityToken=

restricted_public_token
http://www.mas-wb.com/languages/inspector?id=120001

MetaEdit+ http://www.metacase.com/support/50/repository/LWC2013.zip

MPS http://code.google.com/p/mps-lwcl3

Onion https://bitbucket.org/icinetic/1lwc2013-icinetic

Rascal https://github.com/cwi-swat/QL-R-kemi

Spoofax https://github.com/metaborg/lwc2013

Sugar] https://github.com/seba- - /sugarj/tree/questionnaire/case-studies/

questionnaire- language

‘Whole Platform https://github.com/wholeplatform/whole-examples/tree/master/org.whole.

crossexamples.lwcl3

Xtext http://code.google.com/a/eclipselabs.org/p/lwcl3-xtext/

A single number of SLOC is presented, but in each language workbench (a multi-
plicity of) different programming, modeling, and specification languages are used.
The architecture and design may be substantially different across QL/QLS solu-
tions. For instance, chosing a client-server Web architecture over a desktop GUI
design may or may not affect SLOC.

Different QL/QLS features may require varying amounts of effort, which may not
be reflected in SLOC. Furthermore, the degree as to how much effort is needed for a
particular feature may vary per language workbench. The coarse granularity of the
QL feature model may obscure this even more. For instance, the feature model does
not distinguish between the number of questionnaire data types that are supported.
Even though, intuitively, more features would imply more effort, this relation is al-
most certainly not linear, since more features increase the risk of feature interaction.
The SLOC/feature metric ignores this aspect.

The SLOC count may be influenced by the developer’s familiarity with the lan-
guage workbench. For instance, some of the solutions have been developed by the
language workbench implementors themselves (e.g., Mds, Sugar]), whereas others
are built by first-time (e.g., MPS) or second-time (e.g., Rascal) users of a language
workbench. We did not record the time spent on a particular solution.

Even if all risks above could be mitigated, our data set is to small to derive any
statistically significant conclusions. Moreover, in the low end of the SLOC data set
there are very few data points, and in the upper region of the data set there is high
variability.

In summary, we are aware that the presented numbers are a gross simplification of
reality. Nevertheless, juxtaposing the size, size per feature, and dependencies helps to
spot outliers and can enable interesting observations. Furthermore, this can guide future
investigations by workbench users or implementors. In the next section, we present our
findings based on the results above.

212 S. Erdweg et al.

Table 3. Implemented QL and QLS features per language workbench (@ = “fully implemented”,

@ = “partially implemented”)

Syntax

Execution | Rendering

Propagation

® O O Mis

@ ® @ Sugarl

Saving

® 0 ® ® Enso

Validation | Names

® 0 0 e ® Whol

Types

® 0 0 0 e e MectaFEdit+
00 e e e MPS

()N J

o0 0 0 ® @& Rascal

Cycles

o0/ ® 0 e e e Onon

00000 e o Xicxt

Determinism

IDE Coloring

Outline

References

Marking

QLS Sectioning

Pagination

Styling

Widgets

Validation

(K JK))
(I N J

| Feature coverage (in percent) | 24 [44 |

0
%)
2
N
0
N

(o]
o]

S|e|o/e/e e e e e e ce e e e e e e sSpofx

|59 [65

O
A~

Table 4. Size metrics and dependency information on the QL/QLS solutions

SLOC/NME | SLOC/NME | Compile-time dependencies Runtime dependencies
‘ ‘ ‘ per feature ‘ ‘
Enso 83/ — 21/ — Enso, NodelJS or Ruby 1.9 Enso, NodeJS, browser with
JavaScript, jQuery
Mais 413756 5579 Mais, browser with JavaScript browser with JavaScript, jQuery
MetaEdit+ 1177/ 68 78175 MetaEdit+ browser with JavaScript
MPS 1324/ — 106/ — MPS, JDK, Sacha Lisson’s JRE
Richtext Plugins
Onion 1876/ — 134/ — Onion, .NET 4.5, browser with JavaScript
StringTemplate
Rascal 2408 / — 161/ — Rascal, Eclipse, DK, IMP PHP server, browser with
JavaScript, jQuery and validator
Spoofax 1420/ — 86/ — Spoofax, Eclipse, JDK, IMP, WebDSL runtime, SQL database,
‘WebDSL browser with JavaScript
Sugar] 703/ — 70/ — Sugar], JDK, Eclipse, Spoofax JRE
‘Whole 645/313 59/28 Whole Platform, Eclipse, JDK JRE, SWT, Whole LDK
Xtext 1040/ — 65/ — Xtext, Eclipse, ANTLR, Xtend JRE, JSF 2.1, JEE container

