Books by Ainhoa Murua Ugarte
Papers by Ainhoa Murua Ugarte
Theraputic Delivery, Jan 1, 2010
Cell encapsulation can be defined as a living cell approach for the long-term delivery of therape... more Cell encapsulation can be defined as a living cell approach for the long-term delivery of therapeutic products. It consists of the immobilization of therapeutically active cells within a general polymer matrix that permits the ingress of nutrients and oxygen and the egress of therapeutic protein products but impedes the immune contact of the enclosed cells. In recent decades many attempts have evaluated the potential of this technology to release therapeutic agents for the treatment of different pathologies and disorders. At present, cell encapsulation may be used as a technological platform to improve knowledge and clinical use of stem cells. This review describes the main issues related to this cell-based approach and summarizes some of the most interesting therapeutic applications.
International Journal of …, Jan 1, 2010
Cell encapsulation technology raises hopes in medicine and biotechnology. However, despite import... more Cell encapsulation technology raises hopes in medicine and biotechnology. However, despite important advances in the field in the past three decades, several challenges associated with the biocompatibility are still remaining. In the present study, the effect of a temporary release of an anti-inflammatory agent on co-administered encapsulated allogeneic cells was investigated. The aim was to determine the biocompatibility and efficacy of the approach to prevent the inflammatory response. A composite delivery system comprised of alginate-poly-l-lysine-alginate (APA)-microencapsulated Epo-secreting myoblasts and dexamethasone (DXM)-releasing poly(lactic-co-glycolic acid) (PLGA) microspheres was implanted in the subcutaneous space of Balb/c mice for 45 days. The use of independently co-implanted DXM-loaded PLGA microspheres resulted in an improved functionality of the cell-based graft, evidenced by significantly higher hematocrit levels found in the cell-implanted groups by day 45, which was found to be more pronounced when higher cell-doses (100 μL) were employed. Moreover, no major host reaction was observed upon implantation of the systems, showing good biocompatibility and capability to partially avoid the inflammatory response, probably due to the immunosuppressive effects related to DXM. The findings of this study imply that DXM-loaded PLGA microspheres show promise as release systems to enhance biocompatibility and offer advantage in the development of long-lasting and effective implantable microencapsulated cells by generating a potential immunopriviledged local environment and an effective method to limit the structural ensheathing layer caused by inflammation.Copyright © 2010 Elsevier B.V. All rights reserved.
Advanced drug delivery …, Jan 1, 2010
In recent years, the use of transplanted living cells pumping out active factors directly at the ... more In recent years, the use of transplanted living cells pumping out active factors directly at the site has proven to be an emergent technology. However a recurring impediment to rapid development in the field is the immune rejection of transplanted allo- or xenogeneic cells. Immunosuppression is used clinically to prevent rejection of organ and cell transplants in humans, but prolonged usage can make the recipient vulnerable to infections, and increase the likelihood of tumorigenesis of the transplanted cells. Cell microencapsulation is a promising tool to overcome these drawbacks. It consists of surrounding cells with a semipermeable polymeric membrane. The latter permits the entry of nutrients and the exit of therapeutic protein products, obtaining in this way a sustained delivery of the desirable molecule. The membrane isolates the enclosed cells from the host immune system, preventing the recognition of the immobilization cells as foreign. This review paper intends to overview the current situation in the cell encapsulation field and discusses the main events that have occurred along the way. The technical advances together with the ever increasing knowledge and experience in the field will undoubtedly lead to the realization of the full potential of cell encapsulation in the future.2010 Elsevier B.V. All rights reserved.
Advances in experimental …, Jan 1, 2010
ver the last half century, the use of erythropoietin (Epo) in the management of malignancies has ... more ver the last half century, the use of erythropoietin (Epo) in the management of malignancies has been extensively studied. Originally viewed as the renal hormone responsible for red blood cell production, many recent in vivo and clinical approaches demonstrate that various tissues locally produce Epo in response to physical or metabolic stress. Thus, not only its circulating erythrocyte mass regulator activity but also the recently discovered nonhematological actions are being thoroughly investigated in order to fulfill the specific Epo delivery requirements for each therapeutic approach.
Medicinal Research …
Deciphering the function of proteins and their roles in signaling pathways is one of the main goa... more Deciphering the function of proteins and their roles in signaling pathways is one of the main goals of biomedical research, especially from the perspective of uncovering pathways that may ultimately be exploited for therapeutic benefit. Over the last half century, a greatly expanded understanding of the biology of the glycoprotein hormone erythropoietin (Epo) has emerged from regulator of the circulating erythrocyte mass to a widely used therapeutic agent. Originally viewed as the renal hormone responsible for erythropoiesis, recent in vivo studies in animal models and clinical trials demonstrate that many other tissues locally produce Epo independent of its effects on red blood cell mass. Thus, not only its hematopoietic activity but also the recently discovered nonerythropoietic actions in addition to new drug delivery systems are being thoroughly investigated in order to fulfill the specific Epo release requirements for each therapeutic approach. The present review focuses on updating the information previously provided by similar reviews and recent experimental approaches are presented to describe the advances in Epo drug delivery achieved in the last few years and future perspectives.© 2009 Wiley Periodicals, Inc.
