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Abstract: Active rock glaciers and landslides are critical indicators of permafrost dynamics in high mountain environments, 

reflecting the thermal state of permafrost and responding sensitively to climate change. Traditional monitoring methods, such 

as Global Navigation Satellite System (GNSS) measurements and permanent installations, face challenges in measuring the 10 

rapid movements of these landforms due to environmental constraints and limited spatial coverage. Remote sensing techniques 

offer improved spatial resolution but often lack the necessary temporal resolution to capture sub-seasonal variations. In this 

study, we introduce a novel approach utilising monoscopic time-lapse imagery and Artificial Intelligence (AI) for high-

temporal-resolution velocity estimation, applied to two subsets of time-lapse datasets capturing a fast-moving landslide and 

rock glacier at the Grabengufer site (Swiss Alps). Specifically, we employed the Persistent Independent Particle tracking 15 

(PIPs++) model for tracking and the AI-based LightGlue matching algorithm to transfer 2D image data into 3D object space 

and further into 4D velocity data. This methodology was validated against GNSS surveys, demonstrating its capability to 

provide spatially and temporally detailed velocity information. Our findings highlight the potential of image-driven 

methodologies to enhance the understanding of dynamic landform processes, revealing spatio-temporal patterns previously 

unattainable with conventional monitoring techniques. By leveraging existing time-lapse data, our method offers a cost-20 

effective solution for monitoring various geohazards, from rock glaciers to landslides, with implications for enhancing alpine 

safety and informing climate change impacts on permafrost dynamics. This study marks the pioneering application of AI-

based methodologies in environmental monitoring using time-lapse image data, promising advancements in both research and 

practical applications within geomorphic studies. 

1 Introduction 25 

Active rock glaciers are creeping permafrost features (Barsch, 1996; Kääb and Reichmuth, 2005), serving as crucial indicators 

of permafrost distribution in high mountain environments (Marcer et al., 2017; RGIK, 2023). Their velocity results from 

various parameters such as topographic conditions, rock glacier material, and internal structure, and it reflects the thermal state 

of the permafrost (Cicoira et al., 2021; Delaloye et al., 2010). Higher flow speeds typically occur near the permafrost limits, 

where mean annual air temperatures approach 0°C (Frauenfelder et al., 2003). They efficiently transport sediment (Delaloye 30 

et al., 2010; Kummert and Delaloye, 2018), and the acceleration of these processes becomes more pronounced as rock glacier 
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creep rates increase in a warming climate (Delaloye et al., 2013; Pellet et al., 2023). The same is true for permafrost-related 

creep features such as landslides (Delaloye and Staub, 2016). This can pose significant geohazards when direct connections to 

downslope infrastructure exist. Precise monitoring of these fast-moving high-alpine landforms is thus essential for future alpine 

safety (Hermle et al., 2022), as it provides information about the impact of climate change on creeping mountain permafrost 35 

and its thermal state (RGIK, 2023). 

The monitoring of fast creeping rock glaciers (> 3 my-1, Marcer et al. 2021) or landslides is particularly challenging. Traditional 

techniques that require frequent field access, such as differential Global Navigation Satellite System (dGNSS) measurements, 

face environmental and logistical obstacles. Permanent GNSS installations can offer displacement observations with 

millimetre accuracy at a continuous temporal resolution, but they may not have the desired longevity on fast-moving landforms 40 

due to extreme cases of block sliding, rotation, and rockfall, necessitating re-levelling or instrument replacement (Cicoira et 

al., 2022). Both dGNSS and permanent installations only measure discrete points, resulting in a limited spatial distribution. 

However, spatial heterogeneity of landform movement can be expected depending on internal rock glacier structure and terrain 

characteristics (RGIK, 2023). Improved spatial coverage can be achieved using remote sensing data, such as 3D point clouds 

derived from Uncrewed Aerial Vehicles (UAV) and Terrestrial or Airborne Laser Scanning (TLS and ALS). These techniques 45 

minimize the need for extensive field access, enabling operators to avoid in-person exposure to the fastest-moving areas while 

still capturing detailed data from these regions. However, these methods often lack the temporal resolution necessary to capture 

sub-seasonal variations of the landform to its environmental drivers, essential to increase process understanding. Time-lapse 

imagery or webcam data have the capability to capture the kinematics of alpine landforms with, e.g., hourly resolution. Fixed 

photogrammetric or stereoscopic camera systems, which are increasingly implemented, involve multiple time-lapse cameras 50 

to reconstruct high-resolution 3D point clouds similar to those from UAVs or TLS, and at a fraction of the cost (Blanch et al., 