7 Observations

Completeness. All solutions fulfilled the basic requirements of rendering and execut-
ing QL models. Furthermore, 9 out of 10 solutions provide IDE support for the QL
language. Additionally, 7 of those solutions also provide confusing IDE support for

The State of the Art in Language Workbenches 213

the optional QLS language. All of the solutions achieve these results with fewer than
2500 SLOC; for the language workbenches based on non-textual notations, the raw
SLOC count is below 1200. For comparison, a simple QL implementation in Java,
consisting of a (generated) parser, type checker and interpreter, rougly requires around
3100 SLOC, excluding IDE support and QLS features®. This shows that state of the art
language workbenches indeed provide advanced support for language engineering, and
confirms earlier research providing evidence that the use of DSL tools leads to language
implementations which are easier to maintain [31].

Diversity. Reflecting upon Tables 1 and 4 we can observe a striking diversity among the
tools, even though they perform more or less equally well in terms of the assignment.
In our study, half of the workbenches are developed in an academic context (Enso,
Rascal, Spoofax, SugarJ, and the Whole Platform) and the other half in industry (Maés,
MetaEdit+, MPS, Onion, and Xtext). Feature coverage and SLOC per feature show
no bias to either side. Similarly, the age of the language workbenches varies from 18
years (MetaEdit+) to 1 year (Onion). Yet, again there seems to be no bias towards a
particular age category. It is to be expected that the maturity, stability, and scalability
of industrial and academic tools differ; however, this has not been focus of our study.
Indeed, scalability will likely be one of the focuses of the next LWC, from which we
hopefully gain further insight into the field of language workbenches.

Another interesting distinction is whether a language workbench provides a single,
generic metalanguage or a combination of smaller metalanguages. For instance, Rascal
provides a unified language with domain-specific features (grammars, traversal, rela-
tional calculus, etc.) to facilitate the construction of languages. Similarly, apart from
metamodels in Mds and grammars and metamodels in Onion, these two language work-
benches interface with general purpose languages for the heavy lifting (Xtend in Mas,
C# in Onion). Both MPS and Xtext provide escapes to Java should the need arise.

On the other hand, Spoofax provides a multiplicity of declarative languages dedi-
cated to certain aspects of a language implementation (e.g., SDF3 for parsing and pretty
printing, Stratego for transformation, NaBL for name binding, etc.). Along the same
lines, MPS and Sugar] provide support for building such sub-languages on top of an
open, extensible base language. In this way, Sugar]J integrates SDF, Stratego and a lan-
guage for type systems into the base language. MPS uses specialized languages for type
system rules, transformation rules and data flow specification, among others.

Finally, considering editor model and notation style, there seems to be no predom-
inant language-workbench style: textual, projectional and graphical notations are well
represented and have been found equally able to realize the QL/QLS assignment. It is
interesting to note however, that such boundaries are blurring. MPS already supports
tabular, symbolic, and textual notations. Both MPS and Spoofax are currently working
towards integrating graphical notations (see e.g., [55]). In the Onion language work-
bench, textual parsing is combined with projectional editing. Finally, Enso apriori does

9 This number is based on computing the median SLOC of hand-written, non-test Java code
and ANTLR, Rats! or JACC grammar definitions over 48 QL implementations, constructed by
students of the Software Construction course in the Master Software Engineering, University
of Amsterdam, 2013. See:
https://github.com/software-engineering-amsterdam/sea-of-ql

https://github.com/software-engineering-amsterdam/sea-of-ql

214 S. Erdweg et al.

not commit to one particular style and supports both textual and graphical editing. Thus
there seems to be a convergence towards language workbenches where multiple, het-
erogeneous notations or editing modes may co-exist within one language, similar to the
original vision of intentional programming [47].