Journal of Controlled …, Jan 1, 2009
Cell encapsulation technology holds promise for the sustained and controlled delivery of therapeu... more Cell encapsulation technology holds promise for the sustained and controlled delivery of therapeutic proteins such as erythropoietin (Epo). Transplantation of microencapsulated C(2)C(12) myoblasts in syngeneic and allogeneic recipients has been proven to display long-term survival when implanted subcutaneously. However, xenotransplantation approaches may be affected by the rejection of the host and thus may require transient immunosuppression. C(2)C(12) myoblasts genetically engineered to secrete murine Epo (mEpo) were encapsulated in alginate-poly-L-lysine-alginate (APA) microcapsules and implanted subcutaneously in Fischer rats using a transient immunosuppressive FK-506 therapy (2 or 4 weeks) to ameliorate immunoprotection of microcapsules. Rats receiving short-term immunosupression with FK-506 maintained high hematocrit levels for a longer period of time (14 weeks) in comparison with the non-immunosuppressed group. In addition, a significant difference in hematocrit levels was detected by day 65 among rats immunosuppressed for 2 or 4 weeks, corroborating the need of a minimum period of immunosuppression (4 weeks) for this purpose. These results highlight the importance of applying a minimum period (4 weeks) of transient immunosuppression if the host acceptance of xenogeneic implants based on microencapsulated Epo-secreting cells is aimed.
Biomaterials, Jan 1, 2009
One important challenge in biomedicine is the ability to cryogenically preserve not only cells, b... more One important challenge in biomedicine is the ability to cryogenically preserve not only cells, but also tissue-engineered constructs. In the present paper, alginate-poly-l-lysine-alginate (APA) microcapsules containing erythropoietin (Epo)-secreting C(2)C(12) myoblasts were elaborated, characterized and tested both in vitro and in vivo. Dimethylsulfoxide (DMSO) was selected as cryoprotectant to evaluate the maintenance of physiological activity of cryopreserved microencapsulated myoblasts employing procedures based on freezing protocols up to a 45-day cryopreservation period. High chemical resistance of the cryopreserved microcapsules was observed using 10% DMSO as cryoprotectant following a standard slow-cooling procedure. Although a 42% reduction in Epo release from the microencapsulated cells was observed in comparison with the non-cryopreserved group, the in vivo biocompatibility and functionality of the encapsulated cells subcutaneously implanted in Balb/c mice was corroborated by high and sustained hematocrit levels over 194 days and lacking immunosuppressive protocols. No major host reaction was observed. Based on the results obtained in our study, a slow-cooling protocol using 10% DMSO as cryoprotectant (confirmed for cryopreservation periods up to 45 days) might be considered a suitable therapeutic strategy if the long-term storage of microencapsulated cells, such as C(2)C(12) myoblasts is pretended.
Journal of Controlled …, Jan 1, 2008
The pharmacokinetic properties of a drug can be significantly improved by the delivery process. S... more The pharmacokinetic properties of a drug can be significantly improved by the delivery process. Scientists have understood that developing suitable drug delivery systems that release the therapeutically active molecule at the level and dose it is needed and during the optimal time represents a major advance in the field. Cell microencapsulation is an alternative approach for the sustained delivery of therapeutic agents. This technology is based on the immobilization of different types of cells within a polymeric matrix surrounded by a semipermeable membrane for the long-term release of therapeutics. As a result, encapsulated cells are isolated from the host immune system while allowing exchange of nutrients and waste and release of the therapeutic agents. The versatility of this approach has stimulated its use in the treatment of numerous medical diseases including diabetes, cancer, central nervous system diseases and endocrinological disorders among others. The aim of this review article is to give an overview on the current state of the art of the use of cell encapsulation technology as a controlled drug delivery system. The most important advantages of this type of "living" drug release strategy are highlighted, but also its limitations pointed out, and the major challenges to be addressed in the forthcoming years are described.
…, Jan 1, 2007
The in vitro and in vivo characterization of cell-loaded immobilization devices is an important c... more The in vitro and in vivo characterization of cell-loaded immobilization devices is an important challenge in cell encapsulation technology for the long-term efficacy of this approach. In the present paper, alginate-poly-l-lysine-alginate (APA) microcapsules containing erythropoietin (Epo)-secreting C2C12 myoblasts have been elaborated, characterized, and tested both in vitro and in vivo. High mechanical and chemical resistance of the elaborated microcapsules was observed. Moreover, the in vitro cultured encapsulated cells released 81.9 +/- 8.2 mIU/mL/24 h (by 100 cell-loaded microcapsules) by day 7, reaching the highest peak at day 21 (161.7 +/- 0.9 mIU/mL/24 h). High and constant hematocrit levels were maintained over 120 days after a single subcutaneous administration of microcapsules and lacking immunosuppressive protocols. No major host reaction was observed. On the basis of the results obtained in our study, cell encapsulation technology might be considered a suitable therapeutic strategy for the long-term delivery of biologically active products, such as Epo.
Uploads
Books by Ainhoa Murua Ugarte
Papers by Ainhoa Murua Ugarte