2023; Eltner et al., 2017; Ioli et al., 2024). Nonetheless, deploying multiple cameras in dynamic alpine environments can be 

challenging, often requiring wide baselines that complicate point cloud generation (Ioli et al., 2024). Recent studies have 

demonstrated that metric measurements can be obtained from 2D images alone when a 3D model is available, reducing the 

need for extensive camera arrays (Altmann et al., 2020; Elias et al., 2023; Wegner et al., 2023). Furthermore, monoscopic 55 

camera data, which is more readily available than stereo images, often spans a decade or more in the European Alps (Kummert 

et al., 2018). Generally installed in stable terrain, these cameras tend to have greater longevity than permanent GNSS 

installations.  

Measuring the velocity of boulders within the camera's field of view is possible by establishing correspondences between pairs 

of points in an image pair, a common challenge in computer vision using optical flow-based methods and feature matching 60 

(Fortun et al., 2015). Feature tracking is essentially an optimization problem, where the location of highest similarity between 

a reference template and a template in the destination image is considered a match (e.g., Eltner et al., 2022). Common similarity 

measures include Normalized Cross-Correlation (NCC) (Heid and Kääb, 2012) and least square matching (Schwalbe and 

Maas, 2017). Traditional motion estimation methods face challenges with large displacement, strong illumination changes, 

and occlusions. Image pre-selection is crucial to minimize shadowing variation (e.g., selecting images from the same time of 65 
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day), thereby limiting temporal resolution (How et al., 2020). Additionally, high landform velocities can cause decorrelation 

and noise when using typical area-based matching algorithms, such as NCC (e.g., CIAS by Kääb and Vollmer, 2000), for 

tracking features between consecutive surveys.  

In the era of Artificial Intelligence (AI), traditional feature tracking can leverage the power of Deep Learning. Convolutional 

Neural Networks (CNNs), widely employed as feature extractors, replace handcrafted features or the use of image intensities 70 

or gradients (Hur and Roth, 2020). This approach offers the advantage of representing each pixel with a high-dimensional 

feature vector, blending distinctiveness and invariance to, for example, appearance changes, thereby enhancing feature 

robustness over time. This enhances image matching algorithms, as seen with models like SuperGlue (Sarlin et al., 2020), 

LightGlue (Lindenberger et al., 2023) and LoFTR (Sun et al., 2021).  

 75 

The goal of this research is to obtain high-quality landform velocities from monoscopic time-lapse cameras, verified through 

permanent- and dGNSS surveys. To improve motion estimation in mountain time-lapse image sequences, we tested the deep 

learning model called Persistent Independent Particle tracking (PIPs++) (Harley et al., 2022; Zheng et al., 2023) to track 

landslide and rock glacier movements and the AI matching algorithm LightGlue (Lindenberger et al., 2023) to convert 2D 

image measurements to 3D information (Elias et al., 2023). By analysing a small subset of a large time-lapse image dataset, 80 

we automatically extracted velocity information as a proof-of-concept. We demonstrate the potential of new methodologies 

for managing big data and improving the spatio-temporal understanding of landform movements. Two fast-moving alpine 

landforms (a landslide and rock glacier at Grabengufer site, Switzerland) were selected as a pilot study area. The ultimate aim 

is to derive reliable velocity values at high temporal resolution from low-cost monoscopic time-lapse cameras, which have not 

been previously used quantitatively. To achieve this, we developed a workflow applicable to other research sites where 85 

validation data is scarce or where traditional remote sensing techniques fall short due to high landform displacements. This 

approach not only enhances analysis capabilities but also enables the use of basic systems, such as monoscopic cameras, for 

automatic and cost-effective monitoring and quantification. 