Language Reuse and Composition. An important goal of language-oriented program-
ming [61] is the ability to combine different languages describing different aspects of
software systems. The results on the QL/QLS assignment reveal first achievements in
this direction. First of all, as indicated above, a number of language workbenches ap-
proach language-oriented programming at the meta level: language definitions in MPS,
Spoofax, and Sugar] are combinations of different metalanguages. Second, some of the
language workbenches achieve high feature coverage using relatively low SLOC num-
bers. Notably, the low SLOC/feature number of Enso, MPS, Spoofax, Sugar] and Xtext
can be explained by reusing existing languages or language fragments. The Enso, MPS,
Sugar], and Xtext solutions reuse a language for expressions, thus getting aspects like
syntax, type checking, compilation or evaluation for free. The Spoofax solution targets
the WebDSL platform, thus reusing execution logic at runtime. In contrast, the Rascal
solution includes full implementations of both syntax and semantics of expressions and
the execution logic of questionnaires.

Another observation in line with language-oriented programming is the fact that all
language workbenches considered in this paper are themselves compile-time dependen-
cies for the QL/QLS IDE. This suggests that the goal of state-of-the-art language work-
benches is not so much to facilitate the construction of independent compilers and IDEs,
but to provide an extensible environment where those compilers and IDEs can live in.
In Enso, MetaEdit+, MPS, SugarJ, and the Whole Platform, new languages are really
extensions of or additions to the language workbench itself. MPS, Enso and SugarJ go
sofar as to even facilitate extension of the metalanguages. Furthermore, with the excep-
tion of Xtext, all language workbenches allow new languages or language extensions to
be activated dynamically within the same instance of the IDE.

8 Concluding Remarks

To document the state of the art of language workbenches, we established a feature
model that captures the design space of language workbenches. We positioned exist-
ing language workbenches in this design space by identifying the features they support.
As our study reveals, all features of our feature model are realized by some language
workbench, but no language workbench realizes all features. To investigate the 10 lan-
guage workbenches of our study in more detail, we collected empirical data on feature
coverage, size, and required dependencies of implementations of a language for ques-
tionnaires with styling (QL/QLS) in each language workbench. Based on the results,
our observations can be summarized as follows:

— Language workbenches provide adequate abstractions for implementing a language
like QL. The results show a marked advantage over manual implementation.

— The language workbench space is very diverse: different sets of supported features,
age ranging from 1 to 18 years, single metalanguage or multiple metalanguages,

The State of the Art in Language Workbenches 215

industry or research, etc. Based on our results it is impossible to conclude that any
particular category performs better than others.

Finally, we have observed trends towards:

— Integrating different notation styles (textual, graphical, tabular, symbolic) and edit-

ing modes (free-form and projectional).

— Reuse and composition of languages, leading to language-oriented programming

both at the object level and meta level.

— Viewing language workbenches as an extensible environments, instead of a tools to

create other tools.

References

14.

15.

16.

. Alderson, A.: Experience of bi-lateral technology transfer projects. In: Diffusion, Transfer

and Implementation of Information Technology (1997)

. Anlauff, M., Kutter, P.W., Pierantonio, A.: Tool support for language design and prototyping

with montages. In: Jahnichen, S. (ed.) CC 1999. LNCS, vol. 1575, pp. 296-300. Springer,
Heidelberg (1999)

. Arnold, B.R.T., Van Deursen, A., Res, M.: An algebraic specification of a language for

describing financial products. In: Formal Methods Application in Software Engineering,
pp. 6-13. IEEE (1995)

. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.