2. Study area and dataset description  

The Grabengufer study area features two fast-moving alpine landforms (Fig. 1a). The upper section (2700 – 2880 m a.s.l.) 90 

consists of a landslide moving up to 1.5 meters a year. The intermediate part of this landslide, referred to as the "feeding 

section," is monitored by a permanently installed webcam (hereinafter named Wcam04, Fig. 1c). This landslide feeds into a 

rock glacier (2400 – 2600 m a.s.l.), which moves at a rate of 0.25 to 0.69 meters per day as measured in situ in 2023 (Wcam05, 

Fig. 1b). The rock glacier eventually flows into a gully prone to debris flows, which is observed by a separate webcam not 

included in this study. The site is extensively monitored, with bi-annual dGNSS surveys, several permanent GNSS installation 95 

from PermaSense (Cicoira et al., 2022) and the Canton of Valais, ten fixed reflectors for repeated theodolite measurements, 

three time-lapse cameras since 2010/2013 (Wcam02, 04, and 05), and three ground surface temperature loggers. 
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Figure 1: a) Overview of the Grabengufer study area in the Mattertal, Swiss Alps, showing the locations of the webcams used in this 

study, b) Example image from webcam Wcam05, capturing the rock glacier, and c) example image from webcam Wcam04, focused 100 
on the intermediate section of the landslide feeding into the rock glacier—referred to as the feeding section in this study. 

 

The webcam characteristics are detailed in Table 1. The data used in this study was acquired by two Mobotix (M12, M15) 

webcams, each powered by a solar panel. The webcams capture images at hourly intervals during daylight conditions with a 

resolution of 3.15 megapixels (2048 x 1536 pixels). The images are sent via a GSM (Global System for Mobile 105 

Communication) internet connection to a server for storage and accessibility. For scaling the acquired images, we make use of 

a high-resolution point cloud (4.89 cm/px, 419 points/m2), derived from an UAV flight performed on August 3, 2023 with a 

DJI Phantom 4 RTK at a flight height of 70 m above the terrain and subsequently processed in Agisoft Metashape. Four ground 

control points were used as check points, demonstrating a planar accuracy of 1 cm and a height accuracy of 0.3 cm. For the 

validation of the velocities derived from the time-lapse image sequence, we make use of bi-annual dGNSS surveys using real‐110 

time kinematics (RTK) collected at the beginning (30.06) and end (13.10) of the summer of 2022 and monthly theodolite 

measurements of fixed reflectors. Additionally, a permanent GNSS system installed by the Canton of Valais on a large boulder 

within the feeding section provides high-temporal validation data for one specific point. This system uses a fixed GNSS station 

on stable terrain to achieve a more accurate differential position. 

 115 
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 120 

Table 1: Test datasets used in this study, as a selection of the entire datasets 

Name - 

Landform 

Location in 

*CH1903+ 

Distance to 

the landform 

(m) 

Date of first 

installation 

Camera properties 

Focal length (f) 

Viewing direction 

Total number of 

images (start-2023) 

Subsample for 

this pilot study 

Wcam04 – 

Feeding 

section 

x: 2628628,  

y: 1104523,  

z: 2790 m a.s.l. 

100 01.09.2013 f: 1.3 mm 

100° 

48 118 Weekly images 

for summer 

2022 

Wcam05 – 

Rock 

glacier 

x: 2629114,  

y: 1105319,  

z: 2870 m a.s.l. 

700 17.01.2011 f: 1.3 mm 

235° 

51 919 Weekly images 

for summer 

2022 

*CH1903+ is a commonly used Swiss coordinate system 

3. Methods 

The overall analysis was conducted step by step with the goal of: 1) getting the translation vectors or trajectories (in pixels) 

from predefined points to be tracked (regular grid or specified pixel coordinates) from the time-lapse image sequence in a fast 125 

and robust way (section 3.1), and 2) scaling the trajectories from pixel coordinates to real-world coordinates to calculate 

velocities (in m per day) (section 3.2). Both steps apply existing AI frameworks and have limited input requirements, reducing 

pre-processing time. Step 1 requires time-lapse images taken at fixed intervals (e.g., weekly, daily, or hourly), preferably with 

a datetime stamp in the filename. No pre-filtering for fog, snow, or blur is needed at this stage, and prior stabilization to account 

for camera movements is unnecessary, as the camera orientation parameters will be calculated during the registration of image 130 

and object data in step 2. This requires a high-resolution 3D point cloud with RGB information of the area of interests and 

initial estimates of the camera’s intrinsic parameters, i.e., focal length, as well as the camera pose, i.e., position and rotation in 

object space (Fig. 2). Given the short duration of this pilot study, we assume the cameras remain stable over time. 
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Figure 2: Schematic overview of the workflow presented in this study.  135 

 

3.1 Application of the Persistent Independent Particle tracker (PIPs++)  

The first step in our workflow (Fig. 2) involves feeding the image sequence, taken at fixed time intervals (e.g., weekly, daily, 

or hourly), into the Persistent Independent Particle tracker (PIPs++). This AI-based tracker, developed by Harley et al. (2022) 

and improved by Zheng et al. (2023), operates without retraining on our specific data. PIPs++ operates as a low-level tracker, 140 

relying on appearance-matching cues just like traditional methods, and temporal priors. It employs a 2D residual Convolutional 

Neural Network (CNN) for feature extraction in the initial step (He et al., 2016), generating a feature map for each frame, 

independent of temporal prior. Following feature extraction, the algorithm feeds into a deep 1D Convolutional Network 

(ResNet) with fixed-length kernels applied to arbitrary temporal spans (Zheng et al., 2023). Based on the feature maps, PIPs++ 

calculates local similarity and position of the features in an iterative step using spatial pyramids, similar to RAFT (Teed and 145 

Deng, 2020). Just like traditional methods, correlation matrices are calculated to match the feature templates. The main 

difference from traditional methods is that this approach operates within a multi-frame temporal context, considering all frames 

in a temporal window or batch of size S to search for the target. After a match is found, the trajectory of the feature within the 

batch is updated and new correlation pyramids are calculated in an iterative way. If tracking fails for one frame due to occlusion 

(e.g., fog), the trajectory of the feature can still be estimated as long as it is found in other frames within the batch (as long as 150 
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the fog does not last longer than the batch size S) (Fig. 3b). Moreover, the similarity is computed using multiple templates per 

feature. This means that the model does not only rely on the initial appearance of the target in the first frame, but also on its 

appearance along the trajectory, i.e., throughout the sequence. For each additional template, new correlations are computed 

and if tracking is successful it is included in the multi-template tracking. This approach allows for tracking the same features 

despite changes in light conditions, snow cover (Fig. 3d), or self-occlusion (e.g., rolling boulders), by handling appearance 155 

changes and considering the trajectory to extract multiple templates per feature. For further information about the model 

architecture, we refer to Harley et al., (2022) and Zheng et al., (2023). The output of the model is a simple trajectory .txt file 

per frame (Fig. 2), with the pixel coordinates of each tracked point. This file can be visualized on the respective image for 

visual inspection (Fig. 3). If a regular grid is used, it is reset each time a new batch starts. When camera movements occur, a 

homogeneous and mono-directional translation or shift of the regular grid in the stable areas can be observed (Fig. 3c). This 160 

shift can be corrected by applying a simple adjustment based on its vertical and horizontal components, similar to the method 

used by Kenner et al. (2018). 

 

 

Figure 3:  Some examples of velocity vectors as output from the PIPs++ model, a) view of Wcam05, clearly identifying the moving 165 

rock glacier body although its suboptimal viewing angle, b) same view occluded by fog but tracking is interfered from the temporal 

prior, c) same view displaying a systematic shift in the stable areas due to camera movement, d) view of Wcam04 proving PIPs++ 

good performance in varying snow conditions.  
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Depending on computational power and image resolution (in our case 3MP), a certain number of points (N) can be tracked 170 

within a certain batch size (S). In our case, we used an NVIDIA RTX A6000 GPU, with 48 GB of memory and were able to 

track 2000 points in a batch size of 19 frames. This means that for a temporal window of 19 frames, the same 2000 particles 

are tracked before resetting the grid and starting anew. Processing 400 images in this set-up took around 2 minutes. For 

validation, specified points, such as boulders with available GNSS data, can be tracked in addition to the grid points entered 

into PIPs++, demonstrating the system's accuracy and reliability. These points are inserted in the script as pixel coordinates.  175 

 

3.2 From 2D to 3D: image-to-geometry scaling 

The second step in the workflow (Fig. 2) is based on the methodology first introduced in Elias et al. (2019) and later updated 

in Elias et al. (2023). The approach is called image-to-geometry registration and enables the transformation from 2D image 

data into 3D object space by matching a camera image to a synthetic image rendered from a coloured 3D point cloud preserving 180 

location and depth information. This synthetic image should match the image geometry of the real camera as much as possible, 

which is why an initial guess on the true camera pose, i.e., position and viewing direction, as well as the cameras focal length 

and pixel size are required for synthetic image rendering. The 2D-3D matches are used to perform space resection to determine 

the camera pose and, assumed well-distributed key points in view of the camera image, cameras intrinsic parameters and lens 

distortion (Fig. 4). For matching camera and synthetic image, image-to-geometry registration was adapted using the AI-based 185 

matching approach LightGlue (Lindenberger et al., 2023). LightGlue is a high performance, open-source adaptation of 