(eds.) SPLC 2005. LNCS, vol. 3714, pp. 7-20. Springer, Heidelberg (2005)

. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: Centaur:

the system. SIGPLAN Not. 24(2), 14-24 (1988)

. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language and

toolset for program transformation. Sci. Comput. Program. 72(1-2), 52-70 (2008)

. Chen, M., Nunamaker, J.: Metaplex: An integrated environment for organization and infor-

mation system development. In: ICIS, pp. 141-151. ACM (1989)

. Dmitriev, S.: Language oriented programming: The next programming paradigm. JetBrains

on Board 1(2) (2004)

. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B.: Programming environments based on

structured editors: The MENTOR experience. Technical Report 26, INRIA (1980)

. Efftinge, S., Eysholdt, M., Koéhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,

W., Hanus, M.: Xbase: Implementing domain-specific languages for Java. In: GPCE,
pp- 112-121 (2012)

. Erdweg, S.: Extensible Languages for Flexible and Principled Domain Abstraction. PhD

thesis, Philipps-Universitit Marburg (2013)

. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: LDTA, pp.

7:1-7:8. ACM (2012)

. Erdweg, S., Kats, L.C.L., Rendel, T., Késtner, C., Ostermann, K., Visser, E.: Growing a

language environment with editor libraries. In: GPCE, pp. 167-176. ACM (2011)

Erdweg, S., Rendel, T., Késtner, C., Ostermann, K.: Sugar]J: Library-based syntactic language
extensibility. In: OOPSLA, pp. 391-406. ACM (2011)

Erdweg, S., Rendel, T., Kistner, C., Ostermann, K.: Layout-sensitive generalized parsing.
In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 244-263. Springer,
Heidelberg (2013)

Erdweg, S., Rieger, F., Rendel, T., Ostermann, K.: Layout-sensitive language extensibility
with SugarHaskell. In: Haskell Symposium, pp. 149-160. ACM (2012)

216

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. Erdweg et al.

Eysholdt, M., Behrens, H.: Xtext: Implement your language faster than the quick and dirty
way. In: SPLASH Companion, pp. 307-309. ACM (2010)

Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation. In: POPL,
pp- 111-122. ACM (2004)

Fowler, M.: Language workbenches: The killer-app for domain specific languages? (2005),
http://martinfowler.com/articles/languageWorkbench.html

Heering, J., Klint, P.: Semantics of programming languages: a tool-oriented approach. SIG-
PLAN Not. 35(3), 3948 (2000)

Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement
of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 114-129. Springer, Heidelberg (2009)

Hemel, Z., Visser, E.: Declaratively programming the mobile web with Mobl. In: OOPSLA,
pp- 695-712. ACM (2011)

Hills, M., Klint, P., Vinju, J.J.: Meta-language support for type-safe access to external re-
sources. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 372-391.
Springer, Heidelberg (2013)

Honeywell Technology Center. Dome guide (1999)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, CMU Software Engineering Institute
(1990)

Kirnd, J., Tolvanen, J.-P., Kelly, S.: Evaluating the use of domain-specific modeling in prac-
tice. In: DSM (2009)

Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative specifica-
tion of languages and IDEs. In: OOPSLA, pp. 444-463. ACM (2010)

Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A fully configurable multi-user and multi-tool
CASE and CAME environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.)
CAIiSE 1996. LNCS, vol. 1080, pp. 1-21. Springer, Heidelberg (1996)

Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press (2008)

Klint, P.: A meta-environment for generating programming environments. TOSEM 2(2), 176—
201 (1993)

Klint, P., van der Storm, T., Vinju, J.: On the impact of DSL tools on the maintainability of
language implementations. In: LDTA. ACM (2010)

Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with rascal. In: Fernandes,
J.M., Lammel, R., Visser, J., Saraiva, J. (eds.) GTTSE III. LNCS, vol. 6491, pp. 222-289.
Springer, Heidelberg (2011)

Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: A domain specific language for source
code analysis and manipulation. In: SCAM, pp. 168-177. IEEE (2009)

Konat, G., Kats, L., Wachsmuth, G., Visser, E.: Declarative name binding and scope rules.
In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 311-331. Springer,
Heidelberg (2013)

Kosar, T., Lopez, P.E.M., Barrientos, P.A., Mernik, M.: A preliminary study on various im-
plementation approaches of domain-specific language. Inf. Softw. Technol. 50(5), 390-405
(2008)

Kuiper, M.F., Saraiva, J.: Lrc — a generator for incremental language-oriented tools. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298-301. Springer, Heidelberg (1998)
de Lara, J., Vangheluwe, H.: AToM?>: A tool for multi-formalism and meta-modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174—188. Springer, Hei-
delberg (2002)