SuperGlue (Sarlin et al., 2020) and is excellent for registering images to each other, even if they differ greatly in geometry and 

radiometry. After determining the camera pose and internal camera geometry in the reference system of the 3D point cloud, 

image information can be mapped in 3D space by back projection (called “scaling”). Initial camera properties of the used time-

lapse cameras (Table 1) are available and we can access the detailed topography of the scene through a single UAV 190 

measurement, described above.  
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Figure 4: a) Visualisation of the image-to-geometry scaling (Elias et al., 2023), b) real 2D image from Wcam04 being matched to c) 

the rendered synthetic image derived from the UAV data, displaying a good distribution.  

 195 

The accuracy of the determined camera calibration and thus the accuracy of the scaled 3D data is directly linked to the accuracy 

and quality of the 3D data. The point cloud data needs to include colour information to ensure matching to succeed. This 

information could either be RGB, which is common when originating from photogrammetry, or intensity information that 

could be used for colouring. Note, the use of 3D point clouds with intensity values from laser scanning in image-to-geometry 

registration requires objects that can be clearly distinguished from each other in the intensity image by different properties 200 

with regard to their reflectance. This is the case, for example, when used in urban areas where building features can be 

excellently distinguished in the intensity-coloured synthetic image due to different materials and consequent reflections (see 

Elias et al., 2023). In natural settings, like the Grabengufer site, the intensity-image will not provide enough unique features 

to be aligned with the camera image which is why we use an RGB-coloured 3D point cloud from UAV photogrammetry for 

scaling.  205 

Image-to-geometry registration is usually done iteratively where the initial guess of the camera pose and interior camera 

geometry is gradually improved and used to render the synthetic image being more and more close to the cameras perspective. 

As a rule of thumb, the more similar the perspectives of camera and synthetic image, the more matches are likely to be found 

and the better the parameters of the pose and interior camera geometry of the camera image can be determined and used for 

scaling the image information. In this study, we parametrized image-to-geometry registration in a way, that three iterations are 210 

performed. Details on parameters are given in Elias et al. (2019) and Elias et al. (2023).  
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After the results are scaled, absolute distances and velocities are calculated for each tracked point (Fig. 2 (3)), within the chosen 

time interval, in this case every week for the summer of 2022. A spatial aggregation is performed to split the results for the 

active moving part (the feeding area or the rock glacier) and the points in the presumed stable area (dotted line in Fig. 5). An 

accuracy analyses is performed on the points in the stable areas, where the calculated velocities are expected to be close to 215 

zero.  

4. Results and validation 

As a pilot study, we processed a small subset of two time-lapse image datasets (Table 1), of a permafrost-affected landslide 

and its intermediate section feeding into a rock glacier, with the workflow outlined above. The results for both areas for the 

entire summer period (06.06 to 10.10.2022) are shown in Figure 5a. 220 

 

 

Figure 5: a) Accumulated velocity results (in meters per day) over the entire summer period (127 days) for both the feeding section 

(upper area, observed by Wcam04) and the rock glacier (lower area, observed by Wcam05), displayed on UAV point cloud data, 

including theodolite-measured points and the permanent GNSS installation (marked with a red location pin), b) close-up of the 225 

intermediate feeding section (Wcam04) including dGNSS measured points, c) plot of the weekly velocity distribution for both the 

moving and the stable areas (data from Wcam04), showing a clear noise level between -0.01 and 0.01 m/day in both regions. Dotted 

lines indicate the borders used to differentiate between moving and stable areas in this study.  
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The results are coherent with what we expect from the landform displacements, showing a largely homogenous velocity flow 230 

field with faster velocities in the upper area of the rock glacier and in the feeding area of the landslide. Points in blue display 

stable areas for the considered timeframe of 127 days. Especially in the feeding section, there are single large boulders that 

move faster than their surroundings. For validation, permanent GNSS, dGNSS, and theodolite data acquired at the beginning 

and end of the summer season were used. Unfortunately, not all measured points were suitable for validation, as some were 

outside the camera's field of view and thus could not be included. Additionally, due to logistical and safety constraints, dGNSS 235 

points could not be measured in the fast-moving areas of the intermediate feeding section, although they are available in the 

upper landslide area (Fig. 5b). As a result, only a few velocities derived from theodolite measurements could validate the 

higher velocities observed in the time-lapse sequence (Fig. 5a). More interestingly, validation was also conducted by 

examining detected motion in presumed stable areas (Fig. 5c). Here, we observed a clear abundance of points around zero, as 

expected for stable areas, with noise of about 1 cm/day. When considering weekly images, our method and camera setup can 240 

thus detect real movement if it surpasses 7 cm. An average movement of 4 cm per day (28 cm per week) was derived for the 

feeding section, while in stable areas, detected movement was mostly below 4 cm per day (Fig. 5c). In more detailed 

observations of the weekly velocities of the feeding area (Wcam04), we noted a distinct peak in velocity in the second half of 

July (Fig. 6). These observations align with the measured velocities from a permanent GNSS device installed on a large boulder 

(Fig. 5, red location pin). The uppermost landslide area and the lower rock glacier are presumably driven primarily by 245 

permafrost creep. However, the driving mechanisms of the intermediate feeding section observed by Wcam04 remain 

unknown. To better understand the factors controlling velocity changes and the overall behaviour of these landforms, further 

investigation into environmental drivers such as rainfall and temperature is necessary—especially considering that the summer 

of 2022 was exceptionally warm and dry, with consecutive heat waves. However, this falls beyond the scope of the current 

pilot study.  250 
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Figure 6: Graphs showing weekly velocities and cumulative distances. Panel a) displays data for the feeding section (Wcam04) and 

panel b) for the rock glacier (Wcam05) during the summer of 2022, derived from time-lapse imagery. Note that the data from 

October 26 is excluded from graph a) due to foggy conditions and was interpolated by the model. Validation points, marked in red, 

include measurements from the permanent GNSS installed on a large boulder in the upper feeding area (a) and two theodolite points 255 

on the rock glacier (b). 
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4. Discussion, limitations and outlook 

4.1 General performance of the proposed workflow 

The above-described methodology has the potential to tackle entire time-lapse image datasets to determine landform velocities, 260 

in this case creeping permafrost landforms. The results of our workflow show a good agreement with dGNSS, theodolite and 

permanent GNSS measurements, proving our method to be reliable, robust and fast for creating a better spatial (Fig. 5) and 

temporal coverage (Fig. 6) of the landform’s displacement. Our pilot study demonstrates that significant new velocity 

information can be extracted from a basic and cost-effective device like a single webcam, greatly enhancing temporal 

acquisition frequency without the need for an array of cameras. This approach reveals sub-seasonal patterns, such as the short-265 

term acceleration observed in Fig. 6, which reflects either actual motion related to permafrost creep or specific movements in 

the active layer, typically following significant water input from snowmelt or rain (RGIK, 2023). Spatial heterogeneity of 

landform movement (Fig. 5) is evident as well, including instances where larger boulders move faster, seemingly 'surfing' on 

the main landslide body. This phenomenon is illustrated in Fig. 6, where fixed GNSS data indicates faster overall movement 

compared to the entire landform, albeit following a similar temporal pattern. Although our proof-of-concept did not achieve 270 

the millimetre accuracy of fixed GNSS measurements, we were still able to detect displacements of 7 cm and 14 cm between 

consecutive frames using the setups of Wcam04 and Wcam05, respectively (Table 1). The measurements at the rock glacier 

(Wcam05) have a significantly lower spatial resolution (41 vs. 242 points tracked in the feeding area) due to the greater distance 

of the webcam from the area of interest and its suboptimal viewing angle (Fig. 1b). This increased distance also made the 

measurements more sensitive to slight camera movements, which, along with the lower level of detection, likely contributed 275 

to some of the higher variation in measured rock glacier velocity (Fig. 5b). The output of our workflow in a sense yields a 

sparse point cloud for every image frame in the sequence with absolute distance and velocity information as a scalar field, as 

visualised in Figure 5. This provides a great amount of spatial and temporal data in a manageable file format suitable for big 

data.  