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Intelligent Signal Process-
ing (2001)

http://martinfowler.com/articles/languageWorkbench.html

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

The State of the Art in Language Workbenches 217

Lorenz, D.H., Rosenan, B.: Cedalion: A language for language oriented programming. In:
OOPSLA, pp. 733-752. ACM (2011)

Lorenzen, F., Erdweg, S.: Modular and automated type-soundness verification for language
extensions. In: ICFP (to appear, 2013)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316-344 (2005)

Mernik, M., Leni¢, M., AvdicauSevic, E., Zumer, V.: LISA: An interactive environment for
programming language development. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304,
pp. 1-4. Springer, Heidelberg (2002)

Meta Systems Ltd. Quickspec reference guide (1989)

MetaCase. MetaEdit+ revolutionized the way Nokia develops mobile phone software (2007),
http://www.metacase.com/cases/nokia.html (June 5th, 2013)

Parr, T., Quong, R.-W.: ANTLR: A predicated-LL(k) parser generator. Software Practice and
Experience 25(7), 789-810 (1995)

Reps, T., Teitelbaum, T.: The synthesizer generator. SIGPLAN Not. 19(5), 4248 (1984)
Simonyi, C., Christerson, M., Clifford, S.: Intentional software. In: OOPSLA, pp. 451-464.
ACM (2006)

Smolander, K., Lyytinen, K., Tahvanainen, V.-P., Marttiin, P.: MetaEdit—a flexible graphical
environment for methodology modelling. In: Andersen, R., Solvberg, A., Bubenko Jr., J.A.
(eds.) CAISE 1991. LNCS, vol. 498, pp. 168-193. Springer, Heidelberg (1991)

Soderberg, E., Hedin, G.: Building semantic editors using JastAdd: tool demonstration. In:
LDTA, p. 11 (2011)

Solmi, R.: Whole platform. PhD thesis, University of Bologna (2005)

Sorenson, P.G., Tremblay, J.-P., McAllister, A.J.: The Metaview system for many specifica-
tion environments. IEEE Software 5(2), 30-38 (1988)

Teichroew, D., Macasovic, P., Hershey III, E., Yamato, Y.: Application of the entity-
relationship approach to information processing systems modeling (1980)

van den Bos, J., van der Storm, T.: Bringing domain-specific languages to digital forensics.
In: ICSE SEIP, pp. 671-680. ACM (2011)

van der Storm, T.: The Rascal Language Workbench. CWI Technical Report SEN-1111, CWI
(2011)

van Rest, O., Wachsmuth, G., Steel, J., Siiss, J.G., Visser, E.: Robust real-time synchroniza-
tion between textual and graphical editors. In: ICMT (2013)

Visser, E.: WebDSL: A case study in domain-specific language engineering. In: Limmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE II. LNCS, vol. 5235, pp. 291-373. Springer, Heidelberg
(2008)

Voelter, M., Pech, V.: Language modularity with the MPS language workbench. In: ICSE,
pp. 1449-1450. IEEE (2012)

Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: Instantiating a language workbench in
the embedded software domain. Journal of Automated Software Engineering (2013)
Voelter, M., Ratiu, D., Schaetz, B., Kolb, B.: mbeddr: an extensible C-based programming
language and IDE for embedded systems. In: SPLASH Wavefront, pp. 121-140. ACM
(2012)

Vollebregt, T., Kats, L.C.L., Visser, E.: Declarative specification of template-based textual
editors. In: LDTA (2012)

Ward, M.P.: Language-oriented programming. Software — Concepts and Tools 15, 147-161
(1995)

http://www.metacase.com/cases/nokia.html

	The State of the Art in LanguageWorkbenches
	1 Introduction
	2 Background
	2.1 The Challenges of LWC
	2.2 ResearchMethodology

	3 A Feature Model for Language Workbenches
	4 Language Workbenches
	4.1 Introduction of the Tools
	4.2 LanguageWorkbench Features

	5 LWC 2013 Assignment: A DSL for Questionnaires
	6 Results
	7 Observations
	8 Concluding Remarks
	References