The superior performance of the PIPs++ model stems from tracking multiple timesteps jointly instead of frame-by-frame, 280 

enhancing temporal smoothness, coherency, and improving flow estimation accuracy (Hur and Roth, 2020). This makes 

PIPs++ especially suitable for environmental applications, where for example changes in light conditions are a common 

problem. Moreover, PIPs++ is trained on a very large and diverse artificial dataset PointOdyssey (Zheng et al., 2023), including 

rendered dynamic fog to account for (partial) occlusion and realistic in- and outdoor scenes. This entirely absent from other 

synthetic datasets like the FlyingChairs dataset, which was utilised to train models such as FlowFormer (Huang et al., 2022) 285 

or GMFlow (Xu et al., 2022), i.e. transformer-based models, and justifies our use of PIPs++ as a tracker in this proof-of-

concept without the need of re-training the model with a sample of our own data. While previous research using monoscopic 

images to track a landslide (Travelletti et al., 2012) and a rock glacier (Kenner et al., 2018) was prone to mismatches because 

of its frame-by-frame strategy, our approach surpasses this limitation and at the same time makes it possible to process longer 

time periods and handle big data collected by hourly webcams more adequately. By also tracking points in stable areas, shifts 290 
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in camera position, a common problem in long time-lapse imagery sequences, can be corrected and used for stabilising the 

image sequence, similar as in Kenner et al. (2018). A main limitation of the method developed in the latter research is the 

requirement that the creep directions and the geometry of the mass wasting area remains unchanged due to the use of fixed 

azimuths and masks for georeferencing. This is solved in our methodology, since PIPs++ does not assume any movement 

direction (Zheng et al., 2023) and no masks are needed when scaling the data using our image-to-geometry approach (Elias et 295 

al., 2023).  

4.2 Limitations  

As PIPs++ still relies on appearance-matching cues similar to traditional methods, it remains sensitive to abrupt changes in 

appearance, such as substantial variations in snow cover or alterations in surface morphology due to e.g., extensive rockfalls. 

This issue was also highlighted as a major limitation by Kenner et al. (2018). However, because the algorithm can quickly 300 

process large amounts of data, we can leverage the full temporal resolution, allowing tracking to succeed as long as snow cover 

changes gradually, as shown in Figure 3d.  

Another important limitation of our approach is that PIPs++ does not perform well in detecting movements for every pixel in 

the image due to the use of a regular grid compared to other frame-to-frame approaches. Currently, a regular grid size of 2000 

points per image is used, limited by computational power. While PIPs++ works well with the low-resolution images in this 305 

study, higher-resolution images quickly reach the limits of our available computational resources. One major limitation is the 

need for specific and expensive computational setups (e.g., an NVIDIA RTX A6000 GPU with 48GB). Even with these 

resources, increasing the temporal window, image resolution, and tracked points can quickly hit the limits. Considering 

appropriate GPU and CPU computational power, around 30 min were needed to process the example dataset of this paper in 

an end-to-end fashion, from raw time-lapse images to velocity graphs. The majority of this time is needed to scale the output 310 

of the PIPs++ model, which is highly dependent on the size of the 3D point cloud. 

Despite these limitations, we are confident that ongoing developments in AI processing will resolve these issues in the near 

future, making it possible to run AI frameworks on CPU only. Unlike PIPs++, the image-to-geometry approach does not 

require a GPU and can be performed on a laptop. However, to scale the time-lapse image data accurately, at least one UAV 

data survey is essential, and the quality of this scaling relies heavily on the quality of the UAV data. Additionally, a suboptimal 315 

oblique viewing angle, such as with Wcam05 (Fig. 1b), can complicate the matching process, as the rendered view will be 

limited to a narrow strip. This can affect the distribution of matches and compromise the estimation of the camera's interior 

orientation and lens distortions (Elias et al., 2019). Furthermore, our current assumption that the cameras remain stable over 

time justifies using a single image to determine the interior and exterior camera properties. However, for future work, it would 

be more accurate to perform this estimation for each time-lapse image individually, as can be done with a stereoscopic camera 320 

system (Ioli et al., 2024), to account for temperature-induced variations (Elias et al., 2020). 
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4.3 Outlook  

There is still potential to optimize the proposed workflow to achieve full automation for processing entire image sequences. 

This includes automatically detecting moving and stable areas, which currently relies on user defined criteria and thus depends 325 

on prior site knowledge. Further enhancements to the image-to-geometry algorithm are necessary to increase its speed and 

computational efficiency for scaling several hundred timestamps simultaneously. Additionally, we need to conduct further 

investigations into the in-field calibration of intrinsic camera parameters and their stability over time (Elias et al., 2020). This 

analysis aims to determine if it significantly enhances the quality of scaled results, similar to the benefits that are expected 

when using multiple epochs of UAV data for updating the camera calibration. Improvements in 2D to 3D tools (image-to-330 

geometry registration) could also benefit other disciplines, such as the quantitative analysis of historical terrestrial photographs 

for mapping historical rockfall (Wegner et al., 2023) and changes in glacier forefields (Altmann et al., 2020). 

Moreover, additional research is necessary to evaluate whether AI-based tracking algorithms like PIPs++ could effectively 

track landform velocities using aerial datasets such as consecutive UAV orthophotos or satellite imagery. Furthermore, the 

developed workflow could prove valuable for analysing monoscopic time-lapse image sequences of other dynamic processes, 335 

such as lava flows (James and Robson, 2014), solifluction and gelifluction movements (Matsuoka, 2014), and flow velocities 

in rivers (Eltner et al., 2020; Stumpf et al., 2016). Given the prevalence of time-lapse camera data collection, a rapid and 

efficient method for automatically processing such extensive datasets holds significant scientific relevance. Furthermore, the 

fast and robust processing of the time-lapse imagery makes it possible to function as an early-warning system when processing 

can be carried out in near real-time, as indicated by Kenner et al. (2018). 340 

5. Conclusion  

This proof-of-concept demonstrates the potential of AI-based algorithms for tracking and matching points to improve motion 

estimations in time-lapse image sequences of a mountain landscape. Two fast-moving alpine landforms—a landslide and a 

rock glacier at the Grabengufer site in Switzerland—were selected as the pilot study area. The initial results presented in this 

paper show that robust and reliable velocity information can be quickly derived with minimal input data and user intervention. 345 

Our pilot study opens the door to processing entire image datasets to reveal spatio-temporal patterns that traditional monitoring 

methods have previously overlooked due to their limited spatial or temporal resolution. 

The PIPs++ model, used for tracking features in image sequences, excels in widening the temporal window and includes a 

template-update mechanism that allows for changes in feature appearance. Its key advantage is its ability to accurately estimate 

occluded trajectories within the temporal frame, avoiding suboptimal matches and enhancing tracking accuracy, making it 350 

especially robust for environmental applications and eliminates the need for filtering blurry or foggy images as a pre-processing 

step. Additionally, the model's rapid performance—processing 400 images in two minutes to track features through a temporal 

window of 19 frames on an NVIDIA RTX A6000—is promising for handling large datasets and developing early-warning 

systems.  
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The image-to-geometry approach provides an accurate way to scale the 2D image data into 3D object space, even under 355 

suboptimal camera viewing angles and distance to the area of interest. Future research will focus on enhancing the image-to-

geometry algorithm for efficient scaling of multiple timestamps, in-field camera calibration, and evaluating the potential 

benefits of using multiple epochs of UAV data. 

This paper represents an important step forward in using monoscopic cameras and leveraging previously captured data that 

have not been processed automatically with metric values before. By significantly enhancing temporal acquisition frequency 360 

using basic time-lapse imagery with zero cost, we can achieve a level of data resolution that would be expensive with GNSS 

or UAV methods. Validated by discrete theodolite, GNSS, and continuous permanent GNSS measurements, our approach 

provides a spatially continuous understanding of landform movement. It allows data acquisition in areas where in-situ 

measurements are impractical due to logistical and safety constraints, and where other remote sensing techniques fail due to 

high landform displacements. Furthermore, depending on the image resolution, distance to the landform, and its velocity, our 365 

approach can achieve a sub-seasonal resolution of velocity information with an accuracy of several cm. 

This study introduces a new tool for scientists to automatically extract velocity information from existing webcam datasets, 

extending its applicability to various phenomena, including lava flows, water flows, and creeping landforms such as landslides, 

rock glaciers, and solifluction lobes. 

Code availability 370 

Part of this work is based on existing algorithms, available under https://github.com/aharley/pips2 for PIPs++ tracker and 

https://github.com/cvg/LightGlue for LightGlue matching algorithm. The code used for this proof-of-concept is partly 

available under https://github.com/hannehendrickx/pips_env. Please follow this repository to receive further updates. All code 

is available upon reasonable request to the corresponding author. We encourage people with similar monoscopic time-lapse 

image datasets to reach out to the authors.  375 

Data availability  

The sample images and corresponding trajectory files used in this study are available at: 

https://github.com/hannehendrickx/pips_env. For an up-to-date overview of the sites, including the latest webcam images, 

please visit the following pages: Grabengufer Landslide and Grabengufer Rock Glacier. 
